Computational Aspects of Modular Forms and Galois Representations : : How One Can Compute in Polynomial Time the Value of Ramanujan's Tau at a Prime (AM-176) / / ed. by Bas Edixhoven, Jean-Marc Couveignes.

Modular forms are tremendously important in various areas of mathematics, from number theory and algebraic geometry to combinatorics and lattices. Their Fourier coefficients, with Ramanujan's tau-function as a typical example, have deep arithmetic significance. Prior to this book, the fastest k...

Full description

Saved in:
Bibliographic Details
Superior document:Title is part of eBook package: De Gruyter Princeton Annals of Mathematics eBook-Package 1940-2020
MitwirkendeR:
TeilnehmendeR:
HerausgeberIn:
Place / Publishing House:Princeton, NJ : : Princeton University Press, , [2011]
©2011
Year of Publication:2011
Edition:Course Book
Language:English
Series:Annals of Mathematics Studies ; 176
Online Access:
Physical Description:1 online resource (440 p.) :; 6 line illus.
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 08970nam a22015495i 4500
001 9781400839001
003 DE-B1597
005 20220131112047.0
006 m|||||o||d||||||||
007 cr || ||||||||
008 220131t20112011nju fo d z eng d
020 |a 9781400839001 
024 7 |a 10.1515/9781400839001  |2 doi 
035 |a (DE-B1597)446741 
035 |a (OCoLC)979742221 
040 |a DE-B1597  |b eng  |c DE-B1597  |e rda 
041 0 |a eng 
044 |a nju  |c US-NJ 
050 4 |a QA247  |b .C638 2017 
072 7 |a MAT022000  |2 bisacsh 
082 0 4 |a 512.32  |2 23 
245 0 0 |a Computational Aspects of Modular Forms and Galois Representations :  |b How One Can Compute in Polynomial Time the Value of Ramanujan's Tau at a Prime (AM-176) /  |c ed. by Bas Edixhoven, Jean-Marc Couveignes. 
250 |a Course Book 
264 1 |a Princeton, NJ :   |b Princeton University Press,   |c [2011] 
264 4 |c ©2011 
300 |a 1 online resource (440 p.) :  |b 6 line illus. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 0 |a Annals of Mathematics Studies ;  |v 176 
505 0 0 |t Frontmatter --   |t Contents --   |t Preface --   |t Acknowledgments --   |t Author information --   |t Dependencies between the chapters --   |t Chapter 1. Introduction, main results, context --   |t Chapter 2. Modular curves, modular forms, lattices, Galois representations --   |t Chapter 3. First description of the algorithms --   |t Chapter 4. Short introduction to heights and Arakelov theory --   |t Chapter 5. Computing complex zeros of polynomials and power series --   |t Chapter 6. Computations with modular forms and Galois representations --   |t Chapter 7. Polynomials for projective representations of level one forms --   |t Chapter 8. Description of X1(5l) --   |t Chapter 9. Applying Arakelov theory --   |t Chapter 10. An upper bound for Green functions on Riemann surfaces --   |t Chapter 11. Bounds for Arakelov invariants of modular curves --   |t Chapter 12. Approximating Vf over the complex numbers --   |t Chapter 13. Computing Vf modulo p --   |t Chapter 14. Computing the residual Galois representations --   |t Chapter 15. Computing coefficients of modular forms --   |t Epilogue --   |t Bibliography --   |t Index 
506 0 |a restricted access  |u http://purl.org/coar/access_right/c_16ec  |f online access with authorization  |2 star 
520 |a Modular forms are tremendously important in various areas of mathematics, from number theory and algebraic geometry to combinatorics and lattices. Their Fourier coefficients, with Ramanujan's tau-function as a typical example, have deep arithmetic significance. Prior to this book, the fastest known algorithms for computing these Fourier coefficients took exponential time, except in some special cases. The case of elliptic curves (Schoof's algorithm) was at the birth of elliptic curve cryptography around 1985. This book gives an algorithm for computing coefficients of modular forms of level one in polynomial time. For example, Ramanujan's tau of a prime number p can be computed in time bounded by a fixed power of the logarithm of p. Such fast computation of Fourier coefficients is itself based on the main result of the book: the computation, in polynomial time, of Galois representations over finite fields attached to modular forms by the Langlands program. Because these Galois representations typically have a nonsolvable image, this result is a major step forward from explicit class field theory, and it could be described as the start of the explicit Langlands program. The computation of the Galois representations uses their realization, following Shimura and Deligne, in the torsion subgroup of Jacobian varieties of modular curves. The main challenge is then to perform the necessary computations in time polynomial in the dimension of these highly nonlinear algebraic varieties. Exact computations involving systems of polynomial equations in many variables take exponential time. This is avoided by numerical approximations with a precision that suffices to derive exact results from them. Bounds for the required precision--in other words, bounds for the height of the rational numbers that describe the Galois representation to be computed--are obtained from Arakelov theory. Two types of approximations are treated: one using complex uniformization and another one using geometry over finite fields. The book begins with a concise and concrete introduction that makes its accessible to readers without an extensive background in arithmetic geometry. And the book includes a chapter that describes actual computations. 
530 |a Issued also in print. 
538 |a Mode of access: Internet via World Wide Web. 
546 |a In English. 
588 0 |a Description based on online resource; title from PDF title page (publisher's Web site, viewed 31. Jan 2022) 
650 0 |a Class field theory. 
650 0 |a Galois modules (Algebra). 
650 7 |a MATHEMATICS / Number Theory.  |2 bisacsh 
653 |a Arakelov invariants. 
653 |a Arakelov theory. 
653 |a Fourier coefficients. 
653 |a Galois representation. 
653 |a Galois representations. 
653 |a Green functions. 
653 |a Hecke operators. 
653 |a Jacobians. 
653 |a Langlands program. 
653 |a Las Vegas algorithm. 
653 |a Lehmer. 
653 |a Peter Bruin. 
653 |a Ramanujan's tau function. 
653 |a Ramanujan's tau-function. 
653 |a Ramanujan's tau. 
653 |a Riemann surfaces. 
653 |a Schoof's algorithm. 
653 |a Turing machines. 
653 |a algorithms. 
653 |a arithmetic geometry. 
653 |a arithmetic surfaces. 
653 |a bounding heights. 
653 |a bounds. 
653 |a coefficients. 
653 |a complex roots. 
653 |a computation. 
653 |a computing algorithms. 
653 |a computing coefficients. 
653 |a cusp forms. 
653 |a cuspidal divisor. 
653 |a eigenforms. 
653 |a finite fields. 
653 |a height functions. 
653 |a inequality. 
653 |a lattices. 
653 |a minimal polynomial. 
653 |a modular curves. 
653 |a modular forms. 
653 |a modular representation. 
653 |a modular representations. 
653 |a modular symbols. 
653 |a nonvanishing conjecture. 
653 |a p-adic methods. 
653 |a plane curves. 
653 |a polynomial time algorithm. 
653 |a polynomial time algoriths. 
653 |a polynomial time. 
653 |a polynomials. 
653 |a power series. 
653 |a probabilistic polynomial time. 
653 |a random divisors. 
653 |a residual representation. 
653 |a square root. 
653 |a square-free levels. 
653 |a tale cohomology. 
653 |a torsion divisors. 
653 |a torsion. 
700 1 |a Bosman, Johan,   |e contributor.  |4 ctb  |4 https://id.loc.gov/vocabulary/relators/ctb 
700 1 |a Bosman, Johan. 
700 1 |a Couveignes, Jean-Marc,   |e contributor.  |4 ctb  |4 https://id.loc.gov/vocabulary/relators/ctb 
700 1 |a Couveignes, Jean-Marc,   |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Edixhoven, B.,   |e contributor.  |4 ctb  |4 https://id.loc.gov/vocabulary/relators/ctb 
700 1 |a Edixhoven, Bas,   |e contributor.  |4 ctb  |4 https://id.loc.gov/vocabulary/relators/ctb 
700 1 |a Edixhoven, Bas,   |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Merkl, Franz,   |e contributor.  |4 ctb  |4 https://id.loc.gov/vocabulary/relators/ctb 
700 1 |a Merkl, Franz. 
700 1 |a de Jong, R.,   |e contributor.  |4 ctb  |4 https://id.loc.gov/vocabulary/relators/ctb 
700 1 |a de Jong, Robin,   |e contributor.  |4 ctb  |4 https://id.loc.gov/vocabulary/relators/ctb 
700 1 |a de Jong, Robin. 
773 0 8 |i Title is part of eBook package:  |d De Gruyter  |t Princeton Annals of Mathematics eBook-Package 1940-2020  |z 9783110494914  |o ZDB-23-PMB 
773 0 8 |i Title is part of eBook package:  |d De Gruyter  |t Princeton University Press eBook-Package Backlist 2000-2013  |z 9783110442502 
776 0 |c print  |z 9780691142029 
856 4 0 |u https://doi.org/10.1515/9781400839001?locatt=mode:legacy 
856 4 0 |u https://www.degruyter.com/isbn/9781400839001 
856 4 2 |3 Cover  |u https://www.degruyter.com/document/cover/isbn/9781400839001/original 
912 |a 978-3-11-044250-2 Princeton University Press eBook-Package Backlist 2000-2013  |c 2000  |d 2013 
912 |a EBA_BACKALL 
912 |a EBA_CL_MTPY 
912 |a EBA_EBACKALL 
912 |a EBA_EBKALL 
912 |a EBA_ECL_MTPY 
912 |a EBA_EEBKALL 
912 |a EBA_ESTMALL 
912 |a EBA_PPALL 
912 |a EBA_STMALL 
912 |a GBV-deGruyter-alles 
912 |a PDA12STME 
912 |a PDA13ENGE 
912 |a PDA18STMEE 
912 |a PDA5EBK 
912 |a ZDB-23-PMB  |c 1940  |d 2020