Numerical Simulation in Biomechanics and Biomedical Engineering

In the first contribution, Morbiducci and co-workers discuss the theoretical and methodological bases supporting the Lagrangian- and Euler-based methods, highlighting their application to cardiovascular flows. The second contribution, by the Ansón and van Lenthe groups, proposes an automated virtual...

Full description

Saved in:
Bibliographic Details
Sonstige:
Year of Publication:2021
Language:English
Physical Description:1 electronic resource (300 p.)
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 05996nam-a2201141z--4500
001 993545327604498
005 20231214133150.0
006 m o d
007 cr|mn|---annan
008 202201s2021 xx |||||o ||| 0|eng d
035 |a (CKB)5400000000042709 
035 |a (oapen)https://directory.doabooks.org/handle/20.500.12854/77117 
035 |a (EXLCZ)995400000000042709 
041 0 |a eng 
100 1 |a Malvè, Mauro  |4 edt 
245 1 0 |a Numerical Simulation in Biomechanics and Biomedical Engineering 
260 |a Basel, Switzerland  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2021 
300 |a 1 electronic resource (300 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a In the first contribution, Morbiducci and co-workers discuss the theoretical and methodological bases supporting the Lagrangian- and Euler-based methods, highlighting their application to cardiovascular flows. The second contribution, by the Ansón and van Lenthe groups, proposes an automated virtual bench test for evaluating the stability of custom shoulder implants without the necessity of mechanical testing. Urdeitx and Doweidar, in the third paper, also adopt the finite element method for developing a computational model aim to study cardiac cell behavior under mechano-electric stimulation. In the fourth contribution, Ayensa-Jiménez et al. develop a methodology to approximate the multidimensional probability density function of the parametric analysis obtained developing a mathematical model of the cancer evolution. The fifth paper is oriented to the topological data analysis; the group of Cueto and Chinesta designs a predictive model capable of estimating the state of drivers using the data collected from motion sensors. In the sixth contribution, the Ohayon and Finet group uses wall shear stress-derived descriptors to study the role of recirculation in the arterial restenosis due to different malapposed and overlapping stent conditions. In the seventh contribution, the research group of Antón demonstrates that the simulation time can be reduced for cardiovascular numerical analysis considering an adequate geometry-reduction strategy applicable to truncated patient specific artery. In the eighth paper, Grasa and Calvo present a numerical model based on the finite element method for simulating extraocular muscle dynamics. The ninth paper, authored by Kahla et al., presents a mathematical mechano-pharmaco-biological model for bone remodeling. Martínez, Peña, and co-workers propose in the tenth paper a methodology to calibrate the dissection properties of aorta layer, with the aim of providing useful information for reliable numerical tools. In the eleventh contribution, Martínez-Bocanegra et al. present the structural behavior of a foot model using a detailed finite element model. The twelfth contribution is centered on the methodology to perform a finite, element-based, numerical model of a hydroxyapatite 3D printed bone scaffold. In the thirteenth paper, Talygin and Gorodkov present analytical expressions describing swirling jets for cardiovascular applications. In the fourteenth contribution, Schenkel and Halliday propose a novel non-Newtonian particle transport model for red blood cells. Finally, Zurita et al. propose a parametric numerical tool for analyzing a silicone customized 3D printable trachea-bronchial prosthesis. 
546 |a English 
650 7 |a Technology: general issues  |2 bicssc 
653 |a finite element analysis 
653 |a shoulder implant stability 
653 |a implant design 
653 |a reverse shoulder arthroplasty 
653 |a micromotion 
653 |a in-silico 
653 |a 3D model 
653 |a cardiac cell 
653 |a cardiac muscle tissue 
653 |a cardiomyocyte 
653 |a electrical stimulation 
653 |a copulas 
653 |a design of experiments 
653 |a glioblastoma multiforme 
653 |a mathematical modelling 
653 |a Morse theory 
653 |a topological data analysis 
653 |a machine learning 
653 |a time series 
653 |a smart driving 
653 |a fixed points 
653 |a manifolds 
653 |a divergence 
653 |a hemodynamics 
653 |a computational fluid dynamics 
653 |a overlap 
653 |a malapposition 
653 |a stent 
653 |a stenosis 
653 |a thrombosis 
653 |a radioembolization 
653 |a liver cancer 
653 |a hepatic artery 
653 |a computational cost analysis 
653 |a personalized medicine 
653 |a patient specific 
653 |a finite element method 
653 |a implicit FEM 
653 |a explicit FEM 
653 |a skeletal muscle 
653 |a biomechanics 
653 |a mathematical model 
653 |a cell dynamics 
653 |a bone physiology 
653 |a bone disorders 
653 |a aortic dissection 
653 |a delamination tests 
653 |a cohesive zone model 
653 |a porcine aorta 
653 |a vascular mechanics 
653 |a foot finite element method 
653 |a foot and ankle model 
653 |a shared nodes 
653 |a separated mesh 
653 |a plantar pressure 
653 |a finite element modelling 
653 |a bone tissue engineering 
653 |a 3D scaffold 
653 |a additive manufacturing 
653 |a potential swirling flow 
653 |a Navier–Stokes equations 
653 |a unsteady swirling flow 
653 |a tornado-like jets 
653 |a haemorheology 
653 |a blood flow modelling 
653 |a particle transport 
653 |a numerical fluid mechanics 
653 |a tracheobronchial stent 
653 |a parametric model 
653 |a 3D printing 
653 |a customized prosthesis 
776 |z 3-0365-2211-5 
776 |z 3-0365-2212-3 
700 1 |a Malvè, Mauro  |4 oth 
906 |a BOOK 
ADM |b 2023-12-15 05:45:01 Europe/Vienna  |f system  |c marc21  |a 2022-04-04 09:22:53 Europe/Vienna  |g false 
AVE |i DOAB Directory of Open Access Books  |P DOAB Directory of Open Access Books  |x https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&portfolio_pid=5337920840004498&Force_direct=true  |Z 5337920840004498  |b Available  |8 5337920840004498