Computational Aspects of Modular Forms and Galois Representations : : How One Can Compute in Polynomial Time the Value of Ramanujan's Tau at a Prime (AM-176) / / ed. by Bas Edixhoven, Jean-Marc Couveignes.

Modular forms are tremendously important in various areas of mathematics, from number theory and algebraic geometry to combinatorics and lattices. Their Fourier coefficients, with Ramanujan's tau-function as a typical example, have deep arithmetic significance. Prior to this book, the fastest k...

Full description

Saved in:
Bibliographic Details
Superior document:Title is part of eBook package: De Gruyter Princeton Annals of Mathematics eBook-Package 1940-2020
MitwirkendeR:
TeilnehmendeR:
HerausgeberIn:
Place / Publishing House:Princeton, NJ : : Princeton University Press, , [2011]
©2011
Year of Publication:2011
Edition:Course Book
Language:English
Series:Annals of Mathematics Studies ; 176
Online Access:
Physical Description:1 online resource (440 p.) :; 6 line illus.
Tags: Add Tag
No Tags, Be the first to tag this record!
id 9781400839001
ctrlnum (DE-B1597)446741
(OCoLC)979742221
collection bib_alma
record_format marc
spelling Computational Aspects of Modular Forms and Galois Representations : How One Can Compute in Polynomial Time the Value of Ramanujan's Tau at a Prime (AM-176) / ed. by Bas Edixhoven, Jean-Marc Couveignes.
Course Book
Princeton, NJ : Princeton University Press, [2011]
©2011
1 online resource (440 p.) : 6 line illus.
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
text file PDF rda
Annals of Mathematics Studies ; 176
Frontmatter -- Contents -- Preface -- Acknowledgments -- Author information -- Dependencies between the chapters -- Chapter 1. Introduction, main results, context -- Chapter 2. Modular curves, modular forms, lattices, Galois representations -- Chapter 3. First description of the algorithms -- Chapter 4. Short introduction to heights and Arakelov theory -- Chapter 5. Computing complex zeros of polynomials and power series -- Chapter 6. Computations with modular forms and Galois representations -- Chapter 7. Polynomials for projective representations of level one forms -- Chapter 8. Description of X1(5l) -- Chapter 9. Applying Arakelov theory -- Chapter 10. An upper bound for Green functions on Riemann surfaces -- Chapter 11. Bounds for Arakelov invariants of modular curves -- Chapter 12. Approximating Vf over the complex numbers -- Chapter 13. Computing Vf modulo p -- Chapter 14. Computing the residual Galois representations -- Chapter 15. Computing coefficients of modular forms -- Epilogue -- Bibliography -- Index
restricted access http://purl.org/coar/access_right/c_16ec online access with authorization star
Modular forms are tremendously important in various areas of mathematics, from number theory and algebraic geometry to combinatorics and lattices. Their Fourier coefficients, with Ramanujan's tau-function as a typical example, have deep arithmetic significance. Prior to this book, the fastest known algorithms for computing these Fourier coefficients took exponential time, except in some special cases. The case of elliptic curves (Schoof's algorithm) was at the birth of elliptic curve cryptography around 1985. This book gives an algorithm for computing coefficients of modular forms of level one in polynomial time. For example, Ramanujan's tau of a prime number p can be computed in time bounded by a fixed power of the logarithm of p. Such fast computation of Fourier coefficients is itself based on the main result of the book: the computation, in polynomial time, of Galois representations over finite fields attached to modular forms by the Langlands program. Because these Galois representations typically have a nonsolvable image, this result is a major step forward from explicit class field theory, and it could be described as the start of the explicit Langlands program. The computation of the Galois representations uses their realization, following Shimura and Deligne, in the torsion subgroup of Jacobian varieties of modular curves. The main challenge is then to perform the necessary computations in time polynomial in the dimension of these highly nonlinear algebraic varieties. Exact computations involving systems of polynomial equations in many variables take exponential time. This is avoided by numerical approximations with a precision that suffices to derive exact results from them. Bounds for the required precision--in other words, bounds for the height of the rational numbers that describe the Galois representation to be computed--are obtained from Arakelov theory. Two types of approximations are treated: one using complex uniformization and another one using geometry over finite fields. The book begins with a concise and concrete introduction that makes its accessible to readers without an extensive background in arithmetic geometry. And the book includes a chapter that describes actual computations.
Issued also in print.
Mode of access: Internet via World Wide Web.
In English.
Description based on online resource; title from PDF title page (publisher's Web site, viewed 31. Jan 2022)
Class field theory.
Galois modules (Algebra).
MATHEMATICS / Number Theory. bisacsh
Arakelov invariants.
Arakelov theory.
Fourier coefficients.
Galois representation.
Galois representations.
Green functions.
Hecke operators.
Jacobians.
Langlands program.
Las Vegas algorithm.
Lehmer.
Peter Bruin.
Ramanujan's tau function.
Ramanujan's tau-function.
Ramanujan's tau.
Riemann surfaces.
Schoof's algorithm.
Turing machines.
algorithms.
arithmetic geometry.
arithmetic surfaces.
bounding heights.
bounds.
coefficients.
complex roots.
computation.
computing algorithms.
computing coefficients.
cusp forms.
cuspidal divisor.
eigenforms.
finite fields.
height functions.
inequality.
lattices.
minimal polynomial.
modular curves.
modular forms.
modular representation.
modular representations.
modular symbols.
nonvanishing conjecture.
p-adic methods.
plane curves.
polynomial time algorithm.
polynomial time algoriths.
polynomial time.
polynomials.
power series.
probabilistic polynomial time.
random divisors.
residual representation.
square root.
square-free levels.
tale cohomology.
torsion divisors.
torsion.
Bosman, Johan, contributor. ctb https://id.loc.gov/vocabulary/relators/ctb
Bosman, Johan.
Couveignes, Jean-Marc, contributor. ctb https://id.loc.gov/vocabulary/relators/ctb
Couveignes, Jean-Marc, editor. edt http://id.loc.gov/vocabulary/relators/edt
Edixhoven, B., contributor. ctb https://id.loc.gov/vocabulary/relators/ctb
Edixhoven, Bas, contributor. ctb https://id.loc.gov/vocabulary/relators/ctb
Edixhoven, Bas, editor. edt http://id.loc.gov/vocabulary/relators/edt
Merkl, Franz, contributor. ctb https://id.loc.gov/vocabulary/relators/ctb
Merkl, Franz.
de Jong, R., contributor. ctb https://id.loc.gov/vocabulary/relators/ctb
de Jong, Robin, contributor. ctb https://id.loc.gov/vocabulary/relators/ctb
de Jong, Robin.
Title is part of eBook package: De Gruyter Princeton Annals of Mathematics eBook-Package 1940-2020 9783110494914 ZDB-23-PMB
Title is part of eBook package: De Gruyter Princeton University Press eBook-Package Backlist 2000-2013 9783110442502
print 9780691142029
https://doi.org/10.1515/9781400839001?locatt=mode:legacy
https://www.degruyter.com/isbn/9781400839001
Cover https://www.degruyter.com/document/cover/isbn/9781400839001/original
language English
format eBook
author2 Bosman, Johan,
Bosman, Johan,
Bosman, Johan.
Couveignes, Jean-Marc,
Couveignes, Jean-Marc,
Couveignes, Jean-Marc,
Couveignes, Jean-Marc,
Edixhoven, B.,
Edixhoven, B.,
Edixhoven, Bas,
Edixhoven, Bas,
Edixhoven, Bas,
Edixhoven, Bas,
Merkl, Franz,
Merkl, Franz,
Merkl, Franz.
de Jong, R.,
de Jong, R.,
de Jong, Robin,
de Jong, Robin,
de Jong, Robin.
author_facet Bosman, Johan,
Bosman, Johan,
Bosman, Johan.
Couveignes, Jean-Marc,
Couveignes, Jean-Marc,
Couveignes, Jean-Marc,
Couveignes, Jean-Marc,
Edixhoven, B.,
Edixhoven, B.,
Edixhoven, Bas,
Edixhoven, Bas,
Edixhoven, Bas,
Edixhoven, Bas,
Merkl, Franz,
Merkl, Franz,
Merkl, Franz.
de Jong, R.,
de Jong, R.,
de Jong, Robin,
de Jong, Robin,
de Jong, Robin.
author2_variant j b jb
j b jb
j b jb
j m c jmc
j m c jmc
j m c jmc
j m c jmc
b e be
b e be
b e be
b e be
b e be
b e be
f m fm
f m fm
f m fm
j r d jr jrd
j r d jr jrd
j r d jr jrd
j r d jr jrd
j r d jr jrd
author2_role MitwirkendeR
MitwirkendeR
TeilnehmendeR
MitwirkendeR
MitwirkendeR
HerausgeberIn
HerausgeberIn
MitwirkendeR
MitwirkendeR
MitwirkendeR
MitwirkendeR
HerausgeberIn
HerausgeberIn
MitwirkendeR
MitwirkendeR
TeilnehmendeR
MitwirkendeR
MitwirkendeR
MitwirkendeR
MitwirkendeR
TeilnehmendeR
author_sort Bosman, Johan,
title Computational Aspects of Modular Forms and Galois Representations : How One Can Compute in Polynomial Time the Value of Ramanujan's Tau at a Prime (AM-176) /
spellingShingle Computational Aspects of Modular Forms and Galois Representations : How One Can Compute in Polynomial Time the Value of Ramanujan's Tau at a Prime (AM-176) /
Annals of Mathematics Studies ;
Frontmatter --
Contents --
Preface --
Acknowledgments --
Author information --
Dependencies between the chapters --
Chapter 1. Introduction, main results, context --
Chapter 2. Modular curves, modular forms, lattices, Galois representations --
Chapter 3. First description of the algorithms --
Chapter 4. Short introduction to heights and Arakelov theory --
Chapter 5. Computing complex zeros of polynomials and power series --
Chapter 6. Computations with modular forms and Galois representations --
Chapter 7. Polynomials for projective representations of level one forms --
Chapter 8. Description of X1(5l) --
Chapter 9. Applying Arakelov theory --
Chapter 10. An upper bound for Green functions on Riemann surfaces --
Chapter 11. Bounds for Arakelov invariants of modular curves --
Chapter 12. Approximating Vf over the complex numbers --
Chapter 13. Computing Vf modulo p --
Chapter 14. Computing the residual Galois representations --
Chapter 15. Computing coefficients of modular forms --
Epilogue --
Bibliography --
Index
title_sub How One Can Compute in Polynomial Time the Value of Ramanujan's Tau at a Prime (AM-176) /
title_full Computational Aspects of Modular Forms and Galois Representations : How One Can Compute in Polynomial Time the Value of Ramanujan's Tau at a Prime (AM-176) / ed. by Bas Edixhoven, Jean-Marc Couveignes.
title_fullStr Computational Aspects of Modular Forms and Galois Representations : How One Can Compute in Polynomial Time the Value of Ramanujan's Tau at a Prime (AM-176) / ed. by Bas Edixhoven, Jean-Marc Couveignes.
title_full_unstemmed Computational Aspects of Modular Forms and Galois Representations : How One Can Compute in Polynomial Time the Value of Ramanujan's Tau at a Prime (AM-176) / ed. by Bas Edixhoven, Jean-Marc Couveignes.
title_auth Computational Aspects of Modular Forms and Galois Representations : How One Can Compute in Polynomial Time the Value of Ramanujan's Tau at a Prime (AM-176) /
title_alt Frontmatter --
Contents --
Preface --
Acknowledgments --
Author information --
Dependencies between the chapters --
Chapter 1. Introduction, main results, context --
Chapter 2. Modular curves, modular forms, lattices, Galois representations --
Chapter 3. First description of the algorithms --
Chapter 4. Short introduction to heights and Arakelov theory --
Chapter 5. Computing complex zeros of polynomials and power series --
Chapter 6. Computations with modular forms and Galois representations --
Chapter 7. Polynomials for projective representations of level one forms --
Chapter 8. Description of X1(5l) --
Chapter 9. Applying Arakelov theory --
Chapter 10. An upper bound for Green functions on Riemann surfaces --
Chapter 11. Bounds for Arakelov invariants of modular curves --
Chapter 12. Approximating Vf over the complex numbers --
Chapter 13. Computing Vf modulo p --
Chapter 14. Computing the residual Galois representations --
Chapter 15. Computing coefficients of modular forms --
Epilogue --
Bibliography --
Index
title_new Computational Aspects of Modular Forms and Galois Representations :
title_sort computational aspects of modular forms and galois representations : how one can compute in polynomial time the value of ramanujan's tau at a prime (am-176) /
series Annals of Mathematics Studies ;
series2 Annals of Mathematics Studies ;
publisher Princeton University Press,
publishDate 2011
physical 1 online resource (440 p.) : 6 line illus.
Issued also in print.
edition Course Book
contents Frontmatter --
Contents --
Preface --
Acknowledgments --
Author information --
Dependencies between the chapters --
Chapter 1. Introduction, main results, context --
Chapter 2. Modular curves, modular forms, lattices, Galois representations --
Chapter 3. First description of the algorithms --
Chapter 4. Short introduction to heights and Arakelov theory --
Chapter 5. Computing complex zeros of polynomials and power series --
Chapter 6. Computations with modular forms and Galois representations --
Chapter 7. Polynomials for projective representations of level one forms --
Chapter 8. Description of X1(5l) --
Chapter 9. Applying Arakelov theory --
Chapter 10. An upper bound for Green functions on Riemann surfaces --
Chapter 11. Bounds for Arakelov invariants of modular curves --
Chapter 12. Approximating Vf over the complex numbers --
Chapter 13. Computing Vf modulo p --
Chapter 14. Computing the residual Galois representations --
Chapter 15. Computing coefficients of modular forms --
Epilogue --
Bibliography --
Index
isbn 9781400839001
9783110494914
9783110442502
9780691142029
callnumber-first Q - Science
callnumber-subject QA - Mathematics
callnumber-label QA247
callnumber-sort QA 3247 C638 42017
url https://doi.org/10.1515/9781400839001?locatt=mode:legacy
https://www.degruyter.com/isbn/9781400839001
https://www.degruyter.com/document/cover/isbn/9781400839001/original
illustrated Illustrated
dewey-hundreds 500 - Science
dewey-tens 510 - Mathematics
dewey-ones 512 - Algebra
dewey-full 512.32
dewey-sort 3512.32
dewey-raw 512.32
dewey-search 512.32
doi_str_mv 10.1515/9781400839001?locatt=mode:legacy
oclc_num 979742221
work_keys_str_mv AT bosmanjohan computationalaspectsofmodularformsandgaloisrepresentationshowonecancomputeinpolynomialtimethevalueoframanujanstauataprimeam176
AT couveignesjeanmarc computationalaspectsofmodularformsandgaloisrepresentationshowonecancomputeinpolynomialtimethevalueoframanujanstauataprimeam176
AT edixhovenb computationalaspectsofmodularformsandgaloisrepresentationshowonecancomputeinpolynomialtimethevalueoframanujanstauataprimeam176
AT edixhovenbas computationalaspectsofmodularformsandgaloisrepresentationshowonecancomputeinpolynomialtimethevalueoframanujanstauataprimeam176
AT merklfranz computationalaspectsofmodularformsandgaloisrepresentationshowonecancomputeinpolynomialtimethevalueoframanujanstauataprimeam176
AT dejongr computationalaspectsofmodularformsandgaloisrepresentationshowonecancomputeinpolynomialtimethevalueoframanujanstauataprimeam176
AT dejongrobin computationalaspectsofmodularformsandgaloisrepresentationshowonecancomputeinpolynomialtimethevalueoframanujanstauataprimeam176
status_str n
ids_txt_mv (DE-B1597)446741
(OCoLC)979742221
carrierType_str_mv cr
hierarchy_parent_title Title is part of eBook package: De Gruyter Princeton Annals of Mathematics eBook-Package 1940-2020
Title is part of eBook package: De Gruyter Princeton University Press eBook-Package Backlist 2000-2013
is_hierarchy_title Computational Aspects of Modular Forms and Galois Representations : How One Can Compute in Polynomial Time the Value of Ramanujan's Tau at a Prime (AM-176) /
container_title Title is part of eBook package: De Gruyter Princeton Annals of Mathematics eBook-Package 1940-2020
author2_original_writing_str_mv noLinkedField
noLinkedField
noLinkedField
noLinkedField
noLinkedField
noLinkedField
noLinkedField
noLinkedField
noLinkedField
noLinkedField
noLinkedField
noLinkedField
noLinkedField
noLinkedField
noLinkedField
noLinkedField
noLinkedField
noLinkedField
noLinkedField
noLinkedField
noLinkedField
_version_ 1770176666451050496
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>08970nam a22015495i 4500</leader><controlfield tag="001">9781400839001</controlfield><controlfield tag="003">DE-B1597</controlfield><controlfield tag="005">20220131112047.0</controlfield><controlfield tag="006">m|||||o||d||||||||</controlfield><controlfield tag="007">cr || ||||||||</controlfield><controlfield tag="008">220131t20112011nju fo d z eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400839001</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781400839001</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-B1597)446741</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)979742221</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-B1597</subfield><subfield code="b">eng</subfield><subfield code="c">DE-B1597</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">nju</subfield><subfield code="c">US-NJ</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA247</subfield><subfield code="b">.C638 2017</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT022000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">512.32</subfield><subfield code="2">23</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Computational Aspects of Modular Forms and Galois Representations :</subfield><subfield code="b">How One Can Compute in Polynomial Time the Value of Ramanujan's Tau at a Prime (AM-176) /</subfield><subfield code="c">ed. by Bas Edixhoven, Jean-Marc Couveignes.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Course Book</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, NJ : </subfield><subfield code="b">Princeton University Press, </subfield><subfield code="c">[2011]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (440 p.) :</subfield><subfield code="b">6 line illus.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">text file</subfield><subfield code="b">PDF</subfield><subfield code="2">rda</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Annals of Mathematics Studies ;</subfield><subfield code="v">176</subfield></datafield><datafield tag="505" ind1="0" ind2="0"><subfield code="t">Frontmatter -- </subfield><subfield code="t">Contents -- </subfield><subfield code="t">Preface -- </subfield><subfield code="t">Acknowledgments -- </subfield><subfield code="t">Author information -- </subfield><subfield code="t">Dependencies between the chapters -- </subfield><subfield code="t">Chapter 1. Introduction, main results, context -- </subfield><subfield code="t">Chapter 2. Modular curves, modular forms, lattices, Galois representations -- </subfield><subfield code="t">Chapter 3. First description of the algorithms -- </subfield><subfield code="t">Chapter 4. Short introduction to heights and Arakelov theory -- </subfield><subfield code="t">Chapter 5. Computing complex zeros of polynomials and power series -- </subfield><subfield code="t">Chapter 6. Computations with modular forms and Galois representations -- </subfield><subfield code="t">Chapter 7. Polynomials for projective representations of level one forms -- </subfield><subfield code="t">Chapter 8. Description of X1(5l) -- </subfield><subfield code="t">Chapter 9. Applying Arakelov theory -- </subfield><subfield code="t">Chapter 10. An upper bound for Green functions on Riemann surfaces -- </subfield><subfield code="t">Chapter 11. Bounds for Arakelov invariants of modular curves -- </subfield><subfield code="t">Chapter 12. Approximating Vf over the complex numbers -- </subfield><subfield code="t">Chapter 13. Computing Vf modulo p -- </subfield><subfield code="t">Chapter 14. Computing the residual Galois representations -- </subfield><subfield code="t">Chapter 15. Computing coefficients of modular forms -- </subfield><subfield code="t">Epilogue -- </subfield><subfield code="t">Bibliography -- </subfield><subfield code="t">Index</subfield></datafield><datafield tag="506" ind1="0" ind2=" "><subfield code="a">restricted access</subfield><subfield code="u">http://purl.org/coar/access_right/c_16ec</subfield><subfield code="f">online access with authorization</subfield><subfield code="2">star</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Modular forms are tremendously important in various areas of mathematics, from number theory and algebraic geometry to combinatorics and lattices. Their Fourier coefficients, with Ramanujan's tau-function as a typical example, have deep arithmetic significance. Prior to this book, the fastest known algorithms for computing these Fourier coefficients took exponential time, except in some special cases. The case of elliptic curves (Schoof's algorithm) was at the birth of elliptic curve cryptography around 1985. This book gives an algorithm for computing coefficients of modular forms of level one in polynomial time. For example, Ramanujan's tau of a prime number p can be computed in time bounded by a fixed power of the logarithm of p. Such fast computation of Fourier coefficients is itself based on the main result of the book: the computation, in polynomial time, of Galois representations over finite fields attached to modular forms by the Langlands program. Because these Galois representations typically have a nonsolvable image, this result is a major step forward from explicit class field theory, and it could be described as the start of the explicit Langlands program. The computation of the Galois representations uses their realization, following Shimura and Deligne, in the torsion subgroup of Jacobian varieties of modular curves. The main challenge is then to perform the necessary computations in time polynomial in the dimension of these highly nonlinear algebraic varieties. Exact computations involving systems of polynomial equations in many variables take exponential time. This is avoided by numerical approximations with a precision that suffices to derive exact results from them. Bounds for the required precision--in other words, bounds for the height of the rational numbers that describe the Galois representation to be computed--are obtained from Arakelov theory. Two types of approximations are treated: one using complex uniformization and another one using geometry over finite fields. The book begins with a concise and concrete introduction that makes its accessible to readers without an extensive background in arithmetic geometry. And the book includes a chapter that describes actual computations.</subfield></datafield><datafield tag="530" ind1=" " ind2=" "><subfield code="a">Issued also in print.</subfield></datafield><datafield tag="538" ind1=" " ind2=" "><subfield code="a">Mode of access: Internet via World Wide Web.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Description based on online resource; title from PDF title page (publisher's Web site, viewed 31. Jan 2022)</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Class field theory.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Galois modules (Algebra).</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Number Theory.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Arakelov invariants.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Arakelov theory.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Fourier coefficients.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Galois representation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Galois representations.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Green functions.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Hecke operators.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Jacobians.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Langlands program.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Las Vegas algorithm.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Lehmer.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Peter Bruin.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Ramanujan's tau function.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Ramanujan's tau-function.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Ramanujan's tau.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Riemann surfaces.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Schoof's algorithm.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Turing machines.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">algorithms.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">arithmetic geometry.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">arithmetic surfaces.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">bounding heights.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">bounds.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">coefficients.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">complex roots.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">computation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">computing algorithms.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">computing coefficients.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">cusp forms.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">cuspidal divisor.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">eigenforms.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">finite fields.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">height functions.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">inequality.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">lattices.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">minimal polynomial.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">modular curves.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">modular forms.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">modular representation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">modular representations.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">modular symbols.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">nonvanishing conjecture.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">p-adic methods.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">plane curves.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">polynomial time algorithm.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">polynomial time algoriths.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">polynomial time.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">polynomials.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">power series.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">probabilistic polynomial time.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">random divisors.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">residual representation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">square root.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">square-free levels.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">tale cohomology.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">torsion divisors.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">torsion.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bosman, Johan, </subfield><subfield code="e">contributor.</subfield><subfield code="4">ctb</subfield><subfield code="4">https://id.loc.gov/vocabulary/relators/ctb</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bosman, Johan.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Couveignes, Jean-Marc, </subfield><subfield code="e">contributor.</subfield><subfield code="4">ctb</subfield><subfield code="4">https://id.loc.gov/vocabulary/relators/ctb</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Couveignes, Jean-Marc, </subfield><subfield code="e">editor.</subfield><subfield code="4">edt</subfield><subfield code="4">http://id.loc.gov/vocabulary/relators/edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Edixhoven, B., </subfield><subfield code="e">contributor.</subfield><subfield code="4">ctb</subfield><subfield code="4">https://id.loc.gov/vocabulary/relators/ctb</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Edixhoven, Bas, </subfield><subfield code="e">contributor.</subfield><subfield code="4">ctb</subfield><subfield code="4">https://id.loc.gov/vocabulary/relators/ctb</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Edixhoven, Bas, </subfield><subfield code="e">editor.</subfield><subfield code="4">edt</subfield><subfield code="4">http://id.loc.gov/vocabulary/relators/edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Merkl, Franz, </subfield><subfield code="e">contributor.</subfield><subfield code="4">ctb</subfield><subfield code="4">https://id.loc.gov/vocabulary/relators/ctb</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Merkl, Franz.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">de Jong, R., </subfield><subfield code="e">contributor.</subfield><subfield code="4">ctb</subfield><subfield code="4">https://id.loc.gov/vocabulary/relators/ctb</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">de Jong, Robin, </subfield><subfield code="e">contributor.</subfield><subfield code="4">ctb</subfield><subfield code="4">https://id.loc.gov/vocabulary/relators/ctb</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">de Jong, Robin.</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Title is part of eBook package:</subfield><subfield code="d">De Gruyter</subfield><subfield code="t">Princeton Annals of Mathematics eBook-Package 1940-2020</subfield><subfield code="z">9783110494914</subfield><subfield code="o">ZDB-23-PMB</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Title is part of eBook package:</subfield><subfield code="d">De Gruyter</subfield><subfield code="t">Princeton University Press eBook-Package Backlist 2000-2013</subfield><subfield code="z">9783110442502</subfield></datafield><datafield tag="776" ind1="0" ind2=" "><subfield code="c">print</subfield><subfield code="z">9780691142029</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9781400839001?locatt=mode:legacy</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.degruyter.com/isbn/9781400839001</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="3">Cover</subfield><subfield code="u">https://www.degruyter.com/document/cover/isbn/9781400839001/original</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">978-3-11-044250-2 Princeton University Press eBook-Package Backlist 2000-2013</subfield><subfield code="c">2000</subfield><subfield code="d">2013</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">EBA_BACKALL</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">EBA_CL_MTPY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">EBA_EBACKALL</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">EBA_EBKALL</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">EBA_ECL_MTPY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">EBA_EEBKALL</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">EBA_ESTMALL</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">EBA_PPALL</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">EBA_STMALL</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV-deGruyter-alles</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">PDA12STME</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">PDA13ENGE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">PDA18STMEE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">PDA5EBK</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-PMB</subfield><subfield code="c">1940</subfield><subfield code="d">2020</subfield></datafield></record></collection>