Local dynamics in protein function and specificity / Julian E. Fuchs

ger: Proteins are inherently flexible under physiological conditions.<br />Hence, dynamics are crucial to understand their function in detail. The current perspective on proteins is mostly limited to static views available from X-ray crystallography, although these structures represent only on...

Full description

Saved in:
Bibliographic Details
VerfasserIn:
Place / Publishing House:2013
Year of Publication:2013
Language:English
Subjects:
Classification:35.06 - Computeranwendungen
35.76 - Aminosäuren. Peptide. Eiweiße
35.74 - Enzyme. Hormone. Vitamine
Physical Description:339 Bl.; Ill., graph. Darst.
Notes:Enth. u.a. 60 Veröff. d. Verf. aus den Jahren 2008 - 2013
Tags: Add Tag
No Tags, Be the first to tag this record!
id 990002836210504498
ctrlnum AC10775937
(AT-OBV)AC10775937
(Aleph)011253352ACC01
(DE-599)OBVAC10775937
(EXLNZ-43ACC_NETWORK)990112533520203331
collection bib_alma
institution YWOAW
building MAG1-3
record_format marc
spelling Fuchs, Julian E. aut
Local dynamics in protein function and specificity Julian E. Fuchs
2013
339 Bl. Ill., graph. Darst.
Enth. u.a. 60 Veröff. d. Verf. aus den Jahren 2008 - 2013
Innsbruck, Univ., Diss., 2013
ger: Proteins are inherently flexible under physiological conditions.<br />Hence, dynamics are crucial to understand their function in detail. The current perspective on proteins is mostly limited to static views available from X-ray crystallography, although these structures represent only one possible state among the thermodynamically accessible ensemble. Nuclear magnetic resonance spectroscopy is an experimental technique capable of providing valuable insight into dynamic properties of biological macromolecules. Still, this approach is limited in system size, throughput and resolution. Computer simulations of proteins provide a unique alternative to gain insights into their dynamics in solution. Using current high performance computing facilities, biomolecular motions can be traced at atomistic resolution on the femto- to microsecond scale.<br />Within my PhD thesis I focus on the role of protein dynamics on function and specificity. Thereby, I investigate the role of mutations, modifications, and ligand binding on protein dynamics using computational techniques. Changes in the systems' dynamics are correlated to experimental data concerning biological function, binding affinity and specificity. Investigated systems cover enzymes including the large family of proteases, the well-studied phenylalanine hydroxylase and influenza neuraminidase. Furthermore, the major birch pollen allergen bet v 1 and the transcription factor NF-?B were investigated.<br />Striking correlations between protein dynamics and their biological properties were observed, proving that a static view on proteins is insufficient to fully understand their biological roles. Both function and specificity critically depend on intrinsic dynamic features of proteins. A large part of protease substrate specificity can be understood solely on the basis of backbone dynamics. Thereby, any sort of enthalpic information was not considered, complementing the established mostly static view of protease-substrate recognition. In the course of these studies I established the first metric for protease specificity that can be used to quantify and compare subpocket and total specificity of proteases of any catalytic type. I also showed the direct applicability of information on substrate specificity for drug design via calculation of protease similarity trees giving access to off-target predictions.<br />I contributed to development of new computational methods for measuring sidechain flexibility, entropy calculation and estimation of cooperative effects in protein-ligand interactions in several further successful projects. Within a book contribution on ensemble docking I linked information on protein dynamics to structure-based virtual screening.<br />Further publications comprise work on DNA structure and recognition as well as ab initio structure prediction for alkylglycerol monoxygenase.
Molekulardynamik s (DE-588)4170370-4
Proteasen s (DE-588)4047521-9
Substratspezifität s (DE-588)4334071-4
AT-OBV UBIAM
YWOAW MAG1-3 41828-C.Stip. 2221463750004498
language English
format Thesis
Book
author Fuchs, Julian E.
spellingShingle Fuchs, Julian E.
Local dynamics in protein function and specificity
Molekulardynamik (DE-588)4170370-4
Proteasen (DE-588)4047521-9
Substratspezifität (DE-588)4334071-4
author_facet Fuchs, Julian E.
author_variant j e f je jef
author_role VerfasserIn
author_sort Fuchs, Julian E.
title Local dynamics in protein function and specificity
title_full Local dynamics in protein function and specificity Julian E. Fuchs
title_fullStr Local dynamics in protein function and specificity Julian E. Fuchs
title_full_unstemmed Local dynamics in protein function and specificity Julian E. Fuchs
title_auth Local dynamics in protein function and specificity
title_new Local dynamics in protein function and specificity
title_sort local dynamics in protein function and specificity
publishDate 2013
physical 339 Bl. Ill., graph. Darst.
callnumber-raw 41828-C.Stip.
callnumber-search 41828-C.Stip.
topic Molekulardynamik (DE-588)4170370-4
Proteasen (DE-588)4047521-9
Substratspezifität (DE-588)4334071-4
topic_facet Molekulardynamik
Proteasen
Substratspezifität
illustrated Illustrated
work_keys_str_mv AT fuchsjuliane localdynamicsinproteinfunctionandspecificity
status_str n
ids_txt_mv (AT-OBV)AC10775937
AC10775937
(Aleph)011253352ACC01
(DE-599)OBVAC10775937
(EXLNZ-43ACC_NETWORK)990112533520203331
hol852bOwn_txt_mv YWOAW
hol852hSignatur_txt_mv 41828-C.Stip.
hol852cSonderstandort_txt_mv MAG1-3
itmData_txt_mv 2014-08-20 02:00:00 Europe/Vienna
barcode_str_mv +YW18385506
callnumbers_txt_mv 41828-C.Stip.
inventoryNumbers_str_mv 2014-41828-C.Stip.
materialTypes_str_mv BOOK
permanentLibraries_str_mv YWOAW
permanentLocations_str_mv MAG1-3
inventoryDates_str_mv 20140820
createdDates_str_mv 2014-08-20 02:00:00 Europe/Vienna
holdingIds_str_mv 2221463750004498
is_hierarchy_id AC10775937
is_hierarchy_title Local dynamics in protein function and specificity
basiskl_str_mv 35.06 - Computeranwendungen
35.76 - Aminosäuren. Peptide. Eiweiße
35.74 - Enzyme. Hormone. Vitamine
basiskl_txtF_mv 35.06 - Computeranwendungen
35.76 - Aminosäuren. Peptide. Eiweiße
35.74 - Enzyme. Hormone. Vitamine
_version_ 1796648879594143744
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04482nam#a2200481#c#4500</leader><controlfield tag="001">990002836210504498</controlfield><controlfield tag="005">20230211194330.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">140107|2013####|||######m####|||#|#eng#c</controlfield><controlfield tag="009">AC10775937</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">OeBB</subfield><subfield code="2">oeb</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(AT-OBV)AC10775937</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">AC10775937</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(Aleph)011253352ACC01</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)OBVAC10775937</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(EXLNZ-43ACC_NETWORK)990112533520203331</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">UBI</subfield><subfield code="b">ger</subfield><subfield code="c">OPUS</subfield><subfield code="e">rakwb</subfield><subfield code="d">AT-UBI</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="c">XA-AT</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.06</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.76</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.74</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VC 6257</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fuchs, Julian E.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Local dynamics in protein function and specificity</subfield><subfield code="c">Julian E. Fuchs</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">339 Bl.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Enth. u.a. 60 Veröff. d. Verf. aus den Jahren 2008 - 2013</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="a">Innsbruck, Univ., Diss., 2013</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">ger: Proteins are inherently flexible under physiological conditions.&lt;br /&gt;Hence, dynamics are crucial to understand their function in detail. The current perspective on proteins is mostly limited to static views available from X-ray crystallography, although these structures represent only one possible state among the thermodynamically accessible ensemble. Nuclear magnetic resonance spectroscopy is an experimental technique capable of providing valuable insight into dynamic properties of biological macromolecules. Still, this approach is limited in system size, throughput and resolution. Computer simulations of proteins provide a unique alternative to gain insights into their dynamics in solution. Using current high performance computing facilities, biomolecular motions can be traced at atomistic resolution on the femto- to microsecond scale.&lt;br /&gt;Within my PhD thesis I focus on the role of protein dynamics on function and specificity. Thereby, I investigate the role of mutations, modifications, and ligand binding on protein dynamics using computational techniques. Changes in the systems' dynamics are correlated to experimental data concerning biological function, binding affinity and specificity. Investigated systems cover enzymes including the large family of proteases, the well-studied phenylalanine hydroxylase and influenza neuraminidase. Furthermore, the major birch pollen allergen bet v 1 and the transcription factor NF-?B were investigated.&lt;br /&gt;Striking correlations between protein dynamics and their biological properties were observed, proving that a static view on proteins is insufficient to fully understand their biological roles. Both function and specificity critically depend on intrinsic dynamic features of proteins. A large part of protease substrate specificity can be understood solely on the basis of backbone dynamics. Thereby, any sort of enthalpic information was not considered, complementing the established mostly static view of protease-substrate recognition. In the course of these studies I established the first metric for protease specificity that can be used to quantify and compare subpocket and total specificity of proteases of any catalytic type. I also showed the direct applicability of information on substrate specificity for drug design via calculation of protease similarity trees giving access to off-target predictions.&lt;br /&gt;I contributed to development of new computational methods for measuring sidechain flexibility, entropy calculation and estimation of cooperative effects in protein-ligand interactions in several further successful projects. Within a book contribution on ensemble docking I linked information on protein dynamics to structure-based virtual screening.&lt;br /&gt;Further publications comprise work on DNA structure and recognition as well as ab initio structure prediction for alkylglycerol monoxygenase.</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Molekulardynamik</subfield><subfield code="D">s</subfield><subfield code="0">(DE-588)4170370-4</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Proteasen</subfield><subfield code="D">s</subfield><subfield code="0">(DE-588)4047521-9</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Substratspezifität</subfield><subfield code="D">s</subfield><subfield code="0">(DE-588)4334071-4</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">AT-OBV</subfield><subfield code="5">UBIAM</subfield></datafield><datafield tag="970" ind1="1" ind2=" "><subfield code="c">30</subfield></datafield><datafield tag="970" ind1="2" ind2=" "><subfield code="d">HS-DISS</subfield></datafield><datafield tag="970" ind1="0" ind2=" "><subfield code="a">OPUS30823</subfield></datafield><datafield tag="971" ind1="1" ind2=" "><subfield code="a">Oostenbrink, Chris</subfield></datafield><datafield tag="971" ind1="1" ind2=" "><subfield code="a">Glen, Robert</subfield></datafield><datafield tag="971" ind1="3" ind2=" "><subfield code="a">2013-12</subfield></datafield><datafield tag="971" ind1="4" ind2=" "><subfield code="a">Dr. rer. nat.</subfield></datafield><datafield tag="971" ind1="5" ind2=" "><subfield code="a">Universität Innsbruck</subfield><subfield code="b">Fakultät für Chemie und Pharmazie</subfield><subfield code="c">Institut für Allgemeine, Anorganische und Theoretische Chemie</subfield><subfield code="d">724</subfield></datafield><datafield tag="971" ind1="8" ind2=" "><subfield code="a">Dynamik, Flexibilität, Moleküldynamiksimulation, Spezifität, Protease</subfield></datafield><datafield tag="971" ind1="9" ind2=" "><subfield code="a">Dynamics, Flexibility, Molecular dynamics simulation, specificity, protease</subfield></datafield><datafield tag="ADM" ind1=" " ind2=" "><subfield code="b">2024-03-23 11:27:42 Europe/Vienna</subfield><subfield code="d">20</subfield><subfield code="f">System</subfield><subfield code="c">marc21</subfield><subfield code="a">2018-12-24 09:49:05 Europe/Vienna</subfield><subfield code="g">false</subfield></datafield><datafield tag="HOL" ind1="8" ind2=" "><subfield code="b">YWOAW</subfield><subfield code="h"> 41828-C.Stip. </subfield><subfield code="c">MAG1-3</subfield><subfield code="8">2221463750004498</subfield></datafield><datafield tag="852" ind1="8" ind2=" "><subfield code="b">YWOAW</subfield><subfield code="c">MAG1-3</subfield><subfield code="h"> 41828-C.Stip. </subfield><subfield code="8">2221463750004498</subfield></datafield><datafield tag="ITM" ind1=" " ind2=" "><subfield code="9">2221463750004498</subfield><subfield code="e">1</subfield><subfield code="m">BOOK</subfield><subfield code="b">+YW18385506</subfield><subfield code="i">2014-41828-C.Stip.</subfield><subfield code="2">MAG1-3</subfield><subfield code="o">20140820</subfield><subfield code="8">2321463740004498</subfield><subfield code="f">02</subfield><subfield code="p">2014-08-20 02:00:00 Europe/Vienna</subfield><subfield code="h">41828-C.Stip.</subfield><subfield code="1">YWOAW</subfield><subfield code="q">2022-06-09 11:45:02 Europe/Vienna</subfield></datafield></record></collection>