Numerical Modeling Of Superconducting Applications : : Simulation Of Electromagnetics, Thermal Stability, Thermo-hydraulics And Mechanical Effects In Large-scale Superconducting Devices.

Saved in:
Bibliographic Details
Superior document:World Scientific Series In Applications Of Superconductivity And Related Phenomena ; v.4
:
TeilnehmendeR:
Place / Publishing House:Singapore : : World Scientific Publishing Company,, 2023.
©2023.
Year of Publication:2023
Edition:1st ed.
Language:English
Series:World Scientific Series In Applications Of Superconductivity And Related Phenomena
Online Access:
Physical Description:1 online resource (329 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 09089nam a22004453i 4500
001 5007236161
003 MiAaPQ
005 20240229073848.0
006 m o d |
007 cr cnu||||||||
008 240229s2023 xx o ||||0 eng d
020 |a 9789811271441  |q (electronic bk.) 
020 |z 9789811271434 
035 |a (MiAaPQ)5007236161 
035 |a (Au-PeEL)EBL7236161 
035 |a (OCoLC)1374108697 
040 |a MiAaPQ  |b eng  |e rda  |e pn  |c MiAaPQ  |d MiAaPQ 
100 1 |a Dutoit, Bertrand. 
245 1 0 |a Numerical Modeling Of Superconducting Applications :  |b Simulation Of Electromagnetics, Thermal Stability, Thermo-hydraulics And Mechanical Effects In Large-scale Superconducting Devices. 
250 |a 1st ed. 
264 1 |a Singapore :  |b World Scientific Publishing Company,  |c 2023. 
264 4 |c ©2023. 
300 |a 1 online resource (329 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a World Scientific Series In Applications Of Superconductivity And Related Phenomena ;  |v v.4 
505 0 |a Cover -- Title page -- Copyright -- Contents -- Introduction -- 1. Electromagnetic Modeling of Superconductors -- 1.1. Introduction -- 1.1.1. Maxwell equations in quasimagnetostatics -- 1.1.1.1. Faraday's integral law -- 1.1.2. Macroscopic electromagnetic properties of superconductors -- 1.1.3. Vector and scalar potentials and their relation to the sources -- 1.1.3.1. Long straight conductors (infinite) -- 1.1.3.2. Axial symmetry -- 1.1.4. Solution to the Laplace equation for electrostatics -- 1.1.5. Integral relation between B and J -- 1.1.6. Current potentials -- 1.1.6.1. Divergence-free gauge of T -- 1.1.6.2. Magnetic-field gauge -- 1.1.6.3. Current potential as magnetization -- 1.1.7. Calculation of local dissipation and AC loss -- 1.1.7.1. Fundamental aspects of the local loss dissipation -- 1.1.7.2. Hysteresis loss of magnetic materials -- 1.1.7.3. Conductors and superconductors under uniform applied fields -- 1.2. Analytical Formulas and Main Electromagnetic Behavior -- 1.2.1. Hysteresis currents -- 1.2.1.1. Infinite cylinder under axial applied magnetic field -- 1.2.1.2. Infinite slab under parallel applied field -- 1.2.1.3. Circular wire with transport current -- 1.2.1.4. Elliptical wire with transport current -- 1.2.1.5. Thin strip under applied magnetic field -- 1.2.1.6. Thin strip with transport current -- 1.2.1.7. Universal scaling law for the power-law E(J) relation -- 1.2.2. Eddy currents -- 1.2.2.1. Low-frequency limit -- 1.2.2.2. Whole frequency range -- 1.2.3. Coupling currents -- 1.2.3.1. On the decomposition of AC loss into eddy, coupling, and superconductor contributions -- 1.2.3.2. Two slab filaments connected by normal conductor -- 1.3. Numerical Methods -- 1.3.1. Finite element methods -- 1.3.1.1. H formulation -- 1.3.1.2. A-ϕ formulation -- 1.3.1.3. T-Ω formulation -- 1.3.1.4. Combined formulations. 
505 8 |a 1.3.2. Variational methods -- 1.3.2.1. J-ϕ formulation -- 1.3.2.2. T formulation -- 1.3.2.3. H formulation -- 1.3.2.4. H-ψ formulation -- 1.3.2.5. Interaction with nonlinear magnetic materials -- 1.3.3. Integro-differential methods -- 1.3.3.1. J integral formulation -- 1.3.3.2. T integral formulation -- 1.3.4. Spectral methods -- 1.3.5. Particular issues for three dimensions -- 1.4. Modeling of Power Applications -- 1.4.1. Numerical modeling of individual wires -- 1.4.1.1. Dependence of Jc on magnetic field -- 1.4.1.2. Dependence of Jc on position -- 1.4.1.3. Simulation of magnetic materials -- 1.4.1.4. Dynamic resistance -- 1.4.2. Interacting tapes -- 1.4.3. 3D modeling -- 1.4.4. Rotating machines -- Acknowledgments -- References -- 2. Introduction to Stability and Quench Protection -- 2.1. Margins to Quench -- 2.1.1. Minimum quench energy -- 2.1.1.1. Numerical modeling of MQE -- 2.1.1.2. MQE simulations -- 2.1.2. Margins in magnet load line -- 2.2. Classifying Quenches -- 2.2.1. Devred's classification of quenches -- 2.2.2. Wilson's classification of quenches -- 2.3. Engineering Methodology in Quench Protection -- 2.3.1. Model -- 2.3.2. Design -- 2.3.3. Simulation -- 2.3.4. Experiment -- 2.4. Numerical Modeling of a Quench Event -- 2.4.1. Input and output of a quench simulation -- 2.4.1.1. Magnetic flux density distribution -- 2.4.1.2. Operation conditions -- 2.4.1.3. Post-processing data -- 2.4.2. Spatial and temporal discretization in a FEM based tool -- 2.4.2.1. Spatial discretization -- 2.4.2.2. Temporal discretization -- 2.4.3. Triggering the quench in the simulation of an HTS magnet -- 2.4.4. Reducing modeling domain to speed up quench simulations for HTS magnets -- 2.4.4.1. Modeling domain -- 2.4.4.2. Simulation results -- 2.4.5. Quench analysis of an R&amp -- D R500O magnet. 
505 8 |a 2.5. Design of Quench Protection Heaters for Nb3Sn Accelerator Magnets -- 2.5.1. R&amp -- D of Nb3Sn quadrupole magnet -- 2.5.2. Heater technology and target variables for optimization -- 2.5.3. Modeling the heater's efficiency -- 2.5.4. Guidelines for parametric optimization of heaters -- 2.5.5. Simulations for the LHQ heater design -- 2.5.6. Testing the designed heater layout -- Acknowledgements -- References -- 3. Finite Element Structural Modeling -- 3.1. Introduction -- 3.2. HTS Tapes and Cables -- 3.3. FEA Research Areas -- 3.3.1. Single-tape simulations -- 3.3.2. Cable simulations -- 3.4. Modeling Techniques for Single Tapes -- 3.4.1. Finite element software and settings -- 3.4.2. R500O-coated conductor architecture -- 3.4.3. Element types -- 3.4.4. Meshing -- 3.4.5. Material properties -- 3.4.6. Boundary conditions and loads -- 3.5. Modeling Techniques for Cables -- 3.5.1. Model simplifications -- 3.5.2. Element types -- 3.5.3. Meshing -- 3.5.4. Material properties -- 3.5.5. Contact relationships -- 3.5.6. Boundary conditions and loads -- 3.6. Postprocessing and Results -- 3.6.1. Simulation output results -- 3.6.2. Critical current prediction -- 3.6.3. Single-tape results -- 3.6.4. Cable results -- References -- 4. Thermal-Hydraulics of Superconducting Magnets -- 4.1. Applications of Superconducting Magnets and Related Topologies/Geometries -- 4.1.1. Magnetically confined nuclear fusion experiments -- 4.1.2. Particle accelerators -- 4.1.3. Others -- 4.1.3.1. Gyrotrons -- 4.1.3.2. Medical -- 4.1.3.3. Power grid -- 4.2. Superconducting Magnet Cooling Methods -- 4.2.1. Cooling fluids -- 4.2.1.1. Helium -- 4.2.1.2. Hydrogen -- 4.2.1.3. Neon -- 4.2.1.4. Nitrogen -- 4.2.2. Cooling options -- 4.2.2.1. Forced flow -- 4.2.2.2. Conduction -- 4.2.2.3. Pool -- 4.2.3. Cryoplant description -- 4.2.3.1. Refrigerator -- 4.2.3.2. SHe loop. 
505 8 |a 4.2.3.3. Interfaces -- 4.2.4. Solid properties -- 4.2.4.1. Metals -- 4.2.4.2. Superconductor -- 4.2.4.3. Insulations -- 4.3. Modeling -- 4.3.1. Space scales -- 4.3.2. Time scales -- 4.4. Forced-Flow CICC Superconductor Hydraulics -- 4.4.1. Multiple flow regions -- 4.4.1.1. Bundle -- 4.4.1.2. Hole -- 4.4.1.3. Coupling between bundle and hole -- 4.4.2. Friction factors -- 4.5. Forced-Flow CICC Thermal-Hydraulics -- 4.5.1. Heat transfer coolant-solids -- 4.5.2. Heat transfer between different solids -- 4.5.3. Heat transfer between different coolant regions -- 4.6. Heat Transfer Mechanisms in the Magnet -- 4.6.1. Heat transfer within the winding -- 4.6.2. Heat transfer within the magnet structures -- 4.6.2.1. Cooling of the coil casing -- 4.6.3. Heat transfer between structures and winding -- 4.6.3.1. Issues in the ground insulation modeling -- 4.7. Relevant TH Transients -- 4.7.1. Cool down -- 4.7.2. Normal operation -- 4.7.3. Off-normal operation -- 4.7.3.1. Stability and quench -- 4.7.3.2. Fast discharge/current ramps -- 4.7.3.3. Loss of flow/coolant accidents -- 4.8. Available Models and Experimental Facilities -- 4.8.1. Thermal-hydraulic codes -- 4.8.1.1. Venecia -- 4.8.1.2. 4C -- 4.8.1.3. Supermagnet -- 4.8.1.4. Others -- 4.8.2. Conductor test facilities -- 4.8.3. Magnets test facilities -- 4.8.4. Available experiments -- 4.8.4.1. Superconducting tokamaks in operation -- 4.8.4.2. Superconducting stellarators in operation -- References -- Index. 
588 |a Description based on publisher supplied metadata and other sources. 
590 |a Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.  
655 4 |a Electronic books. 
700 1 |a Grilli, Francesco. 
700 1 |a Sirois, Frederic. 
776 0 8 |i Print version:  |a Dutoit, Bertrand  |t Numerical Modeling Of Superconducting Applications: Simulation Of Electromagnetics, Thermal Stability, Thermo-hydraulics And Mechanical Effects In Large-scale Superconducting Devices  |d Singapore : World Scientific Publishing Company,c2023  |z 9789811271434 
797 2 |a ProQuest (Firm) 
830 0 |a World Scientific Series In Applications Of Superconductivity And Related Phenomena 
856 4 0 |u https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=7236161  |z Click to View