Local dynamics in protein function and specificity / Julian E. Fuchs

ger: Proteins are inherently flexible under physiological conditions.<br />Hence, dynamics are crucial to understand their function in detail. The current perspective on proteins is mostly limited to static views available from X-ray crystallography, although these structures represent only on...

Full description

Saved in:
Bibliographic Details
VerfasserIn:
Place / Publishing House:2013
Year of Publication:2013
Language:English
Subjects:
Classification:35.06 - Computeranwendungen
35.76 - Aminosäuren. Peptide. Eiweiße
35.74 - Enzyme. Hormone. Vitamine
Physical Description:339 Bl.; Ill., graph. Darst.
Notes:Enth. u.a. 60 Veröff. d. Verf. aus den Jahren 2008 - 2013
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 04482nam#a2200481#c#4500
001 990002836210504498
005 20230211194330.0
007 tu
008 140107|2013####|||######m####|||#|#eng#c
009 AC10775937
015 |a OeBB  |2 oeb 
035 |a (AT-OBV)AC10775937 
035 |a AC10775937 
035 |a (Aleph)011253352ACC01 
035 |a (DE-599)OBVAC10775937 
035 |a (EXLNZ-43ACC_NETWORK)990112533520203331 
040 |a UBI  |b ger  |c OPUS  |e rakwb  |d AT-UBI 
041 |a eng 
044 |c XA-AT 
084 |a 35.06  |2 bkl 
084 |a 35.76  |2 bkl 
084 |a 35.74  |2 bkl 
084 |a VC 6257  |2 rvk 
100 1 |a Fuchs, Julian E.  |4 aut 
245 1 0 |a Local dynamics in protein function and specificity  |c Julian E. Fuchs 
264 1 |c 2013 
300 |a 339 Bl.  |b Ill., graph. Darst. 
500 |a Enth. u.a. 60 Veröff. d. Verf. aus den Jahren 2008 - 2013 
502 |a Innsbruck, Univ., Diss., 2013 
520 |a ger: Proteins are inherently flexible under physiological conditions.<br />Hence, dynamics are crucial to understand their function in detail. The current perspective on proteins is mostly limited to static views available from X-ray crystallography, although these structures represent only one possible state among the thermodynamically accessible ensemble. Nuclear magnetic resonance spectroscopy is an experimental technique capable of providing valuable insight into dynamic properties of biological macromolecules. Still, this approach is limited in system size, throughput and resolution. Computer simulations of proteins provide a unique alternative to gain insights into their dynamics in solution. Using current high performance computing facilities, biomolecular motions can be traced at atomistic resolution on the femto- to microsecond scale.<br />Within my PhD thesis I focus on the role of protein dynamics on function and specificity. Thereby, I investigate the role of mutations, modifications, and ligand binding on protein dynamics using computational techniques. Changes in the systems' dynamics are correlated to experimental data concerning biological function, binding affinity and specificity. Investigated systems cover enzymes including the large family of proteases, the well-studied phenylalanine hydroxylase and influenza neuraminidase. Furthermore, the major birch pollen allergen bet v 1 and the transcription factor NF-?B were investigated.<br />Striking correlations between protein dynamics and their biological properties were observed, proving that a static view on proteins is insufficient to fully understand their biological roles. Both function and specificity critically depend on intrinsic dynamic features of proteins. A large part of protease substrate specificity can be understood solely on the basis of backbone dynamics. Thereby, any sort of enthalpic information was not considered, complementing the established mostly static view of protease-substrate recognition. In the course of these studies I established the first metric for protease specificity that can be used to quantify and compare subpocket and total specificity of proteases of any catalytic type. I also showed the direct applicability of information on substrate specificity for drug design via calculation of protease similarity trees giving access to off-target predictions.<br />I contributed to development of new computational methods for measuring sidechain flexibility, entropy calculation and estimation of cooperative effects in protein-ligand interactions in several further successful projects. Within a book contribution on ensemble docking I linked information on protein dynamics to structure-based virtual screening.<br />Further publications comprise work on DNA structure and recognition as well as ab initio structure prediction for alkylglycerol monoxygenase. 
689 0 0 |a Molekulardynamik  |D s  |0 (DE-588)4170370-4 
689 0 1 |a Proteasen  |D s  |0 (DE-588)4047521-9 
689 0 2 |a Substratspezifität  |D s  |0 (DE-588)4334071-4 
689 0 |5 AT-OBV  |5 UBIAM 
970 1 |c 30 
970 2 |d HS-DISS 
970 0 |a OPUS30823 
971 1 |a Oostenbrink, Chris 
971 1 |a Glen, Robert 
971 3 |a 2013-12 
971 4 |a Dr. rer. nat. 
971 5 |a Universität Innsbruck  |b Fakultät für Chemie und Pharmazie  |c Institut für Allgemeine, Anorganische und Theoretische Chemie  |d 724 
971 8 |a Dynamik, Flexibilität, Moleküldynamiksimulation, Spezifität, Protease 
971 9 |a Dynamics, Flexibility, Molecular dynamics simulation, specificity, protease 
ADM |b 2024-03-23 11:27:42 Europe/Vienna  |d 20  |f System  |c marc21  |a 2018-12-24 09:49:05 Europe/Vienna  |g false 
HOL 8 |b YWOAW  |h  41828-C.Stip.   |c MAG1-3  |8 2221463750004498 
852 8 |b YWOAW  |c MAG1-3  |h  41828-C.Stip.   |8 2221463750004498 
ITM |9 2221463750004498  |e 1  |m BOOK  |b +YW18385506  |i 2014-41828-C.Stip.  |2 MAG1-3  |o 20140820  |8 2321463740004498  |f 02  |p 2014-08-20 02:00:00 Europe/Vienna  |h 41828-C.Stip.  |1 YWOAW  |q 2022-06-09 11:45:02 Europe/Vienna