Computational physiology : : Simula Summer School 2021 -- student reports / / editor, Kimberly J. McCabe.

This open access volume compiles student reports from the 2021 Simula Summer School in Computational Physiology. Interested readers will find herein a number of modern approaches to modeling excitable tissue. This should provide a framework for tools available to model subcellular and tissue-level p...

Full description

Saved in:
Bibliographic Details
Superior document:Simula SpringerBriefs on computing v.12
:
TeilnehmendeR:
Year of Publication:2022
Language:English
Series:Simula SpringerBriefs on computing 12
Physical Description:1 online resource (xi, 109 pages) :; illustrations (some color).
Notes:Description based upon print version of record.
Tags: Add Tag
No Tags, Be the first to tag this record!
id 993544800604498
ctrlnum (CKB)5680000000038261
EBL6978014
(OCoLC)1315573272
(AU-PeEL)EBL6978014
(MiAaPQ)EBC6978014
(oapen)https://directory.doabooks.org/handle/20.500.12854/81659
(PPN)269155376
(EXLCZ)995680000000038261
collection bib_alma
record_format marc
spelling McCabe, Kimberly J. edt
Computational physiology : Simula Summer School 2021 -- student reports / editor, Kimberly J. McCabe.
Cham : Springer International Publishing AG, 2022.
1 online resource (xi, 109 pages) : illustrations (some color).
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Simula SpringerBriefs on computing v.12
Description based upon print version of record.
Intro -- Preface -- Acknowledgements -- Contents -- Chapter 1 A Pipeline for Automated Coordinate Assignment in Anatomically Accurate Biventricular Models -- 1.1 Introduction -- 1.2 Methods -- 1.2.1 Semi-Automated Surface Extraction -- Algorithm 1 -- 1.2.2 Biventricular Coordinate System -- 1.2.2.1 Creation of the Coordinate System Cobiveco -- 1.2.3 Mapping Vector Fields -- 1.3 Results -- 1.4 Conclusion -- 1.4.1 Limitations -- References -- Chapter 2 3D Simulations of Fetal and Maternal Ventricular Excitation for Investigating the Abdominal ECG -- 2.1 Introduction -- 2.2 Methods
2.2.1 Geometrical mesh construction -- 2.2.2 Electrophysiological modelling -- 2.2.3 Extracellular potential measurements -- 2.2.4 Fetal ECG extraction using signal processing methods -- 2.3 Results -- 2.4 Discussion -- 2.5 Conclusions -- References -- Chapter 3 Ordinary Differential Equation-based Modeling of Cells in Human Cartilage -- 3.1 Introduction -- 3.2 Methods -- 3.2.1 Mathematical modelling of ATP-sensitive K+ currents -- 3.2.2 Population of Models -- 3.3 Results -- 3.3.1 Validation -- 3.3.2 Results for the ATP-sensitive K+ currents -- 3.3.3 Populations of Models
3.4 Discussion and Conclusion -- References -- Chapter 4 Conduction Velocity in Cardiac Tissue as Function of Ion Channel Conductance and Distribution -- 4.1 Introduction -- 4.2 Models and methods -- 4.2.1 The monodomain model -- 4.2.2 The EMI model -- 4.3 Results -- 4.4 Discussion -- 4.4.1 Influence of ion channel conductance on CV -- 4.4.2 Influence of ion channel distribution -- 4.5 Conclusions -- References -- Chapter 5 Computational Prediction of Cardiac Electropharmacology - How Much Does the Model Matter? -- 5.1 Introduction -- 5.2 Methods -- 5.2.1 Models of Cardiac Electrophysiology
5.2.2 Feature Extraction -- 5.2.3 Sensitivity Analysis and Translation -- 5.3 Results -- 5.3.1 Model Translation -- 5.3.2 Translation Discrepancies -- 5.4 Discussion -- 5.5 Conclusion -- References -- Chapter 6 A Computational Study of Flow Instabilities in Aneurysms -- 6.1 Introduction -- 6.2 Methods -- 6.2.1 Baseflow equations -- 6.2.2 Flow perturbations and instability -- 6.2.3 Discretization -- 6.2.4 Computational Methodology -- 6.3 Results -- 6.4 Discussion -- References
Chapter 7 Investigating the Multiscale Impact of Deoxyadenosine Triphosphate (dATP) on Pulmonary Arterial Hypertension (PAH) Induced Heart Failure -- 7.1 Introduction -- 7.2 Methods -- 7.2.1 Cell Level Changes -- 7.2.1.1 The SERCA Pump and Calcium transients -- 7.2.1.2 Cross-bridge cycling kinetics -- 7.2.2 Organ Level Model -- 7.3 Results -- 7.4 Discussion and Conclusion -- 7.5 Acknowledgements -- 7.6 Supplementary Information -- References -- Chapter 8 Identifying Ionic Channel Block in a Virtual Cardiomyocyte Population Using Machine Learning Classifiers -- 8.1 Introduction -- 8.2 Methods
8.2.1 Data
This open access volume compiles student reports from the 2021 Simula Summer School in Computational Physiology. Interested readers will find herein a number of modern approaches to modeling excitable tissue. This should provide a framework for tools available to model subcellular and tissue-level physiology across scales and scientific questions. In June through August of 2021, Simula held the seventh annual Summer School in Computational Physiology in collaboration with the University of Oslo (UiO) and the University of California, San Diego (UCSD). The course focuses on modeling excitable tissues, with a special interest in cardiac physiology and neuroscience. The majority of the school consists of group research projects conducted by Masters and PhD students from around the world, and advised by scientists at Simula, UiO and UCSD. Each group then produced a report that addreses a specific problem of importance in physiology and presents a succinct summary of the findings. Reports may not necessarily represent new scientific results; rather, they can reproduce or supplement earlier computational studies or experimental findings. Reports from eight of the summer projects are included as separate chapters. The fields represented include cardiac geometry definition (Chapter 1), electrophysiology and pharmacology (Chapters 2–5), fluid mechanics in blood vessels (Chapter 6), cardiac calcium handling and mechanics (Chapter 7), and machine learning in cardiac electrophysiology (Chapter 8).
English
Physiology Computer simulation Congresses.
Physiology Data processing Congresses.
Fisiologia thub
Processament de dades thub
Simulació per ordinador thub
Congressos thub
Llibres electrònics thub
Computational Physiology
Scientific computing
Electrophysiology
Pharmacology
Mechanics
Machine learning
Fluid mechanics
Bioengineering
Numerical analysis
McCabe, Kimberly J.
Simula Summer School in Computational Physiology
3-031-05163-7
3-031-05164-5
Simula SpringerBriefs on computing 12
language English
format eBook
author2 McCabe, Kimberly J.
Simula Summer School in Computational Physiology
author_facet McCabe, Kimberly J.
Simula Summer School in Computational Physiology
Simula Summer School in Computational Physiology
author2_variant k j m kj kjm
k j m kj kjm
author2_role TeilnehmendeR
TeilnehmendeR
author_corporate Simula Summer School in Computational Physiology
author_sort McCabe, Kimberly J.
title Computational physiology : Simula Summer School 2021 -- student reports /
spellingShingle Computational physiology : Simula Summer School 2021 -- student reports /
Simula SpringerBriefs on computing
Intro -- Preface -- Acknowledgements -- Contents -- Chapter 1 A Pipeline for Automated Coordinate Assignment in Anatomically Accurate Biventricular Models -- 1.1 Introduction -- 1.2 Methods -- 1.2.1 Semi-Automated Surface Extraction -- Algorithm 1 -- 1.2.2 Biventricular Coordinate System -- 1.2.2.1 Creation of the Coordinate System Cobiveco -- 1.2.3 Mapping Vector Fields -- 1.3 Results -- 1.4 Conclusion -- 1.4.1 Limitations -- References -- Chapter 2 3D Simulations of Fetal and Maternal Ventricular Excitation for Investigating the Abdominal ECG -- 2.1 Introduction -- 2.2 Methods
2.2.1 Geometrical mesh construction -- 2.2.2 Electrophysiological modelling -- 2.2.3 Extracellular potential measurements -- 2.2.4 Fetal ECG extraction using signal processing methods -- 2.3 Results -- 2.4 Discussion -- 2.5 Conclusions -- References -- Chapter 3 Ordinary Differential Equation-based Modeling of Cells in Human Cartilage -- 3.1 Introduction -- 3.2 Methods -- 3.2.1 Mathematical modelling of ATP-sensitive K+ currents -- 3.2.2 Population of Models -- 3.3 Results -- 3.3.1 Validation -- 3.3.2 Results for the ATP-sensitive K+ currents -- 3.3.3 Populations of Models
3.4 Discussion and Conclusion -- References -- Chapter 4 Conduction Velocity in Cardiac Tissue as Function of Ion Channel Conductance and Distribution -- 4.1 Introduction -- 4.2 Models and methods -- 4.2.1 The monodomain model -- 4.2.2 The EMI model -- 4.3 Results -- 4.4 Discussion -- 4.4.1 Influence of ion channel conductance on CV -- 4.4.2 Influence of ion channel distribution -- 4.5 Conclusions -- References -- Chapter 5 Computational Prediction of Cardiac Electropharmacology - How Much Does the Model Matter? -- 5.1 Introduction -- 5.2 Methods -- 5.2.1 Models of Cardiac Electrophysiology
5.2.2 Feature Extraction -- 5.2.3 Sensitivity Analysis and Translation -- 5.3 Results -- 5.3.1 Model Translation -- 5.3.2 Translation Discrepancies -- 5.4 Discussion -- 5.5 Conclusion -- References -- Chapter 6 A Computational Study of Flow Instabilities in Aneurysms -- 6.1 Introduction -- 6.2 Methods -- 6.2.1 Baseflow equations -- 6.2.2 Flow perturbations and instability -- 6.2.3 Discretization -- 6.2.4 Computational Methodology -- 6.3 Results -- 6.4 Discussion -- References
Chapter 7 Investigating the Multiscale Impact of Deoxyadenosine Triphosphate (dATP) on Pulmonary Arterial Hypertension (PAH) Induced Heart Failure -- 7.1 Introduction -- 7.2 Methods -- 7.2.1 Cell Level Changes -- 7.2.1.1 The SERCA Pump and Calcium transients -- 7.2.1.2 Cross-bridge cycling kinetics -- 7.2.2 Organ Level Model -- 7.3 Results -- 7.4 Discussion and Conclusion -- 7.5 Acknowledgements -- 7.6 Supplementary Information -- References -- Chapter 8 Identifying Ionic Channel Block in a Virtual Cardiomyocyte Population Using Machine Learning Classifiers -- 8.1 Introduction -- 8.2 Methods
8.2.1 Data
title_sub Simula Summer School 2021 -- student reports /
title_full Computational physiology : Simula Summer School 2021 -- student reports / editor, Kimberly J. McCabe.
title_fullStr Computational physiology : Simula Summer School 2021 -- student reports / editor, Kimberly J. McCabe.
title_full_unstemmed Computational physiology : Simula Summer School 2021 -- student reports / editor, Kimberly J. McCabe.
title_auth Computational physiology : Simula Summer School 2021 -- student reports /
title_new Computational physiology :
title_sort computational physiology : simula summer school 2021 -- student reports /
series Simula SpringerBriefs on computing
series2 Simula SpringerBriefs on computing
publisher Springer International Publishing AG,
publishDate 2022
physical 1 online resource (xi, 109 pages) : illustrations (some color).
contents Intro -- Preface -- Acknowledgements -- Contents -- Chapter 1 A Pipeline for Automated Coordinate Assignment in Anatomically Accurate Biventricular Models -- 1.1 Introduction -- 1.2 Methods -- 1.2.1 Semi-Automated Surface Extraction -- Algorithm 1 -- 1.2.2 Biventricular Coordinate System -- 1.2.2.1 Creation of the Coordinate System Cobiveco -- 1.2.3 Mapping Vector Fields -- 1.3 Results -- 1.4 Conclusion -- 1.4.1 Limitations -- References -- Chapter 2 3D Simulations of Fetal and Maternal Ventricular Excitation for Investigating the Abdominal ECG -- 2.1 Introduction -- 2.2 Methods
2.2.1 Geometrical mesh construction -- 2.2.2 Electrophysiological modelling -- 2.2.3 Extracellular potential measurements -- 2.2.4 Fetal ECG extraction using signal processing methods -- 2.3 Results -- 2.4 Discussion -- 2.5 Conclusions -- References -- Chapter 3 Ordinary Differential Equation-based Modeling of Cells in Human Cartilage -- 3.1 Introduction -- 3.2 Methods -- 3.2.1 Mathematical modelling of ATP-sensitive K+ currents -- 3.2.2 Population of Models -- 3.3 Results -- 3.3.1 Validation -- 3.3.2 Results for the ATP-sensitive K+ currents -- 3.3.3 Populations of Models
3.4 Discussion and Conclusion -- References -- Chapter 4 Conduction Velocity in Cardiac Tissue as Function of Ion Channel Conductance and Distribution -- 4.1 Introduction -- 4.2 Models and methods -- 4.2.1 The monodomain model -- 4.2.2 The EMI model -- 4.3 Results -- 4.4 Discussion -- 4.4.1 Influence of ion channel conductance on CV -- 4.4.2 Influence of ion channel distribution -- 4.5 Conclusions -- References -- Chapter 5 Computational Prediction of Cardiac Electropharmacology - How Much Does the Model Matter? -- 5.1 Introduction -- 5.2 Methods -- 5.2.1 Models of Cardiac Electrophysiology
5.2.2 Feature Extraction -- 5.2.3 Sensitivity Analysis and Translation -- 5.3 Results -- 5.3.1 Model Translation -- 5.3.2 Translation Discrepancies -- 5.4 Discussion -- 5.5 Conclusion -- References -- Chapter 6 A Computational Study of Flow Instabilities in Aneurysms -- 6.1 Introduction -- 6.2 Methods -- 6.2.1 Baseflow equations -- 6.2.2 Flow perturbations and instability -- 6.2.3 Discretization -- 6.2.4 Computational Methodology -- 6.3 Results -- 6.4 Discussion -- References
Chapter 7 Investigating the Multiscale Impact of Deoxyadenosine Triphosphate (dATP) on Pulmonary Arterial Hypertension (PAH) Induced Heart Failure -- 7.1 Introduction -- 7.2 Methods -- 7.2.1 Cell Level Changes -- 7.2.1.1 The SERCA Pump and Calcium transients -- 7.2.1.2 Cross-bridge cycling kinetics -- 7.2.2 Organ Level Model -- 7.3 Results -- 7.4 Discussion and Conclusion -- 7.5 Acknowledgements -- 7.6 Supplementary Information -- References -- Chapter 8 Identifying Ionic Channel Block in a Virtual Cardiomyocyte Population Using Machine Learning Classifiers -- 8.1 Introduction -- 8.2 Methods
8.2.1 Data
isbn 3-031-05163-7
3-031-05164-5
callnumber-first Q - Science
callnumber-subject QA - Mathematics
callnumber-label QA71-90
callnumber-sort QA 271 290
genre Congressos thub
Llibres electrònics thub
genre_facet Congresses.
Congressos
Llibres electrònics
illustrated Illustrated
oclc_num 1315573272
work_keys_str_mv AT mccabekimberlyj computationalphysiologysimulasummerschool2021studentreports
AT simulasummerschoolincomputationalphysiology computationalphysiologysimulasummerschool2021studentreports
status_str n
ids_txt_mv (CKB)5680000000038261
EBL6978014
(OCoLC)1315573272
(AU-PeEL)EBL6978014
(MiAaPQ)EBC6978014
(oapen)https://directory.doabooks.org/handle/20.500.12854/81659
(PPN)269155376
(EXLCZ)995680000000038261
carrierType_str_mv cr
hierarchy_parent_title Simula SpringerBriefs on computing v.12
hierarchy_sequence 12
is_hierarchy_title Computational physiology : Simula Summer School 2021 -- student reports /
container_title Simula SpringerBriefs on computing v.12
author2_original_writing_str_mv noLinkedField
noLinkedField
_version_ 1796648854292004864
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06487nam a22006733u 4500</leader><controlfield tag="001">993544800604498</controlfield><controlfield tag="005">20230718111655.0</controlfield><controlfield tag="006">m d </controlfield><controlfield tag="007">cr#|n|---|||||</controlfield><controlfield tag="008">220617s2022||||sz a o | 100|0 eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(CKB)5680000000038261</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">EBL6978014</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1315573272</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(AU-PeEL)EBL6978014</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(MiAaPQ)EBC6978014</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(oapen)https://directory.doabooks.org/handle/20.500.12854/81659</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PPN)269155376</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(EXLCZ)995680000000038261</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">AU-PeEL</subfield><subfield code="b">eng</subfield><subfield code="c">AU-PeEL</subfield><subfield code="d">AU-PeEL</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA71-90</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">McCabe, Kimberly J.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Computational physiology :</subfield><subfield code="b">Simula Summer School 2021 -- student reports /</subfield><subfield code="c">editor, Kimberly J. McCabe.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cham :</subfield><subfield code="b">Springer International Publishing AG,</subfield><subfield code="c">2022.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xi, 109 pages) :</subfield><subfield code="b">illustrations (some color).</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Simula SpringerBriefs on computing</subfield><subfield code="v">v.12</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based upon print version of record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Intro -- Preface -- Acknowledgements -- Contents -- Chapter 1 A Pipeline for Automated Coordinate Assignment in Anatomically Accurate Biventricular Models -- 1.1 Introduction -- 1.2 Methods -- 1.2.1 Semi-Automated Surface Extraction -- Algorithm 1 -- 1.2.2 Biventricular Coordinate System -- 1.2.2.1 Creation of the Coordinate System Cobiveco -- 1.2.3 Mapping Vector Fields -- 1.3 Results -- 1.4 Conclusion -- 1.4.1 Limitations -- References -- Chapter 2 3D Simulations of Fetal and Maternal Ventricular Excitation for Investigating the Abdominal ECG -- 2.1 Introduction -- 2.2 Methods</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.2.1 Geometrical mesh construction -- 2.2.2 Electrophysiological modelling -- 2.2.3 Extracellular potential measurements -- 2.2.4 Fetal ECG extraction using signal processing methods -- 2.3 Results -- 2.4 Discussion -- 2.5 Conclusions -- References -- Chapter 3 Ordinary Differential Equation-based Modeling of Cells in Human Cartilage -- 3.1 Introduction -- 3.2 Methods -- 3.2.1 Mathematical modelling of ATP-sensitive K+ currents -- 3.2.2 Population of Models -- 3.3 Results -- 3.3.1 Validation -- 3.3.2 Results for the ATP-sensitive K+ currents -- 3.3.3 Populations of Models</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.4 Discussion and Conclusion -- References -- Chapter 4 Conduction Velocity in Cardiac Tissue as Function of Ion Channel Conductance and Distribution -- 4.1 Introduction -- 4.2 Models and methods -- 4.2.1 The monodomain model -- 4.2.2 The EMI model -- 4.3 Results -- 4.4 Discussion -- 4.4.1 Influence of ion channel conductance on CV -- 4.4.2 Influence of ion channel distribution -- 4.5 Conclusions -- References -- Chapter 5 Computational Prediction of Cardiac Electropharmacology - How Much Does the Model Matter? -- 5.1 Introduction -- 5.2 Methods -- 5.2.1 Models of Cardiac Electrophysiology</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.2.2 Feature Extraction -- 5.2.3 Sensitivity Analysis and Translation -- 5.3 Results -- 5.3.1 Model Translation -- 5.3.2 Translation Discrepancies -- 5.4 Discussion -- 5.5 Conclusion -- References -- Chapter 6 A Computational Study of Flow Instabilities in Aneurysms -- 6.1 Introduction -- 6.2 Methods -- 6.2.1 Baseflow equations -- 6.2.2 Flow perturbations and instability -- 6.2.3 Discretization -- 6.2.4 Computational Methodology -- 6.3 Results -- 6.4 Discussion -- References</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 7 Investigating the Multiscale Impact of Deoxyadenosine Triphosphate (dATP) on Pulmonary Arterial Hypertension (PAH) Induced Heart Failure -- 7.1 Introduction -- 7.2 Methods -- 7.2.1 Cell Level Changes -- 7.2.1.1 The SERCA Pump and Calcium transients -- 7.2.1.2 Cross-bridge cycling kinetics -- 7.2.2 Organ Level Model -- 7.3 Results -- 7.4 Discussion and Conclusion -- 7.5 Acknowledgements -- 7.6 Supplementary Information -- References -- Chapter 8 Identifying Ionic Channel Block in a Virtual Cardiomyocyte Population Using Machine Learning Classifiers -- 8.1 Introduction -- 8.2 Methods</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">8.2.1 Data</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This open access volume compiles student reports from the 2021 Simula Summer School in Computational Physiology. Interested readers will find herein a number of modern approaches to modeling excitable tissue. This should provide a framework for tools available to model subcellular and tissue-level physiology across scales and scientific questions. In June through August of 2021, Simula held the seventh annual Summer School in Computational Physiology in collaboration with the University of Oslo (UiO) and the University of California, San Diego (UCSD). The course focuses on modeling excitable tissues, with a special interest in cardiac physiology and neuroscience. The majority of the school consists of group research projects conducted by Masters and PhD students from around the world, and advised by scientists at Simula, UiO and UCSD. Each group then produced a report that addreses a specific problem of importance in physiology and presents a succinct summary of the findings. Reports may not necessarily represent new scientific results; rather, they can reproduce or supplement earlier computational studies or experimental findings. Reports from eight of the summer projects are included as separate chapters. The fields represented include cardiac geometry definition (Chapter 1), electrophysiology and pharmacology (Chapters 2–5), fluid mechanics in blood vessels (Chapter 6), cardiac calcium handling and mechanics (Chapter 7), and machine learning in cardiac electrophysiology (Chapter 8).</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Physiology</subfield><subfield code="x">Computer simulation</subfield><subfield code="v">Congresses.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Physiology</subfield><subfield code="x">Data processing</subfield><subfield code="v">Congresses.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fisiologia</subfield><subfield code="2">thub</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Processament de dades</subfield><subfield code="2">thub</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Simulació per ordinador</subfield><subfield code="2">thub</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="a">Congressos</subfield><subfield code="2">thub</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="a">Llibres electrònics</subfield><subfield code="2">thub</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Computational Physiology</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Scientific computing</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Electrophysiology</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Pharmacology</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Mechanics</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Machine learning</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Fluid mechanics</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Bioengineering</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Numerical analysis</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">McCabe, Kimberly J.</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Simula Summer School in Computational Physiology</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">3-031-05163-7</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">3-031-05164-5</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Simula SpringerBriefs on computing</subfield><subfield code="v">12</subfield></datafield><datafield tag="906" ind1=" " ind2=" "><subfield code="a">BOOK</subfield></datafield><datafield tag="ADM" ind1=" " ind2=" "><subfield code="b">2023-07-20 01:39:25 Europe/Vienna</subfield><subfield code="f">system</subfield><subfield code="c">marc21</subfield><subfield code="a">2022-05-21 21:48:46 Europe/Vienna</subfield><subfield code="g">false</subfield></datafield><datafield tag="AVE" ind1=" " ind2=" "><subfield code="i">DOAB Directory of Open Access Books</subfield><subfield code="P">DOAB Directory of Open Access Books</subfield><subfield code="x">https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&amp;portfolio_pid=5337702530004498&amp;Force_direct=true</subfield><subfield code="Z">5337702530004498</subfield><subfield code="b">Available</subfield><subfield code="8">5337702530004498</subfield></datafield></record></collection>