Computational physiology : : Simula Summer School 2021 -- student reports / / editor, Kimberly J. McCabe.

This open access volume compiles student reports from the 2021 Simula Summer School in Computational Physiology. Interested readers will find herein a number of modern approaches to modeling excitable tissue. This should provide a framework for tools available to model subcellular and tissue-level p...

Full description

Saved in:
Bibliographic Details
Superior document:Simula SpringerBriefs on computing v.12
:
TeilnehmendeR:
Year of Publication:2022
Language:English
Series:Simula SpringerBriefs on computing 12
Physical Description:1 online resource (xi, 109 pages) :; illustrations (some color).
Notes:Description based upon print version of record.
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 06487nam a22006733u 4500
001 993544800604498
005 20230718111655.0
006 m d
007 cr#|n|---|||||
008 220617s2022||||sz a o | 100|0 eng d
035 |a (CKB)5680000000038261 
035 |a EBL6978014 
035 |a (OCoLC)1315573272 
035 |a (AU-PeEL)EBL6978014 
035 |a (MiAaPQ)EBC6978014 
035 |a (oapen)https://directory.doabooks.org/handle/20.500.12854/81659 
035 |a (PPN)269155376 
035 |a (EXLCZ)995680000000038261 
040 |a AU-PeEL  |b eng  |c AU-PeEL  |d AU-PeEL 
041 0 |a eng 
050 4 |a QA71-90 
100 1 |a McCabe, Kimberly J.  |4 edt 
245 1 0 |a Computational physiology :  |b Simula Summer School 2021 -- student reports /  |c editor, Kimberly J. McCabe. 
260 |a Cham :  |b Springer International Publishing AG,  |c 2022. 
300 |a 1 online resource (xi, 109 pages) :  |b illustrations (some color). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Simula SpringerBriefs on computing  |v v.12 
500 |a Description based upon print version of record. 
505 0 |a Intro -- Preface -- Acknowledgements -- Contents -- Chapter 1 A Pipeline for Automated Coordinate Assignment in Anatomically Accurate Biventricular Models -- 1.1 Introduction -- 1.2 Methods -- 1.2.1 Semi-Automated Surface Extraction -- Algorithm 1 -- 1.2.2 Biventricular Coordinate System -- 1.2.2.1 Creation of the Coordinate System Cobiveco -- 1.2.3 Mapping Vector Fields -- 1.3 Results -- 1.4 Conclusion -- 1.4.1 Limitations -- References -- Chapter 2 3D Simulations of Fetal and Maternal Ventricular Excitation for Investigating the Abdominal ECG -- 2.1 Introduction -- 2.2 Methods 
505 8 |a 2.2.1 Geometrical mesh construction -- 2.2.2 Electrophysiological modelling -- 2.2.3 Extracellular potential measurements -- 2.2.4 Fetal ECG extraction using signal processing methods -- 2.3 Results -- 2.4 Discussion -- 2.5 Conclusions -- References -- Chapter 3 Ordinary Differential Equation-based Modeling of Cells in Human Cartilage -- 3.1 Introduction -- 3.2 Methods -- 3.2.1 Mathematical modelling of ATP-sensitive K+ currents -- 3.2.2 Population of Models -- 3.3 Results -- 3.3.1 Validation -- 3.3.2 Results for the ATP-sensitive K+ currents -- 3.3.3 Populations of Models 
505 8 |a 3.4 Discussion and Conclusion -- References -- Chapter 4 Conduction Velocity in Cardiac Tissue as Function of Ion Channel Conductance and Distribution -- 4.1 Introduction -- 4.2 Models and methods -- 4.2.1 The monodomain model -- 4.2.2 The EMI model -- 4.3 Results -- 4.4 Discussion -- 4.4.1 Influence of ion channel conductance on CV -- 4.4.2 Influence of ion channel distribution -- 4.5 Conclusions -- References -- Chapter 5 Computational Prediction of Cardiac Electropharmacology - How Much Does the Model Matter? -- 5.1 Introduction -- 5.2 Methods -- 5.2.1 Models of Cardiac Electrophysiology 
505 8 |a 5.2.2 Feature Extraction -- 5.2.3 Sensitivity Analysis and Translation -- 5.3 Results -- 5.3.1 Model Translation -- 5.3.2 Translation Discrepancies -- 5.4 Discussion -- 5.5 Conclusion -- References -- Chapter 6 A Computational Study of Flow Instabilities in Aneurysms -- 6.1 Introduction -- 6.2 Methods -- 6.2.1 Baseflow equations -- 6.2.2 Flow perturbations and instability -- 6.2.3 Discretization -- 6.2.4 Computational Methodology -- 6.3 Results -- 6.4 Discussion -- References 
505 8 |a Chapter 7 Investigating the Multiscale Impact of Deoxyadenosine Triphosphate (dATP) on Pulmonary Arterial Hypertension (PAH) Induced Heart Failure -- 7.1 Introduction -- 7.2 Methods -- 7.2.1 Cell Level Changes -- 7.2.1.1 The SERCA Pump and Calcium transients -- 7.2.1.2 Cross-bridge cycling kinetics -- 7.2.2 Organ Level Model -- 7.3 Results -- 7.4 Discussion and Conclusion -- 7.5 Acknowledgements -- 7.6 Supplementary Information -- References -- Chapter 8 Identifying Ionic Channel Block in a Virtual Cardiomyocyte Population Using Machine Learning Classifiers -- 8.1 Introduction -- 8.2 Methods 
505 8 |a 8.2.1 Data 
520 |a This open access volume compiles student reports from the 2021 Simula Summer School in Computational Physiology. Interested readers will find herein a number of modern approaches to modeling excitable tissue. This should provide a framework for tools available to model subcellular and tissue-level physiology across scales and scientific questions. In June through August of 2021, Simula held the seventh annual Summer School in Computational Physiology in collaboration with the University of Oslo (UiO) and the University of California, San Diego (UCSD). The course focuses on modeling excitable tissues, with a special interest in cardiac physiology and neuroscience. The majority of the school consists of group research projects conducted by Masters and PhD students from around the world, and advised by scientists at Simula, UiO and UCSD. Each group then produced a report that addreses a specific problem of importance in physiology and presents a succinct summary of the findings. Reports may not necessarily represent new scientific results; rather, they can reproduce or supplement earlier computational studies or experimental findings. Reports from eight of the summer projects are included as separate chapters. The fields represented include cardiac geometry definition (Chapter 1), electrophysiology and pharmacology (Chapters 2–5), fluid mechanics in blood vessels (Chapter 6), cardiac calcium handling and mechanics (Chapter 7), and machine learning in cardiac electrophysiology (Chapter 8). 
546 |a English 
650 0 |a Physiology  |x Computer simulation  |v Congresses. 
650 0 |a Physiology  |x Data processing  |v Congresses. 
650 7 |a Fisiologia  |2 thub 
650 7 |a Processament de dades  |2 thub 
650 7 |a Simulació per ordinador  |2 thub 
655 7 |a Congressos  |2 thub 
655 7 |a Llibres electrònics  |2 thub 
653 |a Computational Physiology 
653 |a Scientific computing 
653 |a Electrophysiology 
653 |a Pharmacology 
653 |a Mechanics 
653 |a Machine learning 
653 |a Fluid mechanics 
653 |a Bioengineering 
653 |a Numerical analysis 
700 1 |a McCabe, Kimberly J. 
710 2 |a Simula Summer School in Computational Physiology 
776 1 |z 3-031-05163-7 
776 1 |z 3-031-05164-5 
830 0 |a Simula SpringerBriefs on computing  |v 12 
906 |a BOOK 
ADM |b 2023-07-20 01:39:25 Europe/Vienna  |f system  |c marc21  |a 2022-05-21 21:48:46 Europe/Vienna  |g false 
AVE |i DOAB Directory of Open Access Books  |P DOAB Directory of Open Access Books  |x https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&portfolio_pid=5337702530004498&Force_direct=true  |Z 5337702530004498  |b Available  |8 5337702530004498