Dislocation Mechanics of Metal Plasticity and Fracturing

The modern understanding of metal plasticity and fracturing began about 100 years ago, with pioneering work; first, on crack-induced fracturing by Griffith and, second, with the invention of dislocation-enhanced crystal plasticity by Taylor, Orowan and Polanyi. The modern counterparts are fracture m...

Full description

Saved in:
Bibliographic Details
Sonstige:
Year of Publication:2020
Language:English
Physical Description:1 electronic resource (188 p.)
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 04590nam-a2201129z--4500
001 993545485904498
005 20231214133448.0
006 m o d
007 cr|mn|---annan
008 202105s2020 xx |||||o ||| 0|eng d
035 |a (CKB)5400000000043728 
035 |a (oapen)https://directory.doabooks.org/handle/20.500.12854/69250 
035 |a (EXLCZ)995400000000043728 
041 0 |a eng 
100 1 |a Armstrong, Ronald W.  |4 edt 
245 1 0 |a Dislocation Mechanics of Metal Plasticity and Fracturing 
260 |a Basel, Switzerland  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2020 
300 |a 1 electronic resource (188 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a The modern understanding of metal plasticity and fracturing began about 100 years ago, with pioneering work; first, on crack-induced fracturing by Griffith and, second, with the invention of dislocation-enhanced crystal plasticity by Taylor, Orowan and Polanyi. The modern counterparts are fracture mechanics, as invented by Irwin, and dislocation mechanics, as initiated in pioneering work by Cottrell. No less important was the breakthrough development of optical characterization of sectioned polycrystalline metal microstructures started by Sorby in the late 19th century and leading eventually to modern optical, x-ray and electron microscopy methods for assessments of crystal fracture surfaces, via fractography, and particularly of x-ray and electron microscopy techniques applied to quantitative characterizations of internal dislocation behaviors. A major current effort is to match computational simulations of metal deformation/fracturing behaviors with experimental measurements made over extended ranges of microstructures and over varying external conditions of stress-state, temperature and loading rate. The relation of such simulations to the development of constitutive equations for a hoped-for predictive description of material deformation/fracturing behaviors is an active topic of research. The present collection of articles provides a broad sampling of research accomplishments on the two subjects. 
546 |a English 
650 7 |a Research & information: general  |2 bicssc 
653 |a dislocation mechanics 
653 |a yield strength 
653 |a grain size 
653 |a thermal activation 
653 |a strain rate 
653 |a impact tests 
653 |a brittleness transition 
653 |a fracturing 
653 |a crack size 
653 |a fracture mechanics 
653 |a Hall-Petch equation 
653 |a Griffith equation 
653 |a size effect 
653 |a mechanical strength 
653 |a pearlitic steels 
653 |a suspension bridge cables 
653 |a dislocation microstructure 
653 |a fractal analysis 
653 |a plasticity 
653 |a representative volume element 
653 |a dislocation structure 
653 |a dislocation correlations 
653 |a dislocation avalanches 
653 |a nanotwin 
653 |a nanograin 
653 |a Au–Cu alloy 
653 |a micro-compression 
653 |a Cu-Zr 
653 |a ECAP 
653 |a deformation 
653 |a quasi-stationary 
653 |a subgrains 
653 |a grains 
653 |a coarsening 
653 |a Cu–Zr 
653 |a ultrafine-grained material 
653 |a dynamic recovery 
653 |a transient 
653 |a load change tests 
653 |a Charpy impact test 
653 |a GMAW 
653 |a additive manufacturing 
653 |a secondary cracks 
653 |a anisotropy 
653 |a linear flow splitting 
653 |a crystal plasticity 
653 |a DAMASK 
653 |a texture 
653 |a EBSD 
653 |a crack tip dislocations 
653 |a TEM 
653 |a grain rotation 
653 |a fatigue 
653 |a dislocation configurations 
653 |a residual stress 
653 |a indentation 
653 |a serration 
653 |a temperature 
653 |a dislocation 
653 |a artificial aging 
653 |a solid solution 
653 |a loading curvature 
653 |a aluminum alloy 
653 |a holistic approach 
653 |a dislocation group dynamics 
653 |a dynamic factor 
653 |a dislocation pile-up 
653 |a yield stress 
653 |a dislocation creep 
653 |a fatigue crack growth rate 
776 |z 3-03943-264-8 
776 |z 3-03943-265-6 
700 1 |a Armstrong, Ronald W.  |4 oth 
906 |a BOOK 
ADM |b 2023-12-15 05:54:44 Europe/Vienna  |f system  |c marc21  |a 2022-04-04 09:22:53 Europe/Vienna  |g false 
AVE |i DOAB Directory of Open Access Books  |P DOAB Directory of Open Access Books  |x https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&portfolio_pid=5337928330004498&Force_direct=true  |Z 5337928330004498  |b Available  |8 5337928330004498