Exploring Animal Behavior Through Sound : : Methods.

Saved in:
Bibliographic Details
:
TeilnehmendeR:
Place / Publishing House:Cham : : Springer International Publishing AG,, 2022.
©2022.
Year of Publication:2022
Edition:1st ed.
Language:English
Online Access:
Physical Description:1 online resource (524 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 10928nam a22004453i 4500
001 5007105589
003 MiAaPQ
005 20240229073847.0
006 m o d |
007 cr cnu||||||||
008 240229s2022 xx o ||||0 eng d
020 |a 9783030975401  |q (electronic bk.) 
020 |z 9783030975388 
035 |a (MiAaPQ)5007105589 
035 |a (Au-PeEL)EBL7105589 
035 |a (OCoLC)1350690443 
040 |a MiAaPQ  |b eng  |e rda  |e pn  |c MiAaPQ  |d MiAaPQ 
050 4 |a QL1-991 
100 1 |a Erbe, Christine. 
245 1 0 |a Exploring Animal Behavior Through Sound :  |b Methods. 
250 |a 1st ed. 
264 1 |a Cham :  |b Springer International Publishing AG,  |c 2022. 
264 4 |c ©2022. 
300 |a 1 online resource (524 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Intro -- Preface -- Contents -- About the Editor -- 1: History of Sound Recording and Analysis Equipment -- 1.1 Introduction -- 1.2 Advances in Recorders -- 1.2.1 Analog Recorders -- 1.2.2 Digital Recorders -- 1.2.3 Recording to a Computer -- 1.2.4 Autonomous Programmable Recorders -- 1.2.5 Multi-Channel Recorders -- 1.3 Advances in Microphones -- 1.3.1 Microphones Used in Bioacoustics Research -- 1.3.2 Measurement Microphones -- 1.3.3 Accelerometers -- 1.3.4 Laser and Optical Microphones -- 1.3.5 Bat Detectors -- 1.4 Advances in Hydrophones -- 1.4.1 Single Hydrophones -- 1.4.2 Sonobuoys -- 1.4.3 Autonomous Underwater Acoustic Recorders -- 1.4.4 Towed Hydrophone Arrays -- 1.4.5 Seafloor Hydrophone Arrays -- 1.4.6 Small Arrays -- 1.5 Autonomous Mobile Systems -- 1.5.1 Aerial Mobile Systems -- 1.5.2 Underwater Mobile Systems -- 1.5.3 Animal Acoustic Tags -- 1.6 Advances in Sound Analysis Hard- and Software -- 1.7 Summary -- References -- 2: Choosing Equipment for Animal Bioacoustic Research -- 2.1 Introduction -- 2.2 Basic Concepts of Sound Recording -- 2.2.1 Sampling Rate and Bandwidth -- 2.2.2 Aliasing -- 2.2.3 Amplitude Sensitivity -- 2.2.4 Bit-Resolution and Dynamic Range -- 2.2.5 Self-Noise -- 2.3 Instrumentation of Signal Chain Components -- 2.3.1 Sensors -- 2.3.1.1 Microphones -- Ultrasonic and Infrasonic Microphones -- Measurement and Specialty Microphones -- Microphone Directionality -- Monophonic and Stereophonic Recording -- Microphone Arrays -- Do-it-Yourself (DIY) Microphones -- Deployment Considerations -- 2.3.1.2 Hydrophones -- Hydrophone Directionality -- Sonobuoys -- Stationary Hydrophone Arrays -- Towed Hydrophone Arrays -- Deployment Considerations -- 2.3.2 Filters -- 2.3.2.1 Low- and High-Pass Filters -- 2.3.2.2 Anti-Aliasing Filters -- 2.3.3 Amplifiers -- 2.3.4 Analog-to-Digital Converters and Digital Recorders. 
505 8 |a 2.3.4.1 Recording Ultrasounds and Infrasounds -- 2.3.4.2 Special Features of Digital Recorders -- 2.3.5 Equipment for Monitoring Bats -- 2.3.6 Projectors -- 2.4 Autonomous Recorders -- 2.4.1 Terrestrial Recorders -- 2.4.2 Underwater Recorders -- 2.5 Recording Directly to a Computer -- 2.6 Calibration -- 2.6.1 Microphone -- 2.6.2 Hydrophone -- 2.6.3 AD-Converter -- 2.6.4 Autonomous Recorder -- 2.6.5 Measuring Self-Noise -- 2.7 Other Gear -- 2.7.1 Sound Pressure Level Meter -- 2.7.2 Vibration Measurement -- 2.7.2.1 In Terrestrial Studies -- Sensor Types Based on the Quantity Measured -- 2.7.2.2 In Underwater Studies -- 2.7.3 Smartphone Applications -- 2.8 Summary -- 2.9 Additional Resources -- References -- 3: Collecting, Documenting, and Archiving Bioacoustical Data and Metadata -- 3.1 Introduction -- 3.2 Ethical Research -- 3.3 Good Practices in Bioacoustical Studies -- 3.3.1 Recording Sounds -- 3.3.2 Environmental Conditions -- 3.3.3 Animal Considerations -- 3.3.4 Documentation and Data Sheets -- 3.3.5 Trouble-shooting Equipment Problems -- 3.4 Playback Methods and Controls -- 3.5 Considerations for Terrestrial Field Studies -- 3.6 Considerations for Aquatic Field Studies -- 3.7 Considerations for Studies on Captive Animals -- 3.8 Digital File Format -- 3.9 Data Storage -- 3.10 Archiving Recordings -- 3.11 Repositories of Bioacoustical Data -- 3.12 Summary -- 3.13 Additional Resources -- References -- 4: Introduction to Acoustic Terminology and Signal Processing -- 4.1 What Is Sound? -- 4.2 Terms and Definitions -- 4.2.1 Units -- 4.2.2 Sound -- 4.2.3 Frequency -- 4.2.4 Pressure -- 4.2.5 Sound Exposure -- 4.2.6 When to Use SPL and SEL? -- 4.2.7 Acoustic Energy, Intensity, and Power -- 4.2.8 Particle Velocity -- 4.2.9 Speed of Sound -- 4.2.10 Acoustic Impedance -- 4.2.11 The Decibel -- 4.2.11.1 Conversion from Decibel to Field or Power Quantities. 
505 8 |a 4.2.11.2 Differences between Levels of like Quantities -- 4.2.11.3 Amplification of Signals -- 4.2.11.4 Superposition of Field and Power Quantities -- 4.2.11.5 Levels in Air Versus Water -- 4.2.12 Source Level -- 4.2.13 What Field? Free-Field, Far-Field, Near-Field -- 4.2.14 Frequency Weighting -- 4.2.14.1 A, C, and Z Frequency Weightings -- 4.2.14.2 Frequency Weightings for Non-human Animals -- 4.2.14.3 M-Weighting -- 4.2.15 Frequency Bands -- 4.2.16 Power Spectral Density -- 4.2.17 Band Levels -- 4.3 Acoustic Signal Processing -- 4.3.1 Displays of Sounds -- 4.3.2 Fourier Transform -- 4.3.3 Recording and FFT Settings -- 4.3.3.1 Sampling Rate -- 4.3.3.2 Aliasing -- 4.3.3.3 Bit Depth -- 4.3.3.4 Audio Coding -- 4.3.3.5 FFT Window Size (NFFT) -- 4.3.3.6 FFT Window Function -- 4.3.4 Power Spectral Density Percentiles and Probability Density -- 4.4 Localization and Tracking -- 4.4.1 Time Difference of Arrival -- 4.4.1.1 Generalized Cross-Correlation -- 4.4.1.2 TDOA Hyperbolas -- 4.4.1.3 TDOA Localization in 2 Dimensions -- 4.4.1.4 TDOA Localization in 3 Dimensions -- 4.4.2 Beamforming -- 4.4.3 Parametric Array Processing -- 4.4.4 Examples of Sound Localization in Air and Water -- 4.4.5 Passive Acoustic Tracking -- 4.5 Symbols and Abbreviations (Table 4.10) -- 4.6 Summary -- References -- 5: Source-Path-Receiver Model for Airborne Sounds -- 5.1 Introduction -- 5.2 Sound Propagation in Terrestrial Environments -- 5.2.1 Ray Traces -- 5.2.2 Geometrical Sound Spreading -- 5.2.3 Sound Absorption in Air -- 5.2.4 Reflection, Scattering, and Diffraction -- 5.2.5 Ground Effect -- 5.2.6 Attenuation by Vegetative Cover -- 5.2.7 Speed of Sound in Still Air -- 5.2.8 Refraction by Air Temperature Gradients in Still Air -- 5.2.9 Refraction by Gradients of Wind Velocity -- 5.2.10 Attenuation from Air Turbulence. 
505 8 |a 5.3 The Source-Path-Receiver Model for Animal Acoustic Communication -- 5.3.1 The Sender -- 5.3.2 The Path and the Acoustic Environment -- 5.3.3 The Receiver -- 5.4 Summary -- 5.5 Additional Resources -- References -- 6: Introduction to Sound Propagation Under Water -- 6.1 Introduction -- 6.2 The Sonar Equation -- 6.2.1 Propagation Loss Form -- 6.2.2 Signal-to-Noise Ratio Form -- 6.2.3 Forms to Assess Communication Masking -- 6.2.4 Form for Biomass Surveying -- 6.3 The Layered Ocean -- 6.3.1 Temperature and Salinity Profiles -- 6.3.2 Sound Speed Profiles -- 6.4 Propagation Loss -- 6.4.1 Geometric Spreading Loss -- 6.4.2 Absorption Loss -- 6.4.3 Additional Losses -- 6.4.3.1 The Air-Water Interface -- Reflection and Transmission Coefficients -- Lloydś Mirror -- Scattering at the Sea Surface -- 6.4.3.2 The Seafloor Interface -- 6.4.3.3 Scattering Within the Water Column -- 6.4.4 Numerical Propagation Models -- 6.4.4.1 The Wave Equation and Solution Approaches -- 6.4.4.2 Ray and Beam Tracing -- 6.4.4.3 Normal Modes -- 6.4.4.4 Wavenumber Integration -- 6.4.4.5 Parabolic Equation -- 6.4.5 Choosing the Most Appropriate Model -- 6.4.6 Accessing Acoustic Propagation Models -- 6.5 Practical Acoustic Modeling Examples -- 6.5.1 Received Level Versus Range and Depth from a Tonal Source -- 6.5.2 Received Level Versus Range and Depth from a Broadband Source -- 6.5.3 Received Level as a Function of Geographical Position and Depth -- 6.5.4 Received Level as a Function of Geographical Position and Depth for a Directional Source -- 6.5.5 Modeling Limitations and Practicalities -- 6.6 Summary -- 6.7 Additional Resources -- References -- 7: Analysis of Soundscapes as an Ecological Tool -- 7.1 Introduction -- 7.2 Terrestrial Soundscapes -- 7.2.1 Biophony -- 7.2.2 Geophony -- 7.2.3 Anthropophony -- 7.2.4 Sound Propagation in Terrestrial Environments. 
505 8 |a 7.3 Aquatic Soundscapes -- 7.3.1 Biophony -- 7.3.2 Geophony -- 7.3.3 Anthropophony -- 7.3.4 Sound Propagation in Aquatic Environments -- 7.4 Soundscape Changes Over Space and Time -- 7.4.1 Spatial Patterns -- 7.4.2 Natural Cycles -- 7.4.3 Human Activities -- 7.4.3.1 Anthropophony -- 7.4.3.2 Land Use -- 7.4.3.3 Direct Takes -- 7.4.3.4 Climate Change -- 7.5 How to Analyze Soundscapes -- 7.5.1 Standard Soundscape Measurements -- 7.5.2 Identification of Sound Sources -- 7.5.3 Visual Displays of Soundscapes -- 7.5.3.1 Spectrograms -- 7.5.3.2 Power Spectral Density Percentile Plots -- 7.5.3.3 Soundscape Maps -- 7.5.4 Acoustic Indices -- 7.6 Applications of Soundscape Studies -- 7.6.1 Conservation of Natural Soundscapes -- 7.6.1.1 Management -- 7.6.1.2 Education -- 7.6.2 Monitoring the Health of Agroecosystems -- 7.6.3 Improving Captive Animal Welfare -- 7.7 Conclusion -- 7.8 Additional Resources -- 7.8.1 Sound Libraries -- 7.8.2 Ocean Acoustic Observatories -- 7.8.3 Software for Soundscape Analysis -- 7.8.4 Software for Sound Propagation Modeling -- 7.8.5 Software for Automatic Signal Detection -- References -- 8: Detection and Classification Methods for Animal Sounds -- 8.1 Introduction -- 8.2 Qualitative Naming and Classification of Animal Sounds -- 8.2.1 Onomatopoeic Names -- 8.2.2 Naming Sounds Based on Animal Behavior -- 8.2.3 Naming Sounds Based on Mechanism of Sound Production -- 8.2.4 Naming Sounds Based on Spectro-Temporal Features -- 8.2.5 Naming Sounds Based on Human Communication Patterns -- 8.3 Detection of Animal Sounds -- 8.3.1 Energy Threshold Detector -- 8.3.2 Spectrogram Cross-Correlation -- 8.3.3 Matched Filter -- 8.3.4 Spectral Entropy Detector -- 8.3.5 Teager-Kaiser Energy Operator -- 8.3.6 Evaluating the Performance of Automated Detectors -- 8.3.6.1 Confusion Matrices -- 8.3.6.2 Receiver Operating Characteristic (ROC) Curve. 
505 8 |a 8.3.6.3 Precision and Recall. 
588 |a Description based on publisher supplied metadata and other sources. 
590 |a Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.  
655 4 |a Electronic books. 
700 1 |a Thomas, Jeanette A. 
776 0 8 |i Print version:  |a Erbe, Christine  |t Exploring Animal Behavior Through Sound: Volume 1  |d Cham : Springer International Publishing AG,c2022  |z 9783030975388 
797 2 |a ProQuest (Firm) 
856 4 0 |u https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=7105589  |z Click to View