Numerical Simulation in Biomechanics and Biomedical Engineering

In the first contribution, Morbiducci and co-workers discuss the theoretical and methodological bases supporting the Lagrangian- and Euler-based methods, highlighting their application to cardiovascular flows. The second contribution, by the Ansón and van Lenthe groups, proposes an automated virtual...

Full description

Saved in:
Bibliographic Details
Sonstige:
Year of Publication:2021
Language:English
Physical Description:1 electronic resource (300 p.)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 993545327604498
ctrlnum (CKB)5400000000042709
(oapen)https://directory.doabooks.org/handle/20.500.12854/77117
(EXLCZ)995400000000042709
collection bib_alma
record_format marc
spelling Malvè, Mauro edt
Numerical Simulation in Biomechanics and Biomedical Engineering
Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute 2021
1 electronic resource (300 p.)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
In the first contribution, Morbiducci and co-workers discuss the theoretical and methodological bases supporting the Lagrangian- and Euler-based methods, highlighting their application to cardiovascular flows. The second contribution, by the Ansón and van Lenthe groups, proposes an automated virtual bench test for evaluating the stability of custom shoulder implants without the necessity of mechanical testing. Urdeitx and Doweidar, in the third paper, also adopt the finite element method for developing a computational model aim to study cardiac cell behavior under mechano-electric stimulation. In the fourth contribution, Ayensa-Jiménez et al. develop a methodology to approximate the multidimensional probability density function of the parametric analysis obtained developing a mathematical model of the cancer evolution. The fifth paper is oriented to the topological data analysis; the group of Cueto and Chinesta designs a predictive model capable of estimating the state of drivers using the data collected from motion sensors. In the sixth contribution, the Ohayon and Finet group uses wall shear stress-derived descriptors to study the role of recirculation in the arterial restenosis due to different malapposed and overlapping stent conditions. In the seventh contribution, the research group of Antón demonstrates that the simulation time can be reduced for cardiovascular numerical analysis considering an adequate geometry-reduction strategy applicable to truncated patient specific artery. In the eighth paper, Grasa and Calvo present a numerical model based on the finite element method for simulating extraocular muscle dynamics. The ninth paper, authored by Kahla et al., presents a mathematical mechano-pharmaco-biological model for bone remodeling. Martínez, Peña, and co-workers propose in the tenth paper a methodology to calibrate the dissection properties of aorta layer, with the aim of providing useful information for reliable numerical tools. In the eleventh contribution, Martínez-Bocanegra et al. present the structural behavior of a foot model using a detailed finite element model. The twelfth contribution is centered on the methodology to perform a finite, element-based, numerical model of a hydroxyapatite 3D printed bone scaffold. In the thirteenth paper, Talygin and Gorodkov present analytical expressions describing swirling jets for cardiovascular applications. In the fourteenth contribution, Schenkel and Halliday propose a novel non-Newtonian particle transport model for red blood cells. Finally, Zurita et al. propose a parametric numerical tool for analyzing a silicone customized 3D printable trachea-bronchial prosthesis.
English
Technology: general issues bicssc
finite element analysis
shoulder implant stability
implant design
reverse shoulder arthroplasty
micromotion
in-silico
3D model
cardiac cell
cardiac muscle tissue
cardiomyocyte
electrical stimulation
copulas
design of experiments
glioblastoma multiforme
mathematical modelling
Morse theory
topological data analysis
machine learning
time series
smart driving
fixed points
manifolds
divergence
hemodynamics
computational fluid dynamics
overlap
malapposition
stent
stenosis
thrombosis
radioembolization
liver cancer
hepatic artery
computational cost analysis
personalized medicine
patient specific
finite element method
implicit FEM
explicit FEM
skeletal muscle
biomechanics
mathematical model
cell dynamics
bone physiology
bone disorders
aortic dissection
delamination tests
cohesive zone model
porcine aorta
vascular mechanics
foot finite element method
foot and ankle model
shared nodes
separated mesh
plantar pressure
finite element modelling
bone tissue engineering
3D scaffold
additive manufacturing
potential swirling flow
Navier–Stokes equations
unsteady swirling flow
tornado-like jets
haemorheology
blood flow modelling
particle transport
numerical fluid mechanics
tracheobronchial stent
parametric model
3D printing
customized prosthesis
3-0365-2211-5
3-0365-2212-3
Malvè, Mauro oth
language English
format eBook
author2 Malvè, Mauro
author_facet Malvè, Mauro
author2_variant m m mm
author2_role Sonstige
title Numerical Simulation in Biomechanics and Biomedical Engineering
spellingShingle Numerical Simulation in Biomechanics and Biomedical Engineering
title_full Numerical Simulation in Biomechanics and Biomedical Engineering
title_fullStr Numerical Simulation in Biomechanics and Biomedical Engineering
title_full_unstemmed Numerical Simulation in Biomechanics and Biomedical Engineering
title_auth Numerical Simulation in Biomechanics and Biomedical Engineering
title_new Numerical Simulation in Biomechanics and Biomedical Engineering
title_sort numerical simulation in biomechanics and biomedical engineering
publisher MDPI - Multidisciplinary Digital Publishing Institute
publishDate 2021
physical 1 electronic resource (300 p.)
isbn 3-0365-2211-5
3-0365-2212-3
illustrated Not Illustrated
work_keys_str_mv AT malvemauro numericalsimulationinbiomechanicsandbiomedicalengineering
status_str n
ids_txt_mv (CKB)5400000000042709
(oapen)https://directory.doabooks.org/handle/20.500.12854/77117
(EXLCZ)995400000000042709
carrierType_str_mv cr
is_hierarchy_title Numerical Simulation in Biomechanics and Biomedical Engineering
author2_original_writing_str_mv noLinkedField
_version_ 1787548505469878273
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05996nam-a2201141z--4500</leader><controlfield tag="001">993545327604498</controlfield><controlfield tag="005">20231214133150.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr|mn|---annan</controlfield><controlfield tag="008">202201s2021 xx |||||o ||| 0|eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(CKB)5400000000042709</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(oapen)https://directory.doabooks.org/handle/20.500.12854/77117</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(EXLCZ)995400000000042709</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Malvè, Mauro</subfield><subfield code="4">edt</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical Simulation in Biomechanics and Biomedical Engineering</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Basel, Switzerland</subfield><subfield code="b">MDPI - Multidisciplinary Digital Publishing Institute</subfield><subfield code="c">2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 electronic resource (300 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In the first contribution, Morbiducci and co-workers discuss the theoretical and methodological bases supporting the Lagrangian- and Euler-based methods, highlighting their application to cardiovascular flows. The second contribution, by the Ansón and van Lenthe groups, proposes an automated virtual bench test for evaluating the stability of custom shoulder implants without the necessity of mechanical testing. Urdeitx and Doweidar, in the third paper, also adopt the finite element method for developing a computational model aim to study cardiac cell behavior under mechano-electric stimulation. In the fourth contribution, Ayensa-Jiménez et al. develop a methodology to approximate the multidimensional probability density function of the parametric analysis obtained developing a mathematical model of the cancer evolution. The fifth paper is oriented to the topological data analysis; the group of Cueto and Chinesta designs a predictive model capable of estimating the state of drivers using the data collected from motion sensors. In the sixth contribution, the Ohayon and Finet group uses wall shear stress-derived descriptors to study the role of recirculation in the arterial restenosis due to different malapposed and overlapping stent conditions. In the seventh contribution, the research group of Antón demonstrates that the simulation time can be reduced for cardiovascular numerical analysis considering an adequate geometry-reduction strategy applicable to truncated patient specific artery. In the eighth paper, Grasa and Calvo present a numerical model based on the finite element method for simulating extraocular muscle dynamics. The ninth paper, authored by Kahla et al., presents a mathematical mechano-pharmaco-biological model for bone remodeling. Martínez, Peña, and co-workers propose in the tenth paper a methodology to calibrate the dissection properties of aorta layer, with the aim of providing useful information for reliable numerical tools. In the eleventh contribution, Martínez-Bocanegra et al. present the structural behavior of a foot model using a detailed finite element model. The twelfth contribution is centered on the methodology to perform a finite, element-based, numerical model of a hydroxyapatite 3D printed bone scaffold. In the thirteenth paper, Talygin and Gorodkov present analytical expressions describing swirling jets for cardiovascular applications. In the fourteenth contribution, Schenkel and Halliday propose a novel non-Newtonian particle transport model for red blood cells. Finally, Zurita et al. propose a parametric numerical tool for analyzing a silicone customized 3D printable trachea-bronchial prosthesis.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Technology: general issues</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">finite element analysis</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">shoulder implant stability</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">implant design</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">reverse shoulder arthroplasty</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">micromotion</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">in-silico</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">3D model</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">cardiac cell</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">cardiac muscle tissue</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">cardiomyocyte</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">electrical stimulation</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">copulas</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">design of experiments</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">glioblastoma multiforme</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">mathematical modelling</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Morse theory</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">topological data analysis</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">machine learning</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">time series</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">smart driving</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">fixed points</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">manifolds</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">divergence</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">hemodynamics</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">computational fluid dynamics</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">overlap</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">malapposition</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">stent</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">stenosis</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">thrombosis</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">radioembolization</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">liver cancer</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">hepatic artery</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">computational cost analysis</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">personalized medicine</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">patient specific</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">finite element method</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">implicit FEM</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">explicit FEM</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">skeletal muscle</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">biomechanics</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">mathematical model</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">cell dynamics</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">bone physiology</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">bone disorders</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">aortic dissection</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">delamination tests</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">cohesive zone model</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">porcine aorta</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">vascular mechanics</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">foot finite element method</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">foot and ankle model</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">shared nodes</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">separated mesh</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">plantar pressure</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">finite element modelling</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">bone tissue engineering</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">3D scaffold</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">additive manufacturing</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">potential swirling flow</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Navier–Stokes equations</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">unsteady swirling flow</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">tornado-like jets</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">haemorheology</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">blood flow modelling</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">particle transport</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">numerical fluid mechanics</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">tracheobronchial stent</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">parametric model</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">3D printing</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">customized prosthesis</subfield></datafield><datafield tag="776" ind1=" " ind2=" "><subfield code="z">3-0365-2211-5</subfield></datafield><datafield tag="776" ind1=" " ind2=" "><subfield code="z">3-0365-2212-3</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Malvè, Mauro</subfield><subfield code="4">oth</subfield></datafield><datafield tag="906" ind1=" " ind2=" "><subfield code="a">BOOK</subfield></datafield><datafield tag="ADM" ind1=" " ind2=" "><subfield code="b">2023-12-15 05:45:01 Europe/Vienna</subfield><subfield code="f">system</subfield><subfield code="c">marc21</subfield><subfield code="a">2022-04-04 09:22:53 Europe/Vienna</subfield><subfield code="g">false</subfield></datafield><datafield tag="AVE" ind1=" " ind2=" "><subfield code="i">DOAB Directory of Open Access Books</subfield><subfield code="P">DOAB Directory of Open Access Books</subfield><subfield code="x">https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&amp;portfolio_pid=5337920840004498&amp;Force_direct=true</subfield><subfield code="Z">5337920840004498</subfield><subfield code="b">Available</subfield><subfield code="8">5337920840004498</subfield></datafield></record></collection>