Numerical Modeling Of Superconducting Applications : : Simulation Of Electromagnetics, Thermal Stability, Thermo-hydraulics And Mechanical Effects In Large-scale Superconducting Devices.

Saved in:
Bibliographic Details
Superior document:World Scientific Series In Applications Of Superconductivity And Related Phenomena ; v.4
:
TeilnehmendeR:
Place / Publishing House:Singapore : : World Scientific Publishing Company,, 2023.
©2023.
Year of Publication:2023
Edition:1st ed.
Language:English
Series:World Scientific Series In Applications Of Superconductivity And Related Phenomena
Online Access:
Physical Description:1 online resource (329 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 5007236161
ctrlnum (MiAaPQ)5007236161
(Au-PeEL)EBL7236161
(OCoLC)1374108697
collection bib_alma
record_format marc
spelling Dutoit, Bertrand.
Numerical Modeling Of Superconducting Applications : Simulation Of Electromagnetics, Thermal Stability, Thermo-hydraulics And Mechanical Effects In Large-scale Superconducting Devices.
1st ed.
Singapore : World Scientific Publishing Company, 2023.
©2023.
1 online resource (329 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
World Scientific Series In Applications Of Superconductivity And Related Phenomena ; v.4
Cover -- Title page -- Copyright -- Contents -- Introduction -- 1. Electromagnetic Modeling of Superconductors -- 1.1. Introduction -- 1.1.1. Maxwell equations in quasimagnetostatics -- 1.1.1.1. Faraday's integral law -- 1.1.2. Macroscopic electromagnetic properties of superconductors -- 1.1.3. Vector and scalar potentials and their relation to the sources -- 1.1.3.1. Long straight conductors (infinite) -- 1.1.3.2. Axial symmetry -- 1.1.4. Solution to the Laplace equation for electrostatics -- 1.1.5. Integral relation between B and J -- 1.1.6. Current potentials -- 1.1.6.1. Divergence-free gauge of T -- 1.1.6.2. Magnetic-field gauge -- 1.1.6.3. Current potential as magnetization -- 1.1.7. Calculation of local dissipation and AC loss -- 1.1.7.1. Fundamental aspects of the local loss dissipation -- 1.1.7.2. Hysteresis loss of magnetic materials -- 1.1.7.3. Conductors and superconductors under uniform applied fields -- 1.2. Analytical Formulas and Main Electromagnetic Behavior -- 1.2.1. Hysteresis currents -- 1.2.1.1. Infinite cylinder under axial applied magnetic field -- 1.2.1.2. Infinite slab under parallel applied field -- 1.2.1.3. Circular wire with transport current -- 1.2.1.4. Elliptical wire with transport current -- 1.2.1.5. Thin strip under applied magnetic field -- 1.2.1.6. Thin strip with transport current -- 1.2.1.7. Universal scaling law for the power-law E(J) relation -- 1.2.2. Eddy currents -- 1.2.2.1. Low-frequency limit -- 1.2.2.2. Whole frequency range -- 1.2.3. Coupling currents -- 1.2.3.1. On the decomposition of AC loss into eddy, coupling, and superconductor contributions -- 1.2.3.2. Two slab filaments connected by normal conductor -- 1.3. Numerical Methods -- 1.3.1. Finite element methods -- 1.3.1.1. H formulation -- 1.3.1.2. A-ϕ formulation -- 1.3.1.3. T-Ω formulation -- 1.3.1.4. Combined formulations.
1.3.2. Variational methods -- 1.3.2.1. J-ϕ formulation -- 1.3.2.2. T formulation -- 1.3.2.3. H formulation -- 1.3.2.4. H-ψ formulation -- 1.3.2.5. Interaction with nonlinear magnetic materials -- 1.3.3. Integro-differential methods -- 1.3.3.1. J integral formulation -- 1.3.3.2. T integral formulation -- 1.3.4. Spectral methods -- 1.3.5. Particular issues for three dimensions -- 1.4. Modeling of Power Applications -- 1.4.1. Numerical modeling of individual wires -- 1.4.1.1. Dependence of Jc on magnetic field -- 1.4.1.2. Dependence of Jc on position -- 1.4.1.3. Simulation of magnetic materials -- 1.4.1.4. Dynamic resistance -- 1.4.2. Interacting tapes -- 1.4.3. 3D modeling -- 1.4.4. Rotating machines -- Acknowledgments -- References -- 2. Introduction to Stability and Quench Protection -- 2.1. Margins to Quench -- 2.1.1. Minimum quench energy -- 2.1.1.1. Numerical modeling of MQE -- 2.1.1.2. MQE simulations -- 2.1.2. Margins in magnet load line -- 2.2. Classifying Quenches -- 2.2.1. Devred's classification of quenches -- 2.2.2. Wilson's classification of quenches -- 2.3. Engineering Methodology in Quench Protection -- 2.3.1. Model -- 2.3.2. Design -- 2.3.3. Simulation -- 2.3.4. Experiment -- 2.4. Numerical Modeling of a Quench Event -- 2.4.1. Input and output of a quench simulation -- 2.4.1.1. Magnetic flux density distribution -- 2.4.1.2. Operation conditions -- 2.4.1.3. Post-processing data -- 2.4.2. Spatial and temporal discretization in a FEM based tool -- 2.4.2.1. Spatial discretization -- 2.4.2.2. Temporal discretization -- 2.4.3. Triggering the quench in the simulation of an HTS magnet -- 2.4.4. Reducing modeling domain to speed up quench simulations for HTS magnets -- 2.4.4.1. Modeling domain -- 2.4.4.2. Simulation results -- 2.4.5. Quench analysis of an R&amp -- D R500O magnet.
2.5. Design of Quench Protection Heaters for Nb3Sn Accelerator Magnets -- 2.5.1. R&amp -- D of Nb3Sn quadrupole magnet -- 2.5.2. Heater technology and target variables for optimization -- 2.5.3. Modeling the heater's efficiency -- 2.5.4. Guidelines for parametric optimization of heaters -- 2.5.5. Simulations for the LHQ heater design -- 2.5.6. Testing the designed heater layout -- Acknowledgements -- References -- 3. Finite Element Structural Modeling -- 3.1. Introduction -- 3.2. HTS Tapes and Cables -- 3.3. FEA Research Areas -- 3.3.1. Single-tape simulations -- 3.3.2. Cable simulations -- 3.4. Modeling Techniques for Single Tapes -- 3.4.1. Finite element software and settings -- 3.4.2. R500O-coated conductor architecture -- 3.4.3. Element types -- 3.4.4. Meshing -- 3.4.5. Material properties -- 3.4.6. Boundary conditions and loads -- 3.5. Modeling Techniques for Cables -- 3.5.1. Model simplifications -- 3.5.2. Element types -- 3.5.3. Meshing -- 3.5.4. Material properties -- 3.5.5. Contact relationships -- 3.5.6. Boundary conditions and loads -- 3.6. Postprocessing and Results -- 3.6.1. Simulation output results -- 3.6.2. Critical current prediction -- 3.6.3. Single-tape results -- 3.6.4. Cable results -- References -- 4. Thermal-Hydraulics of Superconducting Magnets -- 4.1. Applications of Superconducting Magnets and Related Topologies/Geometries -- 4.1.1. Magnetically confined nuclear fusion experiments -- 4.1.2. Particle accelerators -- 4.1.3. Others -- 4.1.3.1. Gyrotrons -- 4.1.3.2. Medical -- 4.1.3.3. Power grid -- 4.2. Superconducting Magnet Cooling Methods -- 4.2.1. Cooling fluids -- 4.2.1.1. Helium -- 4.2.1.2. Hydrogen -- 4.2.1.3. Neon -- 4.2.1.4. Nitrogen -- 4.2.2. Cooling options -- 4.2.2.1. Forced flow -- 4.2.2.2. Conduction -- 4.2.2.3. Pool -- 4.2.3. Cryoplant description -- 4.2.3.1. Refrigerator -- 4.2.3.2. SHe loop.
4.2.3.3. Interfaces -- 4.2.4. Solid properties -- 4.2.4.1. Metals -- 4.2.4.2. Superconductor -- 4.2.4.3. Insulations -- 4.3. Modeling -- 4.3.1. Space scales -- 4.3.2. Time scales -- 4.4. Forced-Flow CICC Superconductor Hydraulics -- 4.4.1. Multiple flow regions -- 4.4.1.1. Bundle -- 4.4.1.2. Hole -- 4.4.1.3. Coupling between bundle and hole -- 4.4.2. Friction factors -- 4.5. Forced-Flow CICC Thermal-Hydraulics -- 4.5.1. Heat transfer coolant-solids -- 4.5.2. Heat transfer between different solids -- 4.5.3. Heat transfer between different coolant regions -- 4.6. Heat Transfer Mechanisms in the Magnet -- 4.6.1. Heat transfer within the winding -- 4.6.2. Heat transfer within the magnet structures -- 4.6.2.1. Cooling of the coil casing -- 4.6.3. Heat transfer between structures and winding -- 4.6.3.1. Issues in the ground insulation modeling -- 4.7. Relevant TH Transients -- 4.7.1. Cool down -- 4.7.2. Normal operation -- 4.7.3. Off-normal operation -- 4.7.3.1. Stability and quench -- 4.7.3.2. Fast discharge/current ramps -- 4.7.3.3. Loss of flow/coolant accidents -- 4.8. Available Models and Experimental Facilities -- 4.8.1. Thermal-hydraulic codes -- 4.8.1.1. Venecia -- 4.8.1.2. 4C -- 4.8.1.3. Supermagnet -- 4.8.1.4. Others -- 4.8.2. Conductor test facilities -- 4.8.3. Magnets test facilities -- 4.8.4. Available experiments -- 4.8.4.1. Superconducting tokamaks in operation -- 4.8.4.2. Superconducting stellarators in operation -- References -- Index.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic books.
Grilli, Francesco.
Sirois, Frederic.
Print version: Dutoit, Bertrand Numerical Modeling Of Superconducting Applications: Simulation Of Electromagnetics, Thermal Stability, Thermo-hydraulics And Mechanical Effects In Large-scale Superconducting Devices Singapore : World Scientific Publishing Company,c2023 9789811271434
ProQuest (Firm)
World Scientific Series In Applications Of Superconductivity And Related Phenomena
https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=7236161 Click to View
language English
format eBook
author Dutoit, Bertrand.
spellingShingle Dutoit, Bertrand.
Numerical Modeling Of Superconducting Applications : Simulation Of Electromagnetics, Thermal Stability, Thermo-hydraulics And Mechanical Effects In Large-scale Superconducting Devices.
World Scientific Series In Applications Of Superconductivity And Related Phenomena ;
Cover -- Title page -- Copyright -- Contents -- Introduction -- 1. Electromagnetic Modeling of Superconductors -- 1.1. Introduction -- 1.1.1. Maxwell equations in quasimagnetostatics -- 1.1.1.1. Faraday's integral law -- 1.1.2. Macroscopic electromagnetic properties of superconductors -- 1.1.3. Vector and scalar potentials and their relation to the sources -- 1.1.3.1. Long straight conductors (infinite) -- 1.1.3.2. Axial symmetry -- 1.1.4. Solution to the Laplace equation for electrostatics -- 1.1.5. Integral relation between B and J -- 1.1.6. Current potentials -- 1.1.6.1. Divergence-free gauge of T -- 1.1.6.2. Magnetic-field gauge -- 1.1.6.3. Current potential as magnetization -- 1.1.7. Calculation of local dissipation and AC loss -- 1.1.7.1. Fundamental aspects of the local loss dissipation -- 1.1.7.2. Hysteresis loss of magnetic materials -- 1.1.7.3. Conductors and superconductors under uniform applied fields -- 1.2. Analytical Formulas and Main Electromagnetic Behavior -- 1.2.1. Hysteresis currents -- 1.2.1.1. Infinite cylinder under axial applied magnetic field -- 1.2.1.2. Infinite slab under parallel applied field -- 1.2.1.3. Circular wire with transport current -- 1.2.1.4. Elliptical wire with transport current -- 1.2.1.5. Thin strip under applied magnetic field -- 1.2.1.6. Thin strip with transport current -- 1.2.1.7. Universal scaling law for the power-law E(J) relation -- 1.2.2. Eddy currents -- 1.2.2.1. Low-frequency limit -- 1.2.2.2. Whole frequency range -- 1.2.3. Coupling currents -- 1.2.3.1. On the decomposition of AC loss into eddy, coupling, and superconductor contributions -- 1.2.3.2. Two slab filaments connected by normal conductor -- 1.3. Numerical Methods -- 1.3.1. Finite element methods -- 1.3.1.1. H formulation -- 1.3.1.2. A-ϕ formulation -- 1.3.1.3. T-Ω formulation -- 1.3.1.4. Combined formulations.
1.3.2. Variational methods -- 1.3.2.1. J-ϕ formulation -- 1.3.2.2. T formulation -- 1.3.2.3. H formulation -- 1.3.2.4. H-ψ formulation -- 1.3.2.5. Interaction with nonlinear magnetic materials -- 1.3.3. Integro-differential methods -- 1.3.3.1. J integral formulation -- 1.3.3.2. T integral formulation -- 1.3.4. Spectral methods -- 1.3.5. Particular issues for three dimensions -- 1.4. Modeling of Power Applications -- 1.4.1. Numerical modeling of individual wires -- 1.4.1.1. Dependence of Jc on magnetic field -- 1.4.1.2. Dependence of Jc on position -- 1.4.1.3. Simulation of magnetic materials -- 1.4.1.4. Dynamic resistance -- 1.4.2. Interacting tapes -- 1.4.3. 3D modeling -- 1.4.4. Rotating machines -- Acknowledgments -- References -- 2. Introduction to Stability and Quench Protection -- 2.1. Margins to Quench -- 2.1.1. Minimum quench energy -- 2.1.1.1. Numerical modeling of MQE -- 2.1.1.2. MQE simulations -- 2.1.2. Margins in magnet load line -- 2.2. Classifying Quenches -- 2.2.1. Devred's classification of quenches -- 2.2.2. Wilson's classification of quenches -- 2.3. Engineering Methodology in Quench Protection -- 2.3.1. Model -- 2.3.2. Design -- 2.3.3. Simulation -- 2.3.4. Experiment -- 2.4. Numerical Modeling of a Quench Event -- 2.4.1. Input and output of a quench simulation -- 2.4.1.1. Magnetic flux density distribution -- 2.4.1.2. Operation conditions -- 2.4.1.3. Post-processing data -- 2.4.2. Spatial and temporal discretization in a FEM based tool -- 2.4.2.1. Spatial discretization -- 2.4.2.2. Temporal discretization -- 2.4.3. Triggering the quench in the simulation of an HTS magnet -- 2.4.4. Reducing modeling domain to speed up quench simulations for HTS magnets -- 2.4.4.1. Modeling domain -- 2.4.4.2. Simulation results -- 2.4.5. Quench analysis of an R&amp -- D R500O magnet.
2.5. Design of Quench Protection Heaters for Nb3Sn Accelerator Magnets -- 2.5.1. R&amp -- D of Nb3Sn quadrupole magnet -- 2.5.2. Heater technology and target variables for optimization -- 2.5.3. Modeling the heater's efficiency -- 2.5.4. Guidelines for parametric optimization of heaters -- 2.5.5. Simulations for the LHQ heater design -- 2.5.6. Testing the designed heater layout -- Acknowledgements -- References -- 3. Finite Element Structural Modeling -- 3.1. Introduction -- 3.2. HTS Tapes and Cables -- 3.3. FEA Research Areas -- 3.3.1. Single-tape simulations -- 3.3.2. Cable simulations -- 3.4. Modeling Techniques for Single Tapes -- 3.4.1. Finite element software and settings -- 3.4.2. R500O-coated conductor architecture -- 3.4.3. Element types -- 3.4.4. Meshing -- 3.4.5. Material properties -- 3.4.6. Boundary conditions and loads -- 3.5. Modeling Techniques for Cables -- 3.5.1. Model simplifications -- 3.5.2. Element types -- 3.5.3. Meshing -- 3.5.4. Material properties -- 3.5.5. Contact relationships -- 3.5.6. Boundary conditions and loads -- 3.6. Postprocessing and Results -- 3.6.1. Simulation output results -- 3.6.2. Critical current prediction -- 3.6.3. Single-tape results -- 3.6.4. Cable results -- References -- 4. Thermal-Hydraulics of Superconducting Magnets -- 4.1. Applications of Superconducting Magnets and Related Topologies/Geometries -- 4.1.1. Magnetically confined nuclear fusion experiments -- 4.1.2. Particle accelerators -- 4.1.3. Others -- 4.1.3.1. Gyrotrons -- 4.1.3.2. Medical -- 4.1.3.3. Power grid -- 4.2. Superconducting Magnet Cooling Methods -- 4.2.1. Cooling fluids -- 4.2.1.1. Helium -- 4.2.1.2. Hydrogen -- 4.2.1.3. Neon -- 4.2.1.4. Nitrogen -- 4.2.2. Cooling options -- 4.2.2.1. Forced flow -- 4.2.2.2. Conduction -- 4.2.2.3. Pool -- 4.2.3. Cryoplant description -- 4.2.3.1. Refrigerator -- 4.2.3.2. SHe loop.
4.2.3.3. Interfaces -- 4.2.4. Solid properties -- 4.2.4.1. Metals -- 4.2.4.2. Superconductor -- 4.2.4.3. Insulations -- 4.3. Modeling -- 4.3.1. Space scales -- 4.3.2. Time scales -- 4.4. Forced-Flow CICC Superconductor Hydraulics -- 4.4.1. Multiple flow regions -- 4.4.1.1. Bundle -- 4.4.1.2. Hole -- 4.4.1.3. Coupling between bundle and hole -- 4.4.2. Friction factors -- 4.5. Forced-Flow CICC Thermal-Hydraulics -- 4.5.1. Heat transfer coolant-solids -- 4.5.2. Heat transfer between different solids -- 4.5.3. Heat transfer between different coolant regions -- 4.6. Heat Transfer Mechanisms in the Magnet -- 4.6.1. Heat transfer within the winding -- 4.6.2. Heat transfer within the magnet structures -- 4.6.2.1. Cooling of the coil casing -- 4.6.3. Heat transfer between structures and winding -- 4.6.3.1. Issues in the ground insulation modeling -- 4.7. Relevant TH Transients -- 4.7.1. Cool down -- 4.7.2. Normal operation -- 4.7.3. Off-normal operation -- 4.7.3.1. Stability and quench -- 4.7.3.2. Fast discharge/current ramps -- 4.7.3.3. Loss of flow/coolant accidents -- 4.8. Available Models and Experimental Facilities -- 4.8.1. Thermal-hydraulic codes -- 4.8.1.1. Venecia -- 4.8.1.2. 4C -- 4.8.1.3. Supermagnet -- 4.8.1.4. Others -- 4.8.2. Conductor test facilities -- 4.8.3. Magnets test facilities -- 4.8.4. Available experiments -- 4.8.4.1. Superconducting tokamaks in operation -- 4.8.4.2. Superconducting stellarators in operation -- References -- Index.
author_facet Dutoit, Bertrand.
Grilli, Francesco.
Sirois, Frederic.
author_variant b d bd
author2 Grilli, Francesco.
Sirois, Frederic.
author2_variant f g fg
f s fs
author2_role TeilnehmendeR
TeilnehmendeR
author_sort Dutoit, Bertrand.
title Numerical Modeling Of Superconducting Applications : Simulation Of Electromagnetics, Thermal Stability, Thermo-hydraulics And Mechanical Effects In Large-scale Superconducting Devices.
title_sub Simulation Of Electromagnetics, Thermal Stability, Thermo-hydraulics And Mechanical Effects In Large-scale Superconducting Devices.
title_full Numerical Modeling Of Superconducting Applications : Simulation Of Electromagnetics, Thermal Stability, Thermo-hydraulics And Mechanical Effects In Large-scale Superconducting Devices.
title_fullStr Numerical Modeling Of Superconducting Applications : Simulation Of Electromagnetics, Thermal Stability, Thermo-hydraulics And Mechanical Effects In Large-scale Superconducting Devices.
title_full_unstemmed Numerical Modeling Of Superconducting Applications : Simulation Of Electromagnetics, Thermal Stability, Thermo-hydraulics And Mechanical Effects In Large-scale Superconducting Devices.
title_auth Numerical Modeling Of Superconducting Applications : Simulation Of Electromagnetics, Thermal Stability, Thermo-hydraulics And Mechanical Effects In Large-scale Superconducting Devices.
title_new Numerical Modeling Of Superconducting Applications :
title_sort numerical modeling of superconducting applications : simulation of electromagnetics, thermal stability, thermo-hydraulics and mechanical effects in large-scale superconducting devices.
series World Scientific Series In Applications Of Superconductivity And Related Phenomena ;
series2 World Scientific Series In Applications Of Superconductivity And Related Phenomena ;
publisher World Scientific Publishing Company,
publishDate 2023
physical 1 online resource (329 pages)
edition 1st ed.
contents Cover -- Title page -- Copyright -- Contents -- Introduction -- 1. Electromagnetic Modeling of Superconductors -- 1.1. Introduction -- 1.1.1. Maxwell equations in quasimagnetostatics -- 1.1.1.1. Faraday's integral law -- 1.1.2. Macroscopic electromagnetic properties of superconductors -- 1.1.3. Vector and scalar potentials and their relation to the sources -- 1.1.3.1. Long straight conductors (infinite) -- 1.1.3.2. Axial symmetry -- 1.1.4. Solution to the Laplace equation for electrostatics -- 1.1.5. Integral relation between B and J -- 1.1.6. Current potentials -- 1.1.6.1. Divergence-free gauge of T -- 1.1.6.2. Magnetic-field gauge -- 1.1.6.3. Current potential as magnetization -- 1.1.7. Calculation of local dissipation and AC loss -- 1.1.7.1. Fundamental aspects of the local loss dissipation -- 1.1.7.2. Hysteresis loss of magnetic materials -- 1.1.7.3. Conductors and superconductors under uniform applied fields -- 1.2. Analytical Formulas and Main Electromagnetic Behavior -- 1.2.1. Hysteresis currents -- 1.2.1.1. Infinite cylinder under axial applied magnetic field -- 1.2.1.2. Infinite slab under parallel applied field -- 1.2.1.3. Circular wire with transport current -- 1.2.1.4. Elliptical wire with transport current -- 1.2.1.5. Thin strip under applied magnetic field -- 1.2.1.6. Thin strip with transport current -- 1.2.1.7. Universal scaling law for the power-law E(J) relation -- 1.2.2. Eddy currents -- 1.2.2.1. Low-frequency limit -- 1.2.2.2. Whole frequency range -- 1.2.3. Coupling currents -- 1.2.3.1. On the decomposition of AC loss into eddy, coupling, and superconductor contributions -- 1.2.3.2. Two slab filaments connected by normal conductor -- 1.3. Numerical Methods -- 1.3.1. Finite element methods -- 1.3.1.1. H formulation -- 1.3.1.2. A-ϕ formulation -- 1.3.1.3. T-Ω formulation -- 1.3.1.4. Combined formulations.
1.3.2. Variational methods -- 1.3.2.1. J-ϕ formulation -- 1.3.2.2. T formulation -- 1.3.2.3. H formulation -- 1.3.2.4. H-ψ formulation -- 1.3.2.5. Interaction with nonlinear magnetic materials -- 1.3.3. Integro-differential methods -- 1.3.3.1. J integral formulation -- 1.3.3.2. T integral formulation -- 1.3.4. Spectral methods -- 1.3.5. Particular issues for three dimensions -- 1.4. Modeling of Power Applications -- 1.4.1. Numerical modeling of individual wires -- 1.4.1.1. Dependence of Jc on magnetic field -- 1.4.1.2. Dependence of Jc on position -- 1.4.1.3. Simulation of magnetic materials -- 1.4.1.4. Dynamic resistance -- 1.4.2. Interacting tapes -- 1.4.3. 3D modeling -- 1.4.4. Rotating machines -- Acknowledgments -- References -- 2. Introduction to Stability and Quench Protection -- 2.1. Margins to Quench -- 2.1.1. Minimum quench energy -- 2.1.1.1. Numerical modeling of MQE -- 2.1.1.2. MQE simulations -- 2.1.2. Margins in magnet load line -- 2.2. Classifying Quenches -- 2.2.1. Devred's classification of quenches -- 2.2.2. Wilson's classification of quenches -- 2.3. Engineering Methodology in Quench Protection -- 2.3.1. Model -- 2.3.2. Design -- 2.3.3. Simulation -- 2.3.4. Experiment -- 2.4. Numerical Modeling of a Quench Event -- 2.4.1. Input and output of a quench simulation -- 2.4.1.1. Magnetic flux density distribution -- 2.4.1.2. Operation conditions -- 2.4.1.3. Post-processing data -- 2.4.2. Spatial and temporal discretization in a FEM based tool -- 2.4.2.1. Spatial discretization -- 2.4.2.2. Temporal discretization -- 2.4.3. Triggering the quench in the simulation of an HTS magnet -- 2.4.4. Reducing modeling domain to speed up quench simulations for HTS magnets -- 2.4.4.1. Modeling domain -- 2.4.4.2. Simulation results -- 2.4.5. Quench analysis of an R&amp -- D R500O magnet.
2.5. Design of Quench Protection Heaters for Nb3Sn Accelerator Magnets -- 2.5.1. R&amp -- D of Nb3Sn quadrupole magnet -- 2.5.2. Heater technology and target variables for optimization -- 2.5.3. Modeling the heater's efficiency -- 2.5.4. Guidelines for parametric optimization of heaters -- 2.5.5. Simulations for the LHQ heater design -- 2.5.6. Testing the designed heater layout -- Acknowledgements -- References -- 3. Finite Element Structural Modeling -- 3.1. Introduction -- 3.2. HTS Tapes and Cables -- 3.3. FEA Research Areas -- 3.3.1. Single-tape simulations -- 3.3.2. Cable simulations -- 3.4. Modeling Techniques for Single Tapes -- 3.4.1. Finite element software and settings -- 3.4.2. R500O-coated conductor architecture -- 3.4.3. Element types -- 3.4.4. Meshing -- 3.4.5. Material properties -- 3.4.6. Boundary conditions and loads -- 3.5. Modeling Techniques for Cables -- 3.5.1. Model simplifications -- 3.5.2. Element types -- 3.5.3. Meshing -- 3.5.4. Material properties -- 3.5.5. Contact relationships -- 3.5.6. Boundary conditions and loads -- 3.6. Postprocessing and Results -- 3.6.1. Simulation output results -- 3.6.2. Critical current prediction -- 3.6.3. Single-tape results -- 3.6.4. Cable results -- References -- 4. Thermal-Hydraulics of Superconducting Magnets -- 4.1. Applications of Superconducting Magnets and Related Topologies/Geometries -- 4.1.1. Magnetically confined nuclear fusion experiments -- 4.1.2. Particle accelerators -- 4.1.3. Others -- 4.1.3.1. Gyrotrons -- 4.1.3.2. Medical -- 4.1.3.3. Power grid -- 4.2. Superconducting Magnet Cooling Methods -- 4.2.1. Cooling fluids -- 4.2.1.1. Helium -- 4.2.1.2. Hydrogen -- 4.2.1.3. Neon -- 4.2.1.4. Nitrogen -- 4.2.2. Cooling options -- 4.2.2.1. Forced flow -- 4.2.2.2. Conduction -- 4.2.2.3. Pool -- 4.2.3. Cryoplant description -- 4.2.3.1. Refrigerator -- 4.2.3.2. SHe loop.
4.2.3.3. Interfaces -- 4.2.4. Solid properties -- 4.2.4.1. Metals -- 4.2.4.2. Superconductor -- 4.2.4.3. Insulations -- 4.3. Modeling -- 4.3.1. Space scales -- 4.3.2. Time scales -- 4.4. Forced-Flow CICC Superconductor Hydraulics -- 4.4.1. Multiple flow regions -- 4.4.1.1. Bundle -- 4.4.1.2. Hole -- 4.4.1.3. Coupling between bundle and hole -- 4.4.2. Friction factors -- 4.5. Forced-Flow CICC Thermal-Hydraulics -- 4.5.1. Heat transfer coolant-solids -- 4.5.2. Heat transfer between different solids -- 4.5.3. Heat transfer between different coolant regions -- 4.6. Heat Transfer Mechanisms in the Magnet -- 4.6.1. Heat transfer within the winding -- 4.6.2. Heat transfer within the magnet structures -- 4.6.2.1. Cooling of the coil casing -- 4.6.3. Heat transfer between structures and winding -- 4.6.3.1. Issues in the ground insulation modeling -- 4.7. Relevant TH Transients -- 4.7.1. Cool down -- 4.7.2. Normal operation -- 4.7.3. Off-normal operation -- 4.7.3.1. Stability and quench -- 4.7.3.2. Fast discharge/current ramps -- 4.7.3.3. Loss of flow/coolant accidents -- 4.8. Available Models and Experimental Facilities -- 4.8.1. Thermal-hydraulic codes -- 4.8.1.1. Venecia -- 4.8.1.2. 4C -- 4.8.1.3. Supermagnet -- 4.8.1.4. Others -- 4.8.2. Conductor test facilities -- 4.8.3. Magnets test facilities -- 4.8.4. Available experiments -- 4.8.4.1. Superconducting tokamaks in operation -- 4.8.4.2. Superconducting stellarators in operation -- References -- Index.
isbn 9789811271441
9789811271434
genre Electronic books.
genre_facet Electronic books.
url https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=7236161
illustrated Not Illustrated
oclc_num 1374108697
work_keys_str_mv AT dutoitbertrand numericalmodelingofsuperconductingapplicationssimulationofelectromagneticsthermalstabilitythermohydraulicsandmechanicaleffectsinlargescalesuperconductingdevices
AT grillifrancesco numericalmodelingofsuperconductingapplicationssimulationofelectromagneticsthermalstabilitythermohydraulicsandmechanicaleffectsinlargescalesuperconductingdevices
AT siroisfrederic numericalmodelingofsuperconductingapplicationssimulationofelectromagneticsthermalstabilitythermohydraulicsandmechanicaleffectsinlargescalesuperconductingdevices
status_str n
ids_txt_mv (MiAaPQ)5007236161
(Au-PeEL)EBL7236161
(OCoLC)1374108697
carrierType_str_mv cr
hierarchy_parent_title World Scientific Series In Applications Of Superconductivity And Related Phenomena ; v.4
is_hierarchy_title Numerical Modeling Of Superconducting Applications : Simulation Of Electromagnetics, Thermal Stability, Thermo-hydraulics And Mechanical Effects In Large-scale Superconducting Devices.
container_title World Scientific Series In Applications Of Superconductivity And Related Phenomena ; v.4
author2_original_writing_str_mv noLinkedField
noLinkedField
_version_ 1792331065969344513
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>09089nam a22004453i 4500</leader><controlfield tag="001">5007236161</controlfield><controlfield tag="003">MiAaPQ</controlfield><controlfield tag="005">20240229073848.0</controlfield><controlfield tag="006">m o d | </controlfield><controlfield tag="007">cr cnu||||||||</controlfield><controlfield tag="008">240229s2023 xx o ||||0 eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789811271441</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789811271434</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(MiAaPQ)5007236161</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(Au-PeEL)EBL7236161</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1374108697</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">MiAaPQ</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">MiAaPQ</subfield><subfield code="d">MiAaPQ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dutoit, Bertrand.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical Modeling Of Superconducting Applications :</subfield><subfield code="b">Simulation Of Electromagnetics, Thermal Stability, Thermo-hydraulics And Mechanical Effects In Large-scale Superconducting Devices.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore :</subfield><subfield code="b">World Scientific Publishing Company,</subfield><subfield code="c">2023.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2023.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (329 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">World Scientific Series In Applications Of Superconductivity And Related Phenomena ;</subfield><subfield code="v">v.4</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover -- Title page -- Copyright -- Contents -- Introduction -- 1. Electromagnetic Modeling of Superconductors -- 1.1. Introduction -- 1.1.1. Maxwell equations in quasimagnetostatics -- 1.1.1.1. Faraday's integral law -- 1.1.2. Macroscopic electromagnetic properties of superconductors -- 1.1.3. Vector and scalar potentials and their relation to the sources -- 1.1.3.1. Long straight conductors (infinite) -- 1.1.3.2. Axial symmetry -- 1.1.4. Solution to the Laplace equation for electrostatics -- 1.1.5. Integral relation between B and J -- 1.1.6. Current potentials -- 1.1.6.1. Divergence-free gauge of T -- 1.1.6.2. Magnetic-field gauge -- 1.1.6.3. Current potential as magnetization -- 1.1.7. Calculation of local dissipation and AC loss -- 1.1.7.1. Fundamental aspects of the local loss dissipation -- 1.1.7.2. Hysteresis loss of magnetic materials -- 1.1.7.3. Conductors and superconductors under uniform applied fields -- 1.2. Analytical Formulas and Main Electromagnetic Behavior -- 1.2.1. Hysteresis currents -- 1.2.1.1. Infinite cylinder under axial applied magnetic field -- 1.2.1.2. Infinite slab under parallel applied field -- 1.2.1.3. Circular wire with transport current -- 1.2.1.4. Elliptical wire with transport current -- 1.2.1.5. Thin strip under applied magnetic field -- 1.2.1.6. Thin strip with transport current -- 1.2.1.7. Universal scaling law for the power-law E(J) relation -- 1.2.2. Eddy currents -- 1.2.2.1. Low-frequency limit -- 1.2.2.2. Whole frequency range -- 1.2.3. Coupling currents -- 1.2.3.1. On the decomposition of AC loss into eddy, coupling, and superconductor contributions -- 1.2.3.2. Two slab filaments connected by normal conductor -- 1.3. Numerical Methods -- 1.3.1. Finite element methods -- 1.3.1.1. H formulation -- 1.3.1.2. A-ϕ formulation -- 1.3.1.3. T-Ω formulation -- 1.3.1.4. Combined formulations.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1.3.2. Variational methods -- 1.3.2.1. J-ϕ formulation -- 1.3.2.2. T formulation -- 1.3.2.3. H formulation -- 1.3.2.4. H-ψ formulation -- 1.3.2.5. Interaction with nonlinear magnetic materials -- 1.3.3. Integro-differential methods -- 1.3.3.1. J integral formulation -- 1.3.3.2. T integral formulation -- 1.3.4. Spectral methods -- 1.3.5. Particular issues for three dimensions -- 1.4. Modeling of Power Applications -- 1.4.1. Numerical modeling of individual wires -- 1.4.1.1. Dependence of Jc on magnetic field -- 1.4.1.2. Dependence of Jc on position -- 1.4.1.3. Simulation of magnetic materials -- 1.4.1.4. Dynamic resistance -- 1.4.2. Interacting tapes -- 1.4.3. 3D modeling -- 1.4.4. Rotating machines -- Acknowledgments -- References -- 2. Introduction to Stability and Quench Protection -- 2.1. Margins to Quench -- 2.1.1. Minimum quench energy -- 2.1.1.1. Numerical modeling of MQE -- 2.1.1.2. MQE simulations -- 2.1.2. Margins in magnet load line -- 2.2. Classifying Quenches -- 2.2.1. Devred's classification of quenches -- 2.2.2. Wilson's classification of quenches -- 2.3. Engineering Methodology in Quench Protection -- 2.3.1. Model -- 2.3.2. Design -- 2.3.3. Simulation -- 2.3.4. Experiment -- 2.4. Numerical Modeling of a Quench Event -- 2.4.1. Input and output of a quench simulation -- 2.4.1.1. Magnetic flux density distribution -- 2.4.1.2. Operation conditions -- 2.4.1.3. Post-processing data -- 2.4.2. Spatial and temporal discretization in a FEM based tool -- 2.4.2.1. Spatial discretization -- 2.4.2.2. Temporal discretization -- 2.4.3. Triggering the quench in the simulation of an HTS magnet -- 2.4.4. Reducing modeling domain to speed up quench simulations for HTS magnets -- 2.4.4.1. Modeling domain -- 2.4.4.2. Simulation results -- 2.4.5. Quench analysis of an R&amp;amp -- D R500O magnet.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.5. Design of Quench Protection Heaters for Nb3Sn Accelerator Magnets -- 2.5.1. R&amp;amp -- D of Nb3Sn quadrupole magnet -- 2.5.2. Heater technology and target variables for optimization -- 2.5.3. Modeling the heater's efficiency -- 2.5.4. Guidelines for parametric optimization of heaters -- 2.5.5. Simulations for the LHQ heater design -- 2.5.6. Testing the designed heater layout -- Acknowledgements -- References -- 3. Finite Element Structural Modeling -- 3.1. Introduction -- 3.2. HTS Tapes and Cables -- 3.3. FEA Research Areas -- 3.3.1. Single-tape simulations -- 3.3.2. Cable simulations -- 3.4. Modeling Techniques for Single Tapes -- 3.4.1. Finite element software and settings -- 3.4.2. R500O-coated conductor architecture -- 3.4.3. Element types -- 3.4.4. Meshing -- 3.4.5. Material properties -- 3.4.6. Boundary conditions and loads -- 3.5. Modeling Techniques for Cables -- 3.5.1. Model simplifications -- 3.5.2. Element types -- 3.5.3. Meshing -- 3.5.4. Material properties -- 3.5.5. Contact relationships -- 3.5.6. Boundary conditions and loads -- 3.6. Postprocessing and Results -- 3.6.1. Simulation output results -- 3.6.2. Critical current prediction -- 3.6.3. Single-tape results -- 3.6.4. Cable results -- References -- 4. Thermal-Hydraulics of Superconducting Magnets -- 4.1. Applications of Superconducting Magnets and Related Topologies/Geometries -- 4.1.1. Magnetically confined nuclear fusion experiments -- 4.1.2. Particle accelerators -- 4.1.3. Others -- 4.1.3.1. Gyrotrons -- 4.1.3.2. Medical -- 4.1.3.3. Power grid -- 4.2. Superconducting Magnet Cooling Methods -- 4.2.1. Cooling fluids -- 4.2.1.1. Helium -- 4.2.1.2. Hydrogen -- 4.2.1.3. Neon -- 4.2.1.4. Nitrogen -- 4.2.2. Cooling options -- 4.2.2.1. Forced flow -- 4.2.2.2. Conduction -- 4.2.2.3. Pool -- 4.2.3. Cryoplant description -- 4.2.3.1. Refrigerator -- 4.2.3.2. SHe loop.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.2.3.3. Interfaces -- 4.2.4. Solid properties -- 4.2.4.1. Metals -- 4.2.4.2. Superconductor -- 4.2.4.3. Insulations -- 4.3. Modeling -- 4.3.1. Space scales -- 4.3.2. Time scales -- 4.4. Forced-Flow CICC Superconductor Hydraulics -- 4.4.1. Multiple flow regions -- 4.4.1.1. Bundle -- 4.4.1.2. Hole -- 4.4.1.3. Coupling between bundle and hole -- 4.4.2. Friction factors -- 4.5. Forced-Flow CICC Thermal-Hydraulics -- 4.5.1. Heat transfer coolant-solids -- 4.5.2. Heat transfer between different solids -- 4.5.3. Heat transfer between different coolant regions -- 4.6. Heat Transfer Mechanisms in the Magnet -- 4.6.1. Heat transfer within the winding -- 4.6.2. Heat transfer within the magnet structures -- 4.6.2.1. Cooling of the coil casing -- 4.6.3. Heat transfer between structures and winding -- 4.6.3.1. Issues in the ground insulation modeling -- 4.7. Relevant TH Transients -- 4.7.1. Cool down -- 4.7.2. Normal operation -- 4.7.3. Off-normal operation -- 4.7.3.1. Stability and quench -- 4.7.3.2. Fast discharge/current ramps -- 4.7.3.3. Loss of flow/coolant accidents -- 4.8. Available Models and Experimental Facilities -- 4.8.1. Thermal-hydraulic codes -- 4.8.1.1. Venecia -- 4.8.1.2. 4C -- 4.8.1.3. Supermagnet -- 4.8.1.4. Others -- 4.8.2. Conductor test facilities -- 4.8.3. Magnets test facilities -- 4.8.4. Available experiments -- 4.8.4.1. Superconducting tokamaks in operation -- 4.8.4.2. Superconducting stellarators in operation -- References -- Index.</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources.</subfield></datafield><datafield tag="590" ind1=" " ind2=" "><subfield code="a">Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. </subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Grilli, Francesco.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sirois, Frederic.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Dutoit, Bertrand</subfield><subfield code="t">Numerical Modeling Of Superconducting Applications: Simulation Of Electromagnetics, Thermal Stability, Thermo-hydraulics And Mechanical Effects In Large-scale Superconducting Devices</subfield><subfield code="d">Singapore : World Scientific Publishing Company,c2023</subfield><subfield code="z">9789811271434</subfield></datafield><datafield tag="797" ind1="2" ind2=" "><subfield code="a">ProQuest (Firm)</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">World Scientific Series In Applications Of Superconductivity And Related Phenomena</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=7236161</subfield><subfield code="z">Click to View</subfield></datafield></record></collection>