Exploring Animal Behavior Through Sound : : Methods.

Saved in:
Bibliographic Details
:
TeilnehmendeR:
Place / Publishing House:Cham : : Springer International Publishing AG,, 2022.
©2022.
Year of Publication:2022
Edition:1st ed.
Language:English
Online Access:
Physical Description:1 online resource (524 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Intro
  • Preface
  • Contents
  • About the Editor
  • 1: History of Sound Recording and Analysis Equipment
  • 1.1 Introduction
  • 1.2 Advances in Recorders
  • 1.2.1 Analog Recorders
  • 1.2.2 Digital Recorders
  • 1.2.3 Recording to a Computer
  • 1.2.4 Autonomous Programmable Recorders
  • 1.2.5 Multi-Channel Recorders
  • 1.3 Advances in Microphones
  • 1.3.1 Microphones Used in Bioacoustics Research
  • 1.3.2 Measurement Microphones
  • 1.3.3 Accelerometers
  • 1.3.4 Laser and Optical Microphones
  • 1.3.5 Bat Detectors
  • 1.4 Advances in Hydrophones
  • 1.4.1 Single Hydrophones
  • 1.4.2 Sonobuoys
  • 1.4.3 Autonomous Underwater Acoustic Recorders
  • 1.4.4 Towed Hydrophone Arrays
  • 1.4.5 Seafloor Hydrophone Arrays
  • 1.4.6 Small Arrays
  • 1.5 Autonomous Mobile Systems
  • 1.5.1 Aerial Mobile Systems
  • 1.5.2 Underwater Mobile Systems
  • 1.5.3 Animal Acoustic Tags
  • 1.6 Advances in Sound Analysis Hard- and Software
  • 1.7 Summary
  • References
  • 2: Choosing Equipment for Animal Bioacoustic Research
  • 2.1 Introduction
  • 2.2 Basic Concepts of Sound Recording
  • 2.2.1 Sampling Rate and Bandwidth
  • 2.2.2 Aliasing
  • 2.2.3 Amplitude Sensitivity
  • 2.2.4 Bit-Resolution and Dynamic Range
  • 2.2.5 Self-Noise
  • 2.3 Instrumentation of Signal Chain Components
  • 2.3.1 Sensors
  • 2.3.1.1 Microphones
  • Ultrasonic and Infrasonic Microphones
  • Measurement and Specialty Microphones
  • Microphone Directionality
  • Monophonic and Stereophonic Recording
  • Microphone Arrays
  • Do-it-Yourself (DIY) Microphones
  • Deployment Considerations
  • 2.3.1.2 Hydrophones
  • Hydrophone Directionality
  • Sonobuoys
  • Stationary Hydrophone Arrays
  • Towed Hydrophone Arrays
  • Deployment Considerations
  • 2.3.2 Filters
  • 2.3.2.1 Low- and High-Pass Filters
  • 2.3.2.2 Anti-Aliasing Filters
  • 2.3.3 Amplifiers
  • 2.3.4 Analog-to-Digital Converters and Digital Recorders.
  • 2.3.4.1 Recording Ultrasounds and Infrasounds
  • 2.3.4.2 Special Features of Digital Recorders
  • 2.3.5 Equipment for Monitoring Bats
  • 2.3.6 Projectors
  • 2.4 Autonomous Recorders
  • 2.4.1 Terrestrial Recorders
  • 2.4.2 Underwater Recorders
  • 2.5 Recording Directly to a Computer
  • 2.6 Calibration
  • 2.6.1 Microphone
  • 2.6.2 Hydrophone
  • 2.6.3 AD-Converter
  • 2.6.4 Autonomous Recorder
  • 2.6.5 Measuring Self-Noise
  • 2.7 Other Gear
  • 2.7.1 Sound Pressure Level Meter
  • 2.7.2 Vibration Measurement
  • 2.7.2.1 In Terrestrial Studies
  • Sensor Types Based on the Quantity Measured
  • 2.7.2.2 In Underwater Studies
  • 2.7.3 Smartphone Applications
  • 2.8 Summary
  • 2.9 Additional Resources
  • References
  • 3: Collecting, Documenting, and Archiving Bioacoustical Data and Metadata
  • 3.1 Introduction
  • 3.2 Ethical Research
  • 3.3 Good Practices in Bioacoustical Studies
  • 3.3.1 Recording Sounds
  • 3.3.2 Environmental Conditions
  • 3.3.3 Animal Considerations
  • 3.3.4 Documentation and Data Sheets
  • 3.3.5 Trouble-shooting Equipment Problems
  • 3.4 Playback Methods and Controls
  • 3.5 Considerations for Terrestrial Field Studies
  • 3.6 Considerations for Aquatic Field Studies
  • 3.7 Considerations for Studies on Captive Animals
  • 3.8 Digital File Format
  • 3.9 Data Storage
  • 3.10 Archiving Recordings
  • 3.11 Repositories of Bioacoustical Data
  • 3.12 Summary
  • 3.13 Additional Resources
  • References
  • 4: Introduction to Acoustic Terminology and Signal Processing
  • 4.1 What Is Sound?
  • 4.2 Terms and Definitions
  • 4.2.1 Units
  • 4.2.2 Sound
  • 4.2.3 Frequency
  • 4.2.4 Pressure
  • 4.2.5 Sound Exposure
  • 4.2.6 When to Use SPL and SEL?
  • 4.2.7 Acoustic Energy, Intensity, and Power
  • 4.2.8 Particle Velocity
  • 4.2.9 Speed of Sound
  • 4.2.10 Acoustic Impedance
  • 4.2.11 The Decibel
  • 4.2.11.1 Conversion from Decibel to Field or Power Quantities.
  • 4.2.11.2 Differences between Levels of like Quantities
  • 4.2.11.3 Amplification of Signals
  • 4.2.11.4 Superposition of Field and Power Quantities
  • 4.2.11.5 Levels in Air Versus Water
  • 4.2.12 Source Level
  • 4.2.13 What Field? Free-Field, Far-Field, Near-Field
  • 4.2.14 Frequency Weighting
  • 4.2.14.1 A, C, and Z Frequency Weightings
  • 4.2.14.2 Frequency Weightings for Non-human Animals
  • 4.2.14.3 M-Weighting
  • 4.2.15 Frequency Bands
  • 4.2.16 Power Spectral Density
  • 4.2.17 Band Levels
  • 4.3 Acoustic Signal Processing
  • 4.3.1 Displays of Sounds
  • 4.3.2 Fourier Transform
  • 4.3.3 Recording and FFT Settings
  • 4.3.3.1 Sampling Rate
  • 4.3.3.2 Aliasing
  • 4.3.3.3 Bit Depth
  • 4.3.3.4 Audio Coding
  • 4.3.3.5 FFT Window Size (NFFT)
  • 4.3.3.6 FFT Window Function
  • 4.3.4 Power Spectral Density Percentiles and Probability Density
  • 4.4 Localization and Tracking
  • 4.4.1 Time Difference of Arrival
  • 4.4.1.1 Generalized Cross-Correlation
  • 4.4.1.2 TDOA Hyperbolas
  • 4.4.1.3 TDOA Localization in 2 Dimensions
  • 4.4.1.4 TDOA Localization in 3 Dimensions
  • 4.4.2 Beamforming
  • 4.4.3 Parametric Array Processing
  • 4.4.4 Examples of Sound Localization in Air and Water
  • 4.4.5 Passive Acoustic Tracking
  • 4.5 Symbols and Abbreviations (Table 4.10)
  • 4.6 Summary
  • References
  • 5: Source-Path-Receiver Model for Airborne Sounds
  • 5.1 Introduction
  • 5.2 Sound Propagation in Terrestrial Environments
  • 5.2.1 Ray Traces
  • 5.2.2 Geometrical Sound Spreading
  • 5.2.3 Sound Absorption in Air
  • 5.2.4 Reflection, Scattering, and Diffraction
  • 5.2.5 Ground Effect
  • 5.2.6 Attenuation by Vegetative Cover
  • 5.2.7 Speed of Sound in Still Air
  • 5.2.8 Refraction by Air Temperature Gradients in Still Air
  • 5.2.9 Refraction by Gradients of Wind Velocity
  • 5.2.10 Attenuation from Air Turbulence.
  • 5.3 The Source-Path-Receiver Model for Animal Acoustic Communication
  • 5.3.1 The Sender
  • 5.3.2 The Path and the Acoustic Environment
  • 5.3.3 The Receiver
  • 5.4 Summary
  • 5.5 Additional Resources
  • References
  • 6: Introduction to Sound Propagation Under Water
  • 6.1 Introduction
  • 6.2 The Sonar Equation
  • 6.2.1 Propagation Loss Form
  • 6.2.2 Signal-to-Noise Ratio Form
  • 6.2.3 Forms to Assess Communication Masking
  • 6.2.4 Form for Biomass Surveying
  • 6.3 The Layered Ocean
  • 6.3.1 Temperature and Salinity Profiles
  • 6.3.2 Sound Speed Profiles
  • 6.4 Propagation Loss
  • 6.4.1 Geometric Spreading Loss
  • 6.4.2 Absorption Loss
  • 6.4.3 Additional Losses
  • 6.4.3.1 The Air-Water Interface
  • Reflection and Transmission Coefficients
  • Lloydś Mirror
  • Scattering at the Sea Surface
  • 6.4.3.2 The Seafloor Interface
  • 6.4.3.3 Scattering Within the Water Column
  • 6.4.4 Numerical Propagation Models
  • 6.4.4.1 The Wave Equation and Solution Approaches
  • 6.4.4.2 Ray and Beam Tracing
  • 6.4.4.3 Normal Modes
  • 6.4.4.4 Wavenumber Integration
  • 6.4.4.5 Parabolic Equation
  • 6.4.5 Choosing the Most Appropriate Model
  • 6.4.6 Accessing Acoustic Propagation Models
  • 6.5 Practical Acoustic Modeling Examples
  • 6.5.1 Received Level Versus Range and Depth from a Tonal Source
  • 6.5.2 Received Level Versus Range and Depth from a Broadband Source
  • 6.5.3 Received Level as a Function of Geographical Position and Depth
  • 6.5.4 Received Level as a Function of Geographical Position and Depth for a Directional Source
  • 6.5.5 Modeling Limitations and Practicalities
  • 6.6 Summary
  • 6.7 Additional Resources
  • References
  • 7: Analysis of Soundscapes as an Ecological Tool
  • 7.1 Introduction
  • 7.2 Terrestrial Soundscapes
  • 7.2.1 Biophony
  • 7.2.2 Geophony
  • 7.2.3 Anthropophony
  • 7.2.4 Sound Propagation in Terrestrial Environments.
  • 7.3 Aquatic Soundscapes
  • 7.3.1 Biophony
  • 7.3.2 Geophony
  • 7.3.3 Anthropophony
  • 7.3.4 Sound Propagation in Aquatic Environments
  • 7.4 Soundscape Changes Over Space and Time
  • 7.4.1 Spatial Patterns
  • 7.4.2 Natural Cycles
  • 7.4.3 Human Activities
  • 7.4.3.1 Anthropophony
  • 7.4.3.2 Land Use
  • 7.4.3.3 Direct Takes
  • 7.4.3.4 Climate Change
  • 7.5 How to Analyze Soundscapes
  • 7.5.1 Standard Soundscape Measurements
  • 7.5.2 Identification of Sound Sources
  • 7.5.3 Visual Displays of Soundscapes
  • 7.5.3.1 Spectrograms
  • 7.5.3.2 Power Spectral Density Percentile Plots
  • 7.5.3.3 Soundscape Maps
  • 7.5.4 Acoustic Indices
  • 7.6 Applications of Soundscape Studies
  • 7.6.1 Conservation of Natural Soundscapes
  • 7.6.1.1 Management
  • 7.6.1.2 Education
  • 7.6.2 Monitoring the Health of Agroecosystems
  • 7.6.3 Improving Captive Animal Welfare
  • 7.7 Conclusion
  • 7.8 Additional Resources
  • 7.8.1 Sound Libraries
  • 7.8.2 Ocean Acoustic Observatories
  • 7.8.3 Software for Soundscape Analysis
  • 7.8.4 Software for Sound Propagation Modeling
  • 7.8.5 Software for Automatic Signal Detection
  • References
  • 8: Detection and Classification Methods for Animal Sounds
  • 8.1 Introduction
  • 8.2 Qualitative Naming and Classification of Animal Sounds
  • 8.2.1 Onomatopoeic Names
  • 8.2.2 Naming Sounds Based on Animal Behavior
  • 8.2.3 Naming Sounds Based on Mechanism of Sound Production
  • 8.2.4 Naming Sounds Based on Spectro-Temporal Features
  • 8.2.5 Naming Sounds Based on Human Communication Patterns
  • 8.3 Detection of Animal Sounds
  • 8.3.1 Energy Threshold Detector
  • 8.3.2 Spectrogram Cross-Correlation
  • 8.3.3 Matched Filter
  • 8.3.4 Spectral Entropy Detector
  • 8.3.5 Teager-Kaiser Energy Operator
  • 8.3.6 Evaluating the Performance of Automated Detectors
  • 8.3.6.1 Confusion Matrices
  • 8.3.6.2 Receiver Operating Characteristic (ROC) Curve.
  • 8.3.6.3 Precision and Recall.