A novel micro-mechanical model for prediction of multiaxial high cycle fatigue at small scales

The grain microstructure and damage mechanisms at the grain level are the key factors that influence fatigue of metals at small scales. This is addressed in this work by establishing a new micro-mechanical model for prediction of multiaxial high cycle fatigue (HCF) at a length scale of 5-100?m. The...

Full description

Saved in:
Bibliographic Details
Superior document:Schriftenreihe des Instituts für Angewandte Materialien, Karlsruher Institut für Technologie
:
Year of Publication:2017
Language:English
Series:Schriftenreihe des Instituts für Angewandte Materialien, Karlsruher Institut für Technologie
Physical Description:1 electronic resource (X, 112 p. p.)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 993544126704498
ctrlnum (CKB)4920000000100847
(oapen)https://directory.doabooks.org/handle/20.500.12854/54878
(EXLCZ)994920000000100847
collection bib_alma
record_format marc
spelling Eslami, Reza auth
A novel micro-mechanical model for prediction of multiaxial high cycle fatigue at small scales
KIT Scientific Publishing 2017
1 electronic resource (X, 112 p. p.)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Schriftenreihe des Instituts für Angewandte Materialien, Karlsruher Institut für Technologie
Open access Unrestricted online access star
The grain microstructure and damage mechanisms at the grain level are the key factors that influence fatigue of metals at small scales. This is addressed in this work by establishing a new micro-mechanical model for prediction of multiaxial high cycle fatigue (HCF) at a length scale of 5-100?m. The HCF model considers elasto-plastic behavior of metals at the grain level and microstructural parameters, specifically the grain size and the grain orientation.
English
Mehrachsige hochzyklische Ermüdung (HCF) Korngröße und Kornorientierung Mikroschädigung Probabilistische Methoden MEMSMultiaxial high cycle fatigue (HCF) Grain size and grain orientation Micro-damage Probabilistic methods MEMS
3-7315-0583-5
language English
format eBook
author Eslami, Reza
spellingShingle Eslami, Reza
A novel micro-mechanical model for prediction of multiaxial high cycle fatigue at small scales
Schriftenreihe des Instituts für Angewandte Materialien, Karlsruher Institut für Technologie
author_facet Eslami, Reza
author_variant r e re
author_sort Eslami, Reza
title A novel micro-mechanical model for prediction of multiaxial high cycle fatigue at small scales
title_full A novel micro-mechanical model for prediction of multiaxial high cycle fatigue at small scales
title_fullStr A novel micro-mechanical model for prediction of multiaxial high cycle fatigue at small scales
title_full_unstemmed A novel micro-mechanical model for prediction of multiaxial high cycle fatigue at small scales
title_auth A novel micro-mechanical model for prediction of multiaxial high cycle fatigue at small scales
title_new A novel micro-mechanical model for prediction of multiaxial high cycle fatigue at small scales
title_sort a novel micro-mechanical model for prediction of multiaxial high cycle fatigue at small scales
series Schriftenreihe des Instituts für Angewandte Materialien, Karlsruher Institut für Technologie
series2 Schriftenreihe des Instituts für Angewandte Materialien, Karlsruher Institut für Technologie
publisher KIT Scientific Publishing
publishDate 2017
physical 1 electronic resource (X, 112 p. p.)
isbn 1000059741
3-7315-0583-5
illustrated Not Illustrated
work_keys_str_mv AT eslamireza anovelmicromechanicalmodelforpredictionofmultiaxialhighcyclefatigueatsmallscales
status_str n
ids_txt_mv (CKB)4920000000100847
(oapen)https://directory.doabooks.org/handle/20.500.12854/54878
(EXLCZ)994920000000100847
carrierType_str_mv cr
hierarchy_parent_title Schriftenreihe des Instituts für Angewandte Materialien, Karlsruher Institut für Technologie
is_hierarchy_title A novel micro-mechanical model for prediction of multiaxial high cycle fatigue at small scales
container_title Schriftenreihe des Instituts für Angewandte Materialien, Karlsruher Institut für Technologie
_version_ 1796651970386198529
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01720nam-a2200301z--4500</leader><controlfield tag="001">993544126704498</controlfield><controlfield tag="005">20231214133139.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr|mn|---annan</controlfield><controlfield tag="008">202102s2017 xx |||||o ||| 0|eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1000059741</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(CKB)4920000000100847</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(oapen)https://directory.doabooks.org/handle/20.500.12854/54878</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(EXLCZ)994920000000100847</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Eslami, Reza</subfield><subfield code="4">auth</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A novel micro-mechanical model for prediction of multiaxial high cycle fatigue at small scales</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="b">KIT Scientific Publishing</subfield><subfield code="c">2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 electronic resource (X, 112 p. p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Schriftenreihe des Instituts für Angewandte Materialien, Karlsruher Institut für Technologie</subfield></datafield><datafield tag="506" ind1=" " ind2=" "><subfield code="a">Open access</subfield><subfield code="f">Unrestricted online access</subfield><subfield code="2">star</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The grain microstructure and damage mechanisms at the grain level are the key factors that influence fatigue of metals at small scales. This is addressed in this work by establishing a new micro-mechanical model for prediction of multiaxial high cycle fatigue (HCF) at a length scale of 5-100?m. The HCF model considers elasto-plastic behavior of metals at the grain level and microstructural parameters, specifically the grain size and the grain orientation.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Mehrachsige hochzyklische Ermüdung (HCF) Korngröße und Kornorientierung Mikroschädigung Probabilistische Methoden MEMSMultiaxial high cycle fatigue (HCF) Grain size and grain orientation Micro-damage Probabilistic methods MEMS</subfield></datafield><datafield tag="776" ind1=" " ind2=" "><subfield code="z">3-7315-0583-5</subfield></datafield><datafield tag="906" ind1=" " ind2=" "><subfield code="a">BOOK</subfield></datafield><datafield tag="ADM" ind1=" " ind2=" "><subfield code="b">2023-12-15 05:44:09 Europe/Vienna</subfield><subfield code="f">system</subfield><subfield code="c">marc21</subfield><subfield code="a">2019-11-10 04:18:40 Europe/Vienna</subfield><subfield code="g">false</subfield></datafield><datafield tag="AVE" ind1=" " ind2=" "><subfield code="i">DOAB Directory of Open Access Books</subfield><subfield code="P">DOAB Directory of Open Access Books</subfield><subfield code="x">https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&amp;portfolio_pid=5337560570004498&amp;Force_direct=true</subfield><subfield code="Z">5337560570004498</subfield><subfield code="b">Available</subfield><subfield code="8">5337560570004498</subfield></datafield></record></collection>