Compact Models for Integrated Circuit Design : : Conventional Transistors and Beyond.

Saved in:
Bibliographic Details
:
Place / Publishing House:Milton : : Taylor & Francis Group,, 2015.
Ã2016.
Year of Publication:2015
Edition:1st ed.
Language:English
Online Access:
Physical Description:1 online resource (548 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 5007245077
ctrlnum (MiAaPQ)5007245077
(Au-PeEL)EBL7245077
(OCoLC)1378933145
collection bib_alma
record_format marc
spelling Saha, Samar K.
Compact Models for Integrated Circuit Design : Conventional Transistors and Beyond.
1st ed.
Milton : Taylor & Francis Group, 2015.
Ã2016.
1 online resource (548 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Cover -- Half Title -- Title Page -- Copyright Page -- Dedication -- Table of Contents -- Preface -- Author -- 1: Introduction to Compact Models -- 1.1 Compact Models for Circuit Simulation -- 1.1.1 Compact Device Models -- 1.1.2 Compact Interconnect Models -- 1.2 Brief History of Compact Device Modeling -- 1.2.1 Early History of Compact MOSFET Modeling -- 1.2.2 Recent History of Compact MOSFET Modeling -- 1.2.2.1 Threshold Voltage-Based Compact MOSFET Modeling -- 1.2.2.2 Surface Potential-Based Compact MOSFET Modeling -- 1.2.2.3 Charge-Based Compact MOSFET Modeling -- 1.3 Motivation for Compact Modeling -- 1.4 Compact Model Usage -- 1.5 Compact Model Standardization -- 1.6 Summary -- Exercises -- 2: Review of Basic Device Physics -- 2.1 Introduction -- 2.2 Semiconductor Physics -- 2.2.1 Energy Band Model -- 2.2.2 Carrier Statistics -- 2.2.3 Intrinsic Semiconductors -- 2.2.3.1 Intrinsic Carrier Concentration -- 2.2.3.2 Effective Mass of Electrons and Holes -- 2.2.4 Extrinsic Semiconductors -- 2.2.4.1 Fermi Level in Extrinsic Semiconductor -- 2.2.4.2 Fermi Level in Degenerately Doped Semiconductor -- 2.2.5 Carrier Transport in Semiconductors -- 2.2.5.1 Carrier Mobility and Drift Current -- 2.2.5.2 Electrical Resistivity -- 2.2.5.3 Sheet Resistance -- 2.2.5.4 Velocity Saturation -- 2.2.5.5 Diffusion of Carriers -- 2.2.5.6 Nonuniformly Doped Semiconductors and Built-In Electric Field -- 2.2.6 Generation-Recombination -- 2.2.6.1 Injection Level -- 2.2.6.2 Recombination Processes -- 2.2.7 Basic Semiconductor Equations -- 2.2.7.1 Poisson's Equation -- 2.2.7.2 Carrier Concentration in Terms of Electrostatic Potential -- 2.2.7.3 Quasi-Fermi Level -- 2.2.7.4 Transport Equations -- 2.2.7.5 Continuity Equations -- 2.3 Theory of n-Type and p-Type Semiconductors in Contact -- 2.3.1 Basic Features of pn-Junctions -- 2.3.2 Built-In Potential.
2.3.3 Step Junctions -- 2.3.3.1 Junction Potential and Electric Field -- 2.3.4 pn-Junctions under External Bias -- 2.3.4.1 One-Sided Step Junctions -- 2.3.5 pn-Junction Equations -- 2.3.5.1 Relationship between Minority Carrier Density and Junction Voltage -- 2.3.6 pn-Junctions I-V Characteristics -- 2.3.6.1 Temperature Dependence of pn-Junction Leakage Current -- 2.3.6.2 Limitations of pn-Junction Current Equation -- 2.3.6.3 Bulk Resistance -- 2.3.6.4 Junction Breakdown Voltage -- 2.3.7 pn-Junction Dynamic Behavior -- 2.3.7.1 Junction Capacitance -- 2.3.7.2 Diffusion Capacitance -- 2.3.7.3 Small Signal Conductance -- 2.3.8 Diode Equivalent Circuit for Circuit CAD -- 2.4 Summary -- Exercises -- 3: Metal-Oxide-Semiconductor System -- 3.1 Introduction -- 3.2 MOS Capacitor at Equilibrium -- 3.2.1 Work Function -- 3.2.2 Oxide Charges -- 3.2.2.1 Interface-Trapped Charge -- 3.2.2.2 Fixed-Oxide Charge -- 3.2.2.3 Oxide-Trapped Charge -- 3.2.2.4 Mobile Ionic Charge -- 3.2.3 Flat Band Voltage -- 3.2.4 Effect of Band Bending on the Semiconductor Surface -- 3.3 MOS Capacitor under Applied Bias -- 3.3.1 Accumulation -- 3.3.2 Depletion -- 3.3.3 Inversion -- 3.4 MOS Capacitor Theory -- 3.4.1 Formulation of Poisson's Equation in Terms of Band-Bending Potential -- 3.4.2 Electrostatic Potentials and Charge Distribution -- 3.4.2.1 MOS Capacitor at Depletion: Depletion Approximation -- 3.4.2.2 MOS Capacitor at Inversion -- 3.5 Capacitance of MOS Structure -- 3.5.1 Low Frequency C-V Characteristics -- 3.5.1.1 Accumulation -- 3.5.1.2 Flat Band -- 3.5.1.3 Depletion -- 3.5.1.4 Inversion -- 3.5.2 Intermediate and High Frequency C-V Characteristics -- 3.5.3 Deep Depletion C-V Characteristics -- 3.5.4 Deviation from Ideal C-V Curves -- 3.5.5 Polysilicon Depletion Effect on C-V Curves -- 3.6 Summary -- Exercises -- 4: Large Geometry MOSFET Compact Models -- 4.1 Introduction.
4.2 Overview of MOSFET Devices -- 4.2.1 Basic Features of MOSFET Devices -- 4.2.2 MOSFET Device Operation -- 4.3 MOSFET Threshold Voltage Model -- 4.4 MOSFET Drain Current Model -- 4.4.1 Drain Current Formulation -- 4.4.2 Pao-Sah Model -- 4.4.3 Charge-Sheet Model -- 4.4.3.1 Drift Component of Drain Current -- 4.4.3.2 Diffusion Component of Drain Current -- 4.4.4 Regional Drain Current Model -- 4.4.4.1 Core Model -- 4.4.4.2 Bulk-Charge Model -- 4.4.4.3 Square Root Approximation of Bulk-Charge Model -- 4.4.4.4 Subthreshold Region Drain Current Model -- 4.4.4.5 Limitations of Regional Drain Current Model -- 4.5 Summary -- Exercises -- 5: Compact Models for Small Geometry MOSFETs -- 5.1 Introduction -- 5.2 Threshold Voltage Model -- 5.2.1 Effect of Nonuniform Channel Doping on Threshold Voltage -- 5.2.1.1 Threshold Voltage Modeling for Nonuniform Vertical Channel Doping Profile -- 5.2.1.2 Threshold Voltage Modeling for Nonuniform Lateral Channel Doping Profile -- 5.2.2 Small Geometry Effect on Threshold Voltage Model -- 5.2.2.1 Threshold Voltage Model for Short Channel MOSFET Devices -- 5.2.2.2 Threshold Voltage Modeling for Narrow Channel MOSFET Devices -- 5.3 Drain Current Model -- 5.3.1 Surface Mobility Model -- 5.3.2 Subthreshold Region Drain Current Model -- 5.3.3 Linear Region Drain Current Model -- 5.3.4 Saturation Region Drain Current Model -- 5.3.5 Bulk-Charge Effect -- 5.3.6 Output Resistance -- 5.3.7 Unified Drain Current Equation -- 5.3.8 S/D Parasitic Series Resistance -- 5.3.9 Polysilicon Gate Depletion -- 5.3.10 Temperature Dependence -- 5.4 Substrate Current Model -- 5.4.1 Gate-Induced Drain Leakage Body Current Model -- 5.4.2 Gate Current Model -- 5.5 Summary -- Exercises -- 6: MOSFET Capacitance Models -- 6.1 Introduction -- 6.2 Basic MOSFET Capacitance Model -- 6.2.1 Intrinsic Charges and Capacitances -- 6.2.2 Meyer Model.
6.2.2.1 Strong Inversion -- 6.2.2.2 Weak Inversion -- 6.2.3 Limitations of Meyer Model -- 6.3 Charge-Based Capacitance Model -- 6.3.1 Long Channel Charge Model -- 6.3.1.1 Strong Inversion -- 6.3.1.2 Weak Inversion -- 6.3.1.3 Accumulation -- 6.3.2 Long Channel Capacitance Model -- 6.3.3 Short Channel Charge Model -- 6.3.4 Short Channel Capacitance Model -- 6.4 Gate Overlap Capacitance Model -- 6.5 Limitations of the Quasistatic Model -- 6.6 S/D pn-Junction Capacitance Model -- 6.6.1 Source-Body pn-Junction Diode -- 6.6.2 Drain-Body Junction Diode -- 6.7 Summary -- Exercises -- 7: Compact MOSFET Models for RF Applications -- 7.1 Introduction -- 7.2 MOSFET Noise Models -- 7.2.1 Fundamental Sources of Noise -- 7.2.2 Thermal Noise -- 7.2.2.1 Physical Mechanism of Thermal Noise -- 7.2.2.2 Thermal Noise Model -- 7.2.3 Flicker Noise -- 7.2.3.1 Physical Mechanism of Flicker Noise -- 7.2.3.2 Flicker Noise Model -- 7.3 NQS Effect -- 7.3.1 Modeling NQS Effect in MOSFETs -- 7.4 Modeling Parasitic Elements for RF Applications -- 7.4.1 Modeling Gate Resistance -- 7.4.2 Modeling Substrate Network -- 7.4.3 MOSFET RF Model for GHz Applications -- 7.5 Summary -- Exercises -- 8: Modeling Process Variability in Scaled MOSFETs -- 8.1 Introduction -- 8.2 Sources of Front-End Process Variability -- 8.2.1 Systematic or Global Process Variability -- 8.2.2 Random or Local Process Variability -- 8.2.2.1 Random Discrete Doping -- 8.2.2.2 Line-Edge Roughness -- 8.2.2.3 Oxide Thickness Variation -- 8.2.2.4 Other Sources Process Variability -- 8.3 Characterization of Parametric Variability in MOSFETs -- 8.3.1 Random Variability -- 8.3.2 Systematic Variability -- 8.4 Conventional Process Variability Modeling for Circuit CAD -- 8.4.1 Worst-Case Fixed Corner Models -- 8.4.2 Statistical Corner Models -- 8.4.3 Process Parameters-Based Compact Variability Modeling.
8.5 Statistical Compact Modeling -- 8.5.1 Determination of Process Variability-Sensitive MOSFET Device Parameters -- 8.5.1.1 Selection of Local Process Variability-Sensitive Device Parameters -- 8.5.1.2 Selection of Global Process Variability-Sensitive Device Parameters -- 8.5.2 Mapping Process Variability-Sensitive Device Parameters to Compact Model Parameters -- 8.5.2.1 Mapping Local Process Variability-Sensitive Device Parameters to Compact Model Parameters -- 8.5.2.2 Mapping Global Process Variability-Sensitive Device Parameters to Compact Model Parameters -- 8.5.3 Determination of Variance for Process Variability-Sensitive Compact Model Parameters -- 8.5.3.1 Variance of Local Process Variability-Sensitive Compact Model Parameters -- 8.5.3.2 Variance of the Global Process Variability-Sensitive Compact Model Parameters -- 8.5.4 Formulation of Compact Model for Process Variability-Aware Circuit Design -- 8.5.5 Simulation Results and Discussions -- 8.6 Mitigation of the Risk of Process Variability in VLSI Circuit Performance -- 8.7 Summary -- Exercises -- 9: Compact Models for Ultrathin Body FETs -- 9.1 Introduction -- 9.2 Multigate Device Structures -- 9.2.1 Bulk-Multigate Device Structure -- 9.2.2 UTB-SOI Device Structure -- 9.3 Common Multiple-Gate FinFET Model -- 9.3.1 Core Model: Poisson-Carrier Transport -- 9.3.1.1 Electrostatics -- 9.3.1.2 Drain Current Model -- 9.3.2 Modeling Physical Effects of Real Device -- 9.3.2.1 Short Channel Effects -- 9.3.2.2 Quantum Mechanical Effects -- 9.3.2.3 Mobility Degradation -- 9.3.2.4 Series Resistances -- 9.4 Independent Multiple-Gate FET Model -- 9.4.1 Electrostatics -- 9.4.2 Drain Current Model -- 9.5 Dynamic Model -- 9.5.1 Common Multigate C-V Model -- 9.5.2 Independent Multigate C-V Model -- 9.6 Summary -- Exercises -- 10: Beyond-CMOS Transistor Models: Tunnel FETs -- 10.1 Introduction.
10.2 Basic Features of TFETs.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic books.
Print version: Saha, Samar K. Compact Models for Integrated Circuit Design Milton : Taylor & Francis Group,c2015 9781482240665
ProQuest (Firm)
https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=7245077 Click to View
language English
format eBook
author Saha, Samar K.
spellingShingle Saha, Samar K.
Compact Models for Integrated Circuit Design : Conventional Transistors and Beyond.
Cover -- Half Title -- Title Page -- Copyright Page -- Dedication -- Table of Contents -- Preface -- Author -- 1: Introduction to Compact Models -- 1.1 Compact Models for Circuit Simulation -- 1.1.1 Compact Device Models -- 1.1.2 Compact Interconnect Models -- 1.2 Brief History of Compact Device Modeling -- 1.2.1 Early History of Compact MOSFET Modeling -- 1.2.2 Recent History of Compact MOSFET Modeling -- 1.2.2.1 Threshold Voltage-Based Compact MOSFET Modeling -- 1.2.2.2 Surface Potential-Based Compact MOSFET Modeling -- 1.2.2.3 Charge-Based Compact MOSFET Modeling -- 1.3 Motivation for Compact Modeling -- 1.4 Compact Model Usage -- 1.5 Compact Model Standardization -- 1.6 Summary -- Exercises -- 2: Review of Basic Device Physics -- 2.1 Introduction -- 2.2 Semiconductor Physics -- 2.2.1 Energy Band Model -- 2.2.2 Carrier Statistics -- 2.2.3 Intrinsic Semiconductors -- 2.2.3.1 Intrinsic Carrier Concentration -- 2.2.3.2 Effective Mass of Electrons and Holes -- 2.2.4 Extrinsic Semiconductors -- 2.2.4.1 Fermi Level in Extrinsic Semiconductor -- 2.2.4.2 Fermi Level in Degenerately Doped Semiconductor -- 2.2.5 Carrier Transport in Semiconductors -- 2.2.5.1 Carrier Mobility and Drift Current -- 2.2.5.2 Electrical Resistivity -- 2.2.5.3 Sheet Resistance -- 2.2.5.4 Velocity Saturation -- 2.2.5.5 Diffusion of Carriers -- 2.2.5.6 Nonuniformly Doped Semiconductors and Built-In Electric Field -- 2.2.6 Generation-Recombination -- 2.2.6.1 Injection Level -- 2.2.6.2 Recombination Processes -- 2.2.7 Basic Semiconductor Equations -- 2.2.7.1 Poisson's Equation -- 2.2.7.2 Carrier Concentration in Terms of Electrostatic Potential -- 2.2.7.3 Quasi-Fermi Level -- 2.2.7.4 Transport Equations -- 2.2.7.5 Continuity Equations -- 2.3 Theory of n-Type and p-Type Semiconductors in Contact -- 2.3.1 Basic Features of pn-Junctions -- 2.3.2 Built-In Potential.
2.3.3 Step Junctions -- 2.3.3.1 Junction Potential and Electric Field -- 2.3.4 pn-Junctions under External Bias -- 2.3.4.1 One-Sided Step Junctions -- 2.3.5 pn-Junction Equations -- 2.3.5.1 Relationship between Minority Carrier Density and Junction Voltage -- 2.3.6 pn-Junctions I-V Characteristics -- 2.3.6.1 Temperature Dependence of pn-Junction Leakage Current -- 2.3.6.2 Limitations of pn-Junction Current Equation -- 2.3.6.3 Bulk Resistance -- 2.3.6.4 Junction Breakdown Voltage -- 2.3.7 pn-Junction Dynamic Behavior -- 2.3.7.1 Junction Capacitance -- 2.3.7.2 Diffusion Capacitance -- 2.3.7.3 Small Signal Conductance -- 2.3.8 Diode Equivalent Circuit for Circuit CAD -- 2.4 Summary -- Exercises -- 3: Metal-Oxide-Semiconductor System -- 3.1 Introduction -- 3.2 MOS Capacitor at Equilibrium -- 3.2.1 Work Function -- 3.2.2 Oxide Charges -- 3.2.2.1 Interface-Trapped Charge -- 3.2.2.2 Fixed-Oxide Charge -- 3.2.2.3 Oxide-Trapped Charge -- 3.2.2.4 Mobile Ionic Charge -- 3.2.3 Flat Band Voltage -- 3.2.4 Effect of Band Bending on the Semiconductor Surface -- 3.3 MOS Capacitor under Applied Bias -- 3.3.1 Accumulation -- 3.3.2 Depletion -- 3.3.3 Inversion -- 3.4 MOS Capacitor Theory -- 3.4.1 Formulation of Poisson's Equation in Terms of Band-Bending Potential -- 3.4.2 Electrostatic Potentials and Charge Distribution -- 3.4.2.1 MOS Capacitor at Depletion: Depletion Approximation -- 3.4.2.2 MOS Capacitor at Inversion -- 3.5 Capacitance of MOS Structure -- 3.5.1 Low Frequency C-V Characteristics -- 3.5.1.1 Accumulation -- 3.5.1.2 Flat Band -- 3.5.1.3 Depletion -- 3.5.1.4 Inversion -- 3.5.2 Intermediate and High Frequency C-V Characteristics -- 3.5.3 Deep Depletion C-V Characteristics -- 3.5.4 Deviation from Ideal C-V Curves -- 3.5.5 Polysilicon Depletion Effect on C-V Curves -- 3.6 Summary -- Exercises -- 4: Large Geometry MOSFET Compact Models -- 4.1 Introduction.
4.2 Overview of MOSFET Devices -- 4.2.1 Basic Features of MOSFET Devices -- 4.2.2 MOSFET Device Operation -- 4.3 MOSFET Threshold Voltage Model -- 4.4 MOSFET Drain Current Model -- 4.4.1 Drain Current Formulation -- 4.4.2 Pao-Sah Model -- 4.4.3 Charge-Sheet Model -- 4.4.3.1 Drift Component of Drain Current -- 4.4.3.2 Diffusion Component of Drain Current -- 4.4.4 Regional Drain Current Model -- 4.4.4.1 Core Model -- 4.4.4.2 Bulk-Charge Model -- 4.4.4.3 Square Root Approximation of Bulk-Charge Model -- 4.4.4.4 Subthreshold Region Drain Current Model -- 4.4.4.5 Limitations of Regional Drain Current Model -- 4.5 Summary -- Exercises -- 5: Compact Models for Small Geometry MOSFETs -- 5.1 Introduction -- 5.2 Threshold Voltage Model -- 5.2.1 Effect of Nonuniform Channel Doping on Threshold Voltage -- 5.2.1.1 Threshold Voltage Modeling for Nonuniform Vertical Channel Doping Profile -- 5.2.1.2 Threshold Voltage Modeling for Nonuniform Lateral Channel Doping Profile -- 5.2.2 Small Geometry Effect on Threshold Voltage Model -- 5.2.2.1 Threshold Voltage Model for Short Channel MOSFET Devices -- 5.2.2.2 Threshold Voltage Modeling for Narrow Channel MOSFET Devices -- 5.3 Drain Current Model -- 5.3.1 Surface Mobility Model -- 5.3.2 Subthreshold Region Drain Current Model -- 5.3.3 Linear Region Drain Current Model -- 5.3.4 Saturation Region Drain Current Model -- 5.3.5 Bulk-Charge Effect -- 5.3.6 Output Resistance -- 5.3.7 Unified Drain Current Equation -- 5.3.8 S/D Parasitic Series Resistance -- 5.3.9 Polysilicon Gate Depletion -- 5.3.10 Temperature Dependence -- 5.4 Substrate Current Model -- 5.4.1 Gate-Induced Drain Leakage Body Current Model -- 5.4.2 Gate Current Model -- 5.5 Summary -- Exercises -- 6: MOSFET Capacitance Models -- 6.1 Introduction -- 6.2 Basic MOSFET Capacitance Model -- 6.2.1 Intrinsic Charges and Capacitances -- 6.2.2 Meyer Model.
6.2.2.1 Strong Inversion -- 6.2.2.2 Weak Inversion -- 6.2.3 Limitations of Meyer Model -- 6.3 Charge-Based Capacitance Model -- 6.3.1 Long Channel Charge Model -- 6.3.1.1 Strong Inversion -- 6.3.1.2 Weak Inversion -- 6.3.1.3 Accumulation -- 6.3.2 Long Channel Capacitance Model -- 6.3.3 Short Channel Charge Model -- 6.3.4 Short Channel Capacitance Model -- 6.4 Gate Overlap Capacitance Model -- 6.5 Limitations of the Quasistatic Model -- 6.6 S/D pn-Junction Capacitance Model -- 6.6.1 Source-Body pn-Junction Diode -- 6.6.2 Drain-Body Junction Diode -- 6.7 Summary -- Exercises -- 7: Compact MOSFET Models for RF Applications -- 7.1 Introduction -- 7.2 MOSFET Noise Models -- 7.2.1 Fundamental Sources of Noise -- 7.2.2 Thermal Noise -- 7.2.2.1 Physical Mechanism of Thermal Noise -- 7.2.2.2 Thermal Noise Model -- 7.2.3 Flicker Noise -- 7.2.3.1 Physical Mechanism of Flicker Noise -- 7.2.3.2 Flicker Noise Model -- 7.3 NQS Effect -- 7.3.1 Modeling NQS Effect in MOSFETs -- 7.4 Modeling Parasitic Elements for RF Applications -- 7.4.1 Modeling Gate Resistance -- 7.4.2 Modeling Substrate Network -- 7.4.3 MOSFET RF Model for GHz Applications -- 7.5 Summary -- Exercises -- 8: Modeling Process Variability in Scaled MOSFETs -- 8.1 Introduction -- 8.2 Sources of Front-End Process Variability -- 8.2.1 Systematic or Global Process Variability -- 8.2.2 Random or Local Process Variability -- 8.2.2.1 Random Discrete Doping -- 8.2.2.2 Line-Edge Roughness -- 8.2.2.3 Oxide Thickness Variation -- 8.2.2.4 Other Sources Process Variability -- 8.3 Characterization of Parametric Variability in MOSFETs -- 8.3.1 Random Variability -- 8.3.2 Systematic Variability -- 8.4 Conventional Process Variability Modeling for Circuit CAD -- 8.4.1 Worst-Case Fixed Corner Models -- 8.4.2 Statistical Corner Models -- 8.4.3 Process Parameters-Based Compact Variability Modeling.
8.5 Statistical Compact Modeling -- 8.5.1 Determination of Process Variability-Sensitive MOSFET Device Parameters -- 8.5.1.1 Selection of Local Process Variability-Sensitive Device Parameters -- 8.5.1.2 Selection of Global Process Variability-Sensitive Device Parameters -- 8.5.2 Mapping Process Variability-Sensitive Device Parameters to Compact Model Parameters -- 8.5.2.1 Mapping Local Process Variability-Sensitive Device Parameters to Compact Model Parameters -- 8.5.2.2 Mapping Global Process Variability-Sensitive Device Parameters to Compact Model Parameters -- 8.5.3 Determination of Variance for Process Variability-Sensitive Compact Model Parameters -- 8.5.3.1 Variance of Local Process Variability-Sensitive Compact Model Parameters -- 8.5.3.2 Variance of the Global Process Variability-Sensitive Compact Model Parameters -- 8.5.4 Formulation of Compact Model for Process Variability-Aware Circuit Design -- 8.5.5 Simulation Results and Discussions -- 8.6 Mitigation of the Risk of Process Variability in VLSI Circuit Performance -- 8.7 Summary -- Exercises -- 9: Compact Models for Ultrathin Body FETs -- 9.1 Introduction -- 9.2 Multigate Device Structures -- 9.2.1 Bulk-Multigate Device Structure -- 9.2.2 UTB-SOI Device Structure -- 9.3 Common Multiple-Gate FinFET Model -- 9.3.1 Core Model: Poisson-Carrier Transport -- 9.3.1.1 Electrostatics -- 9.3.1.2 Drain Current Model -- 9.3.2 Modeling Physical Effects of Real Device -- 9.3.2.1 Short Channel Effects -- 9.3.2.2 Quantum Mechanical Effects -- 9.3.2.3 Mobility Degradation -- 9.3.2.4 Series Resistances -- 9.4 Independent Multiple-Gate FET Model -- 9.4.1 Electrostatics -- 9.4.2 Drain Current Model -- 9.5 Dynamic Model -- 9.5.1 Common Multigate C-V Model -- 9.5.2 Independent Multigate C-V Model -- 9.6 Summary -- Exercises -- 10: Beyond-CMOS Transistor Models: Tunnel FETs -- 10.1 Introduction.
10.2 Basic Features of TFETs.
author_facet Saha, Samar K.
author_variant s k s sk sks
author_sort Saha, Samar K.
title Compact Models for Integrated Circuit Design : Conventional Transistors and Beyond.
title_sub Conventional Transistors and Beyond.
title_full Compact Models for Integrated Circuit Design : Conventional Transistors and Beyond.
title_fullStr Compact Models for Integrated Circuit Design : Conventional Transistors and Beyond.
title_full_unstemmed Compact Models for Integrated Circuit Design : Conventional Transistors and Beyond.
title_auth Compact Models for Integrated Circuit Design : Conventional Transistors and Beyond.
title_new Compact Models for Integrated Circuit Design :
title_sort compact models for integrated circuit design : conventional transistors and beyond.
publisher Taylor & Francis Group,
publishDate 2015
physical 1 online resource (548 pages)
edition 1st ed.
contents Cover -- Half Title -- Title Page -- Copyright Page -- Dedication -- Table of Contents -- Preface -- Author -- 1: Introduction to Compact Models -- 1.1 Compact Models for Circuit Simulation -- 1.1.1 Compact Device Models -- 1.1.2 Compact Interconnect Models -- 1.2 Brief History of Compact Device Modeling -- 1.2.1 Early History of Compact MOSFET Modeling -- 1.2.2 Recent History of Compact MOSFET Modeling -- 1.2.2.1 Threshold Voltage-Based Compact MOSFET Modeling -- 1.2.2.2 Surface Potential-Based Compact MOSFET Modeling -- 1.2.2.3 Charge-Based Compact MOSFET Modeling -- 1.3 Motivation for Compact Modeling -- 1.4 Compact Model Usage -- 1.5 Compact Model Standardization -- 1.6 Summary -- Exercises -- 2: Review of Basic Device Physics -- 2.1 Introduction -- 2.2 Semiconductor Physics -- 2.2.1 Energy Band Model -- 2.2.2 Carrier Statistics -- 2.2.3 Intrinsic Semiconductors -- 2.2.3.1 Intrinsic Carrier Concentration -- 2.2.3.2 Effective Mass of Electrons and Holes -- 2.2.4 Extrinsic Semiconductors -- 2.2.4.1 Fermi Level in Extrinsic Semiconductor -- 2.2.4.2 Fermi Level in Degenerately Doped Semiconductor -- 2.2.5 Carrier Transport in Semiconductors -- 2.2.5.1 Carrier Mobility and Drift Current -- 2.2.5.2 Electrical Resistivity -- 2.2.5.3 Sheet Resistance -- 2.2.5.4 Velocity Saturation -- 2.2.5.5 Diffusion of Carriers -- 2.2.5.6 Nonuniformly Doped Semiconductors and Built-In Electric Field -- 2.2.6 Generation-Recombination -- 2.2.6.1 Injection Level -- 2.2.6.2 Recombination Processes -- 2.2.7 Basic Semiconductor Equations -- 2.2.7.1 Poisson's Equation -- 2.2.7.2 Carrier Concentration in Terms of Electrostatic Potential -- 2.2.7.3 Quasi-Fermi Level -- 2.2.7.4 Transport Equations -- 2.2.7.5 Continuity Equations -- 2.3 Theory of n-Type and p-Type Semiconductors in Contact -- 2.3.1 Basic Features of pn-Junctions -- 2.3.2 Built-In Potential.
2.3.3 Step Junctions -- 2.3.3.1 Junction Potential and Electric Field -- 2.3.4 pn-Junctions under External Bias -- 2.3.4.1 One-Sided Step Junctions -- 2.3.5 pn-Junction Equations -- 2.3.5.1 Relationship between Minority Carrier Density and Junction Voltage -- 2.3.6 pn-Junctions I-V Characteristics -- 2.3.6.1 Temperature Dependence of pn-Junction Leakage Current -- 2.3.6.2 Limitations of pn-Junction Current Equation -- 2.3.6.3 Bulk Resistance -- 2.3.6.4 Junction Breakdown Voltage -- 2.3.7 pn-Junction Dynamic Behavior -- 2.3.7.1 Junction Capacitance -- 2.3.7.2 Diffusion Capacitance -- 2.3.7.3 Small Signal Conductance -- 2.3.8 Diode Equivalent Circuit for Circuit CAD -- 2.4 Summary -- Exercises -- 3: Metal-Oxide-Semiconductor System -- 3.1 Introduction -- 3.2 MOS Capacitor at Equilibrium -- 3.2.1 Work Function -- 3.2.2 Oxide Charges -- 3.2.2.1 Interface-Trapped Charge -- 3.2.2.2 Fixed-Oxide Charge -- 3.2.2.3 Oxide-Trapped Charge -- 3.2.2.4 Mobile Ionic Charge -- 3.2.3 Flat Band Voltage -- 3.2.4 Effect of Band Bending on the Semiconductor Surface -- 3.3 MOS Capacitor under Applied Bias -- 3.3.1 Accumulation -- 3.3.2 Depletion -- 3.3.3 Inversion -- 3.4 MOS Capacitor Theory -- 3.4.1 Formulation of Poisson's Equation in Terms of Band-Bending Potential -- 3.4.2 Electrostatic Potentials and Charge Distribution -- 3.4.2.1 MOS Capacitor at Depletion: Depletion Approximation -- 3.4.2.2 MOS Capacitor at Inversion -- 3.5 Capacitance of MOS Structure -- 3.5.1 Low Frequency C-V Characteristics -- 3.5.1.1 Accumulation -- 3.5.1.2 Flat Band -- 3.5.1.3 Depletion -- 3.5.1.4 Inversion -- 3.5.2 Intermediate and High Frequency C-V Characteristics -- 3.5.3 Deep Depletion C-V Characteristics -- 3.5.4 Deviation from Ideal C-V Curves -- 3.5.5 Polysilicon Depletion Effect on C-V Curves -- 3.6 Summary -- Exercises -- 4: Large Geometry MOSFET Compact Models -- 4.1 Introduction.
4.2 Overview of MOSFET Devices -- 4.2.1 Basic Features of MOSFET Devices -- 4.2.2 MOSFET Device Operation -- 4.3 MOSFET Threshold Voltage Model -- 4.4 MOSFET Drain Current Model -- 4.4.1 Drain Current Formulation -- 4.4.2 Pao-Sah Model -- 4.4.3 Charge-Sheet Model -- 4.4.3.1 Drift Component of Drain Current -- 4.4.3.2 Diffusion Component of Drain Current -- 4.4.4 Regional Drain Current Model -- 4.4.4.1 Core Model -- 4.4.4.2 Bulk-Charge Model -- 4.4.4.3 Square Root Approximation of Bulk-Charge Model -- 4.4.4.4 Subthreshold Region Drain Current Model -- 4.4.4.5 Limitations of Regional Drain Current Model -- 4.5 Summary -- Exercises -- 5: Compact Models for Small Geometry MOSFETs -- 5.1 Introduction -- 5.2 Threshold Voltage Model -- 5.2.1 Effect of Nonuniform Channel Doping on Threshold Voltage -- 5.2.1.1 Threshold Voltage Modeling for Nonuniform Vertical Channel Doping Profile -- 5.2.1.2 Threshold Voltage Modeling for Nonuniform Lateral Channel Doping Profile -- 5.2.2 Small Geometry Effect on Threshold Voltage Model -- 5.2.2.1 Threshold Voltage Model for Short Channel MOSFET Devices -- 5.2.2.2 Threshold Voltage Modeling for Narrow Channel MOSFET Devices -- 5.3 Drain Current Model -- 5.3.1 Surface Mobility Model -- 5.3.2 Subthreshold Region Drain Current Model -- 5.3.3 Linear Region Drain Current Model -- 5.3.4 Saturation Region Drain Current Model -- 5.3.5 Bulk-Charge Effect -- 5.3.6 Output Resistance -- 5.3.7 Unified Drain Current Equation -- 5.3.8 S/D Parasitic Series Resistance -- 5.3.9 Polysilicon Gate Depletion -- 5.3.10 Temperature Dependence -- 5.4 Substrate Current Model -- 5.4.1 Gate-Induced Drain Leakage Body Current Model -- 5.4.2 Gate Current Model -- 5.5 Summary -- Exercises -- 6: MOSFET Capacitance Models -- 6.1 Introduction -- 6.2 Basic MOSFET Capacitance Model -- 6.2.1 Intrinsic Charges and Capacitances -- 6.2.2 Meyer Model.
6.2.2.1 Strong Inversion -- 6.2.2.2 Weak Inversion -- 6.2.3 Limitations of Meyer Model -- 6.3 Charge-Based Capacitance Model -- 6.3.1 Long Channel Charge Model -- 6.3.1.1 Strong Inversion -- 6.3.1.2 Weak Inversion -- 6.3.1.3 Accumulation -- 6.3.2 Long Channel Capacitance Model -- 6.3.3 Short Channel Charge Model -- 6.3.4 Short Channel Capacitance Model -- 6.4 Gate Overlap Capacitance Model -- 6.5 Limitations of the Quasistatic Model -- 6.6 S/D pn-Junction Capacitance Model -- 6.6.1 Source-Body pn-Junction Diode -- 6.6.2 Drain-Body Junction Diode -- 6.7 Summary -- Exercises -- 7: Compact MOSFET Models for RF Applications -- 7.1 Introduction -- 7.2 MOSFET Noise Models -- 7.2.1 Fundamental Sources of Noise -- 7.2.2 Thermal Noise -- 7.2.2.1 Physical Mechanism of Thermal Noise -- 7.2.2.2 Thermal Noise Model -- 7.2.3 Flicker Noise -- 7.2.3.1 Physical Mechanism of Flicker Noise -- 7.2.3.2 Flicker Noise Model -- 7.3 NQS Effect -- 7.3.1 Modeling NQS Effect in MOSFETs -- 7.4 Modeling Parasitic Elements for RF Applications -- 7.4.1 Modeling Gate Resistance -- 7.4.2 Modeling Substrate Network -- 7.4.3 MOSFET RF Model for GHz Applications -- 7.5 Summary -- Exercises -- 8: Modeling Process Variability in Scaled MOSFETs -- 8.1 Introduction -- 8.2 Sources of Front-End Process Variability -- 8.2.1 Systematic or Global Process Variability -- 8.2.2 Random or Local Process Variability -- 8.2.2.1 Random Discrete Doping -- 8.2.2.2 Line-Edge Roughness -- 8.2.2.3 Oxide Thickness Variation -- 8.2.2.4 Other Sources Process Variability -- 8.3 Characterization of Parametric Variability in MOSFETs -- 8.3.1 Random Variability -- 8.3.2 Systematic Variability -- 8.4 Conventional Process Variability Modeling for Circuit CAD -- 8.4.1 Worst-Case Fixed Corner Models -- 8.4.2 Statistical Corner Models -- 8.4.3 Process Parameters-Based Compact Variability Modeling.
8.5 Statistical Compact Modeling -- 8.5.1 Determination of Process Variability-Sensitive MOSFET Device Parameters -- 8.5.1.1 Selection of Local Process Variability-Sensitive Device Parameters -- 8.5.1.2 Selection of Global Process Variability-Sensitive Device Parameters -- 8.5.2 Mapping Process Variability-Sensitive Device Parameters to Compact Model Parameters -- 8.5.2.1 Mapping Local Process Variability-Sensitive Device Parameters to Compact Model Parameters -- 8.5.2.2 Mapping Global Process Variability-Sensitive Device Parameters to Compact Model Parameters -- 8.5.3 Determination of Variance for Process Variability-Sensitive Compact Model Parameters -- 8.5.3.1 Variance of Local Process Variability-Sensitive Compact Model Parameters -- 8.5.3.2 Variance of the Global Process Variability-Sensitive Compact Model Parameters -- 8.5.4 Formulation of Compact Model for Process Variability-Aware Circuit Design -- 8.5.5 Simulation Results and Discussions -- 8.6 Mitigation of the Risk of Process Variability in VLSI Circuit Performance -- 8.7 Summary -- Exercises -- 9: Compact Models for Ultrathin Body FETs -- 9.1 Introduction -- 9.2 Multigate Device Structures -- 9.2.1 Bulk-Multigate Device Structure -- 9.2.2 UTB-SOI Device Structure -- 9.3 Common Multiple-Gate FinFET Model -- 9.3.1 Core Model: Poisson-Carrier Transport -- 9.3.1.1 Electrostatics -- 9.3.1.2 Drain Current Model -- 9.3.2 Modeling Physical Effects of Real Device -- 9.3.2.1 Short Channel Effects -- 9.3.2.2 Quantum Mechanical Effects -- 9.3.2.3 Mobility Degradation -- 9.3.2.4 Series Resistances -- 9.4 Independent Multiple-Gate FET Model -- 9.4.1 Electrostatics -- 9.4.2 Drain Current Model -- 9.5 Dynamic Model -- 9.5.1 Common Multigate C-V Model -- 9.5.2 Independent Multigate C-V Model -- 9.6 Summary -- Exercises -- 10: Beyond-CMOS Transistor Models: Tunnel FETs -- 10.1 Introduction.
10.2 Basic Features of TFETs.
isbn 9781482240672
9781482240665
genre Electronic books.
genre_facet Electronic books.
url https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=7245077
illustrated Not Illustrated
dewey-hundreds 600 - Technology
dewey-tens 620 - Engineering
dewey-ones 621 - Applied physics
dewey-full 621.3/815
dewey-sort 3621.3 3815
dewey-raw 621.3/815
dewey-search 621.3/815
oclc_num 1378933145
work_keys_str_mv AT sahasamark compactmodelsforintegratedcircuitdesignconventionaltransistorsandbeyond
status_str n
ids_txt_mv (MiAaPQ)5007245077
(Au-PeEL)EBL7245077
(OCoLC)1378933145
carrierType_str_mv cr
is_hierarchy_title Compact Models for Integrated Circuit Design : Conventional Transistors and Beyond.
marc_error Info : Unimarc and ISO-8859-1 translations identical, choosing ISO-8859-1. --- [ 856 : z ]
_version_ 1792331066447495168
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>10934nam a22004333i 4500</leader><controlfield tag="001">5007245077</controlfield><controlfield tag="003">MiAaPQ</controlfield><controlfield tag="005">20240229073848.0</controlfield><controlfield tag="006">m o d | </controlfield><controlfield tag="007">cr cnu||||||||</controlfield><controlfield tag="008">240229s2015 xx o ||||0 eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781482240672</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781482240665</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(MiAaPQ)5007245077</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(Au-PeEL)EBL7245077</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1378933145</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">MiAaPQ</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">MiAaPQ</subfield><subfield code="d">MiAaPQ</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.3/815</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Saha, Samar K.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Compact Models for Integrated Circuit Design :</subfield><subfield code="b">Conventional Transistors and Beyond.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Milton :</subfield><subfield code="b">Taylor &amp; Francis Group,</subfield><subfield code="c">2015.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">Ã2016.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (548 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover -- Half Title -- Title Page -- Copyright Page -- Dedication -- Table of Contents -- Preface -- Author -- 1: Introduction to Compact Models -- 1.1 Compact Models for Circuit Simulation -- 1.1.1 Compact Device Models -- 1.1.2 Compact Interconnect Models -- 1.2 Brief History of Compact Device Modeling -- 1.2.1 Early History of Compact MOSFET Modeling -- 1.2.2 Recent History of Compact MOSFET Modeling -- 1.2.2.1 Threshold Voltage-Based Compact MOSFET Modeling -- 1.2.2.2 Surface Potential-Based Compact MOSFET Modeling -- 1.2.2.3 Charge-Based Compact MOSFET Modeling -- 1.3 Motivation for Compact Modeling -- 1.4 Compact Model Usage -- 1.5 Compact Model Standardization -- 1.6 Summary -- Exercises -- 2: Review of Basic Device Physics -- 2.1 Introduction -- 2.2 Semiconductor Physics -- 2.2.1 Energy Band Model -- 2.2.2 Carrier Statistics -- 2.2.3 Intrinsic Semiconductors -- 2.2.3.1 Intrinsic Carrier Concentration -- 2.2.3.2 Effective Mass of Electrons and Holes -- 2.2.4 Extrinsic Semiconductors -- 2.2.4.1 Fermi Level in Extrinsic Semiconductor -- 2.2.4.2 Fermi Level in Degenerately Doped Semiconductor -- 2.2.5 Carrier Transport in Semiconductors -- 2.2.5.1 Carrier Mobility and Drift Current -- 2.2.5.2 Electrical Resistivity -- 2.2.5.3 Sheet Resistance -- 2.2.5.4 Velocity Saturation -- 2.2.5.5 Diffusion of Carriers -- 2.2.5.6 Nonuniformly Doped Semiconductors and Built-In Electric Field -- 2.2.6 Generation-Recombination -- 2.2.6.1 Injection Level -- 2.2.6.2 Recombination Processes -- 2.2.7 Basic Semiconductor Equations -- 2.2.7.1 Poisson's Equation -- 2.2.7.2 Carrier Concentration in Terms of Electrostatic Potential -- 2.2.7.3 Quasi-Fermi Level -- 2.2.7.4 Transport Equations -- 2.2.7.5 Continuity Equations -- 2.3 Theory of n-Type and p-Type Semiconductors in Contact -- 2.3.1 Basic Features of pn-Junctions -- 2.3.2 Built-In Potential.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.3.3 Step Junctions -- 2.3.3.1 Junction Potential and Electric Field -- 2.3.4 pn-Junctions under External Bias -- 2.3.4.1 One-Sided Step Junctions -- 2.3.5 pn-Junction Equations -- 2.3.5.1 Relationship between Minority Carrier Density and Junction Voltage -- 2.3.6 pn-Junctions I-V Characteristics -- 2.3.6.1 Temperature Dependence of pn-Junction Leakage Current -- 2.3.6.2 Limitations of pn-Junction Current Equation -- 2.3.6.3 Bulk Resistance -- 2.3.6.4 Junction Breakdown Voltage -- 2.3.7 pn-Junction Dynamic Behavior -- 2.3.7.1 Junction Capacitance -- 2.3.7.2 Diffusion Capacitance -- 2.3.7.3 Small Signal Conductance -- 2.3.8 Diode Equivalent Circuit for Circuit CAD -- 2.4 Summary -- Exercises -- 3: Metal-Oxide-Semiconductor System -- 3.1 Introduction -- 3.2 MOS Capacitor at Equilibrium -- 3.2.1 Work Function -- 3.2.2 Oxide Charges -- 3.2.2.1 Interface-Trapped Charge -- 3.2.2.2 Fixed-Oxide Charge -- 3.2.2.3 Oxide-Trapped Charge -- 3.2.2.4 Mobile Ionic Charge -- 3.2.3 Flat Band Voltage -- 3.2.4 Effect of Band Bending on the Semiconductor Surface -- 3.3 MOS Capacitor under Applied Bias -- 3.3.1 Accumulation -- 3.3.2 Depletion -- 3.3.3 Inversion -- 3.4 MOS Capacitor Theory -- 3.4.1 Formulation of Poisson's Equation in Terms of Band-Bending Potential -- 3.4.2 Electrostatic Potentials and Charge Distribution -- 3.4.2.1 MOS Capacitor at Depletion: Depletion Approximation -- 3.4.2.2 MOS Capacitor at Inversion -- 3.5 Capacitance of MOS Structure -- 3.5.1 Low Frequency C-V Characteristics -- 3.5.1.1 Accumulation -- 3.5.1.2 Flat Band -- 3.5.1.3 Depletion -- 3.5.1.4 Inversion -- 3.5.2 Intermediate and High Frequency C-V Characteristics -- 3.5.3 Deep Depletion C-V Characteristics -- 3.5.4 Deviation from Ideal C-V Curves -- 3.5.5 Polysilicon Depletion Effect on C-V Curves -- 3.6 Summary -- Exercises -- 4: Large Geometry MOSFET Compact Models -- 4.1 Introduction.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.2 Overview of MOSFET Devices -- 4.2.1 Basic Features of MOSFET Devices -- 4.2.2 MOSFET Device Operation -- 4.3 MOSFET Threshold Voltage Model -- 4.4 MOSFET Drain Current Model -- 4.4.1 Drain Current Formulation -- 4.4.2 Pao-Sah Model -- 4.4.3 Charge-Sheet Model -- 4.4.3.1 Drift Component of Drain Current -- 4.4.3.2 Diffusion Component of Drain Current -- 4.4.4 Regional Drain Current Model -- 4.4.4.1 Core Model -- 4.4.4.2 Bulk-Charge Model -- 4.4.4.3 Square Root Approximation of Bulk-Charge Model -- 4.4.4.4 Subthreshold Region Drain Current Model -- 4.4.4.5 Limitations of Regional Drain Current Model -- 4.5 Summary -- Exercises -- 5: Compact Models for Small Geometry MOSFETs -- 5.1 Introduction -- 5.2 Threshold Voltage Model -- 5.2.1 Effect of Nonuniform Channel Doping on Threshold Voltage -- 5.2.1.1 Threshold Voltage Modeling for Nonuniform Vertical Channel Doping Profile -- 5.2.1.2 Threshold Voltage Modeling for Nonuniform Lateral Channel Doping Profile -- 5.2.2 Small Geometry Effect on Threshold Voltage Model -- 5.2.2.1 Threshold Voltage Model for Short Channel MOSFET Devices -- 5.2.2.2 Threshold Voltage Modeling for Narrow Channel MOSFET Devices -- 5.3 Drain Current Model -- 5.3.1 Surface Mobility Model -- 5.3.2 Subthreshold Region Drain Current Model -- 5.3.3 Linear Region Drain Current Model -- 5.3.4 Saturation Region Drain Current Model -- 5.3.5 Bulk-Charge Effect -- 5.3.6 Output Resistance -- 5.3.7 Unified Drain Current Equation -- 5.3.8 S/D Parasitic Series Resistance -- 5.3.9 Polysilicon Gate Depletion -- 5.3.10 Temperature Dependence -- 5.4 Substrate Current Model -- 5.4.1 Gate-Induced Drain Leakage Body Current Model -- 5.4.2 Gate Current Model -- 5.5 Summary -- Exercises -- 6: MOSFET Capacitance Models -- 6.1 Introduction -- 6.2 Basic MOSFET Capacitance Model -- 6.2.1 Intrinsic Charges and Capacitances -- 6.2.2 Meyer Model.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.2.2.1 Strong Inversion -- 6.2.2.2 Weak Inversion -- 6.2.3 Limitations of Meyer Model -- 6.3 Charge-Based Capacitance Model -- 6.3.1 Long Channel Charge Model -- 6.3.1.1 Strong Inversion -- 6.3.1.2 Weak Inversion -- 6.3.1.3 Accumulation -- 6.3.2 Long Channel Capacitance Model -- 6.3.3 Short Channel Charge Model -- 6.3.4 Short Channel Capacitance Model -- 6.4 Gate Overlap Capacitance Model -- 6.5 Limitations of the Quasistatic Model -- 6.6 S/D pn-Junction Capacitance Model -- 6.6.1 Source-Body pn-Junction Diode -- 6.6.2 Drain-Body Junction Diode -- 6.7 Summary -- Exercises -- 7: Compact MOSFET Models for RF Applications -- 7.1 Introduction -- 7.2 MOSFET Noise Models -- 7.2.1 Fundamental Sources of Noise -- 7.2.2 Thermal Noise -- 7.2.2.1 Physical Mechanism of Thermal Noise -- 7.2.2.2 Thermal Noise Model -- 7.2.3 Flicker Noise -- 7.2.3.1 Physical Mechanism of Flicker Noise -- 7.2.3.2 Flicker Noise Model -- 7.3 NQS Effect -- 7.3.1 Modeling NQS Effect in MOSFETs -- 7.4 Modeling Parasitic Elements for RF Applications -- 7.4.1 Modeling Gate Resistance -- 7.4.2 Modeling Substrate Network -- 7.4.3 MOSFET RF Model for GHz Applications -- 7.5 Summary -- Exercises -- 8: Modeling Process Variability in Scaled MOSFETs -- 8.1 Introduction -- 8.2 Sources of Front-End Process Variability -- 8.2.1 Systematic or Global Process Variability -- 8.2.2 Random or Local Process Variability -- 8.2.2.1 Random Discrete Doping -- 8.2.2.2 Line-Edge Roughness -- 8.2.2.3 Oxide Thickness Variation -- 8.2.2.4 Other Sources Process Variability -- 8.3 Characterization of Parametric Variability in MOSFETs -- 8.3.1 Random Variability -- 8.3.2 Systematic Variability -- 8.4 Conventional Process Variability Modeling for Circuit CAD -- 8.4.1 Worst-Case Fixed Corner Models -- 8.4.2 Statistical Corner Models -- 8.4.3 Process Parameters-Based Compact Variability Modeling.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">8.5 Statistical Compact Modeling -- 8.5.1 Determination of Process Variability-Sensitive MOSFET Device Parameters -- 8.5.1.1 Selection of Local Process Variability-Sensitive Device Parameters -- 8.5.1.2 Selection of Global Process Variability-Sensitive Device Parameters -- 8.5.2 Mapping Process Variability-Sensitive Device Parameters to Compact Model Parameters -- 8.5.2.1 Mapping Local Process Variability-Sensitive Device Parameters to Compact Model Parameters -- 8.5.2.2 Mapping Global Process Variability-Sensitive Device Parameters to Compact Model Parameters -- 8.5.3 Determination of Variance for Process Variability-Sensitive Compact Model Parameters -- 8.5.3.1 Variance of Local Process Variability-Sensitive Compact Model Parameters -- 8.5.3.2 Variance of the Global Process Variability-Sensitive Compact Model Parameters -- 8.5.4 Formulation of Compact Model for Process Variability-Aware Circuit Design -- 8.5.5 Simulation Results and Discussions -- 8.6 Mitigation of the Risk of Process Variability in VLSI Circuit Performance -- 8.7 Summary -- Exercises -- 9: Compact Models for Ultrathin Body FETs -- 9.1 Introduction -- 9.2 Multigate Device Structures -- 9.2.1 Bulk-Multigate Device Structure -- 9.2.2 UTB-SOI Device Structure -- 9.3 Common Multiple-Gate FinFET Model -- 9.3.1 Core Model: Poisson-Carrier Transport -- 9.3.1.1 Electrostatics -- 9.3.1.2 Drain Current Model -- 9.3.2 Modeling Physical Effects of Real Device -- 9.3.2.1 Short Channel Effects -- 9.3.2.2 Quantum Mechanical Effects -- 9.3.2.3 Mobility Degradation -- 9.3.2.4 Series Resistances -- 9.4 Independent Multiple-Gate FET Model -- 9.4.1 Electrostatics -- 9.4.2 Drain Current Model -- 9.5 Dynamic Model -- 9.5.1 Common Multigate C-V Model -- 9.5.2 Independent Multigate C-V Model -- 9.6 Summary -- Exercises -- 10: Beyond-CMOS Transistor Models: Tunnel FETs -- 10.1 Introduction.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">10.2 Basic Features of TFETs.</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources.</subfield></datafield><datafield tag="590" ind1=" " ind2=" "><subfield code="a">Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. </subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Saha, Samar K.</subfield><subfield code="t">Compact Models for Integrated Circuit Design</subfield><subfield code="d">Milton : Taylor &amp; Francis Group,c2015</subfield><subfield code="z">9781482240665</subfield></datafield><datafield tag="797" ind1="2" ind2=" "><subfield code="a">ProQuest (Firm)</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=7245077</subfield><subfield code="z">Click to View</subfield></datafield></record></collection>