The Search for Ultralight Bosonic Dark Matter.

Saved in:
Bibliographic Details
:
TeilnehmendeR:
Place / Publishing House:Cham : : Springer International Publishing AG,, 2022.
©2023.
Year of Publication:2022
Edition:1st ed.
Language:English
Online Access:
Physical Description:1 online resource (375 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Intro
  • Preface
  • Contents
  • Contributors
  • Definitions of Commonly Used Acronyms and Mathematical Symbols
  • Units and Conversion Factors
  • 1 Introduction to Dark Matter
  • 1.1 Why Do We Think There Is Dark Matter?
  • 1.2 What Do (We Think) We Know About Dark Matter?
  • 1.3 What Could Dark Matter Be?
  • 1.4 Ultralight Bosonic Dark Matter
  • 1.5 Conclusion
  • References
  • 2 Ultralight Bosonic Dark Matter Theory
  • 2.1 Introduction
  • 2.2 Bosonic Field Lagrangians
  • 2.3 Why New Bosons Might Be Ultralight
  • 2.4 Portals Between the Dark Sector and the Standard Model
  • 2.4.1 Interactions Between Ultralight Bosonic Fields and Standard Model Particles
  • 2.4.2 Axion-Photon Interaction
  • 2.4.3 Axion-Fermion Interaction
  • 2.5 Theoretical Motivations for Ultralight Bosons
  • 2.5.1 Peccei-Quinn Solution to the Strong CP Problem and the QCD Axion
  • 2.5.2 The Hierarchy Problem and the Relaxion
  • 2.5.3 UBDM from Extra Dimensions
  • 2.6 Non-thermal Production of UBDM
  • 2.6.1 Vacuum Misalignment
  • 2.6.2 Vector Field Misalignment
  • 2.6.3 Scalar Field Misalignment
  • References
  • 3 Astrophysical Searches and Constraints
  • 3.1 Astrophysical Search Channels
  • 3.2 Gravitational Probes of UBDM
  • 3.2.1 The CMB and Linear Structure Formation
  • 3.2.2 Schrödinger-Poisson Equations
  • 3.2.3 Galaxies and Nonlinear Structure
  • 3.2.4 Black Hole Superradiance
  • 3.2.5 Summary of Gravitational Constraints
  • 3.3 Axion Compact Objects
  • 3.3.1 Axion Stars
  • 3.3.2 Miniclusters
  • 3.4 Indirect Detection of UBDM
  • 3.4.1 Stellar and Supernova Energy Loss
  • 3.4.2 Axion-Photon Conversion
  • References
  • 4 Microwave Cavity Searches
  • 4.1 Historical Introduction
  • 4.2 Detection Principles
  • 4.2.1 Signal Power
  • 4.2.2 Noise Considerations
  • 4.2.3 Scan Rate
  • 4.3 Resonant Microwave Cavities
  • 4.3.1 Resonant Cavity Modes
  • 4.3.2 Quality Factor.
  • 4.3.3 Form Factor
  • 4.3.4 Tuning and Mode Density
  • 4.3.5 Multiple Cavity Systems
  • 4.3.6 Testing Cavities
  • 4.4 Amplifiers
  • 4.4.1 Quantum-Limited Amplifiers
  • 4.4.2 Sub-quantum Limited Amplifiers
  • 4.5 Operational Experiments
  • References
  • 5 Solar Production of Ultralight Bosons
  • 5.1 Production of Axions in the Sun
  • 5.1.1 Solar Models and the Origin of Solar Axions
  • 5.1.2 Non-Primakoff Solar Axions
  • 5.1.3 Constraints on the Solar Axion Flux
  • 5.1.4 Do Axions Escape from the Sun?
  • 5.2 Axion-to-Photon Conversion Probability for Solar Axions
  • 5.2.1 Coherence Condition and Conversion Probability in Vacuum
  • 5.2.2 Coherence Condition and Conversion Probability in a Buffer Gas
  • 5.2.2.1 Effective Mass of the Photon
  • 5.2.2.2 Momentum Transfer
  • 5.2.2.3 The Absorption of Photons in a Buffer Gas
  • 5.2.2.4 Mass Range of Coherence
  • 5.3 Expected Number of Photons from Solar Axion Conversion
  • 5.4 Axion Helioscope Experiments
  • 5.4.1 Concept of Axion Helioscopes
  • 5.4.2 Current and Future Axion Helioscopes
  • 5.4.2.1 The CERN Axion Solar Telescope (CAST)
  • 5.4.2.2 The International Axion Observatory (IAXO)
  • 5.4.2.3 Physics Prospects of IAXO
  • 5.5 Alternative Experiments to Search for Solar Axions
  • 5.5.1 Stationary Helioscopes
  • 5.5.2 Crystalline Detectors Using Primakoff-Bragg Conversion
  • 5.5.3 Non-Primakoff Effect Conversions
  • References
  • 6 Magnetic Resonance Searches
  • 6.1 Searching for Axionlike Dark Matter via Nuclear Magnetic Resonance
  • 6.1.1 Interactions with Nuclear Spins
  • 6.1.1.1 The EDM Interaction with P,T-odd Moments of Nucleons and Nuclei
  • 6.1.1.2 The Gradient Interaction
  • 6.1.2 Interactions with Electron Spins
  • 6.2 Basics of NMR
  • 6.2.1 Nuclear Magnetism
  • 6.2.2 Nuclear Spin Dynamics
  • 6.2.3 Nuclear Spin Interactions
  • 6.2.3.1 Chemical Shielding
  • 6.2.3.2 Direct Dipole-Dipole Coupling.
  • 6.2.3.3 Indirect Spin-Spin Coupling
  • 6.2.3.4 Quadrupolar Coupling
  • 6.2.4 Zero-to-Ultralow-Field NMR
  • 6.3 Detecting Spin Evolution due to Axionlike Dark Matter
  • 6.3.1 Axion-Induced NMR Signals
  • 6.3.2 Inductive Coil Detection
  • 6.3.3 Superconducting Quantum Interference Devices
  • 6.3.4 Atomic Vapor Sensors
  • 6.3.4.1 Spin-Exchange-Collision-Free (SERF) Magnetometry
  • 6.3.5 Magnetic Noise Suppression
  • 6.4 Experimental Searches
  • References
  • 7 Dark Matter Radios
  • 7.1 Hidden Photons
  • 7.2 Hidden Photon Electrodynamics
  • 7.3 Hidden Electric and Magnetic Fields as Dark Matter
  • 7.4 Dark Matter Radio Experimental Scheme
  • 7.4.1 Electric Field Due to Hidden Photons Within Shields
  • 7.4.2 Magnetic Field Due to Hidden Photons Within Shields
  • 7.4.3 DM Radio Inside a Cylindrical Shield
  • 7.5 Out-of-Band Sensitivity
  • 7.6 Sensitivity of Dark Matter Radio Experiments
  • References
  • 8 Laboratory Searches for Exotic Spin-Dependent Interactions
  • 8.1 Introduction
  • 8.1.1 Dark Matter and New Spin-Dependent Interactions
  • 8.1.2 New Spin-Dependent Interactions
  • 8.2 Spin-Dependent Interactions Mediated by Light Bosons: Classification
  • 8.2.1 Interactions Mediated by Massive Spin-0 Bosons
  • 8.2.1.1 Scalar-Scalar Interaction
  • 8.2.1.2 Pseudoscalar-Scalar Interaction
  • 8.2.1.3 Pseudoscalar-Pseudoscalar Interaction
  • 8.2.2 Interactions Mediated by Massive Spin-1 Bosons
  • 8.2.2.1 Vector-Vector Interaction
  • 8.2.2.2 Axial-Vector-Vector Interaction
  • 8.2.2.3 Axial-Vector-Axial-Vector Interaction
  • 8.2.3 Interactions Mediated by Massless Spin-1 Bosons
  • 8.2.3.1 Tensor-Tensor Interaction
  • 8.2.3.2 Pseudotensor-Pseudotensor Interaction
  • 8.2.3.3 Pseudotensor-Tensor Interaction
  • 8.3 Searches for New Interactions Between Polarized Electrons and Unpolarized Nucleons
  • 8.3.1 Torsion Pendulum Experiments.
  • 8.3.2 Electron-Spin Based Magnetometer Searches
  • 8.3.3 Spectroscopic Constraints with Trapped Ions
  • 8.4 Monopole-Dipole Searches with Polarized Nuclear Spins and Unpolarized Nucleons
  • 8.4.1 Axion Searches with Comagnetometers
  • 8.4.1.1 Noble Gas Comagnetometer
  • 8.4.1.2 Noble Gas: Alkali Comagnetometer Searches
  • 8.4.2 NMR-Based Spin-Dependent Searches
  • 8.4.3 Resonant NMR-Based Spin-Dependent Interaction Search: ARIADNE
  • 8.5 Spectroscopic Measurements of Spin-Spin Coupled Interactions
  • 8.6 Outlook
  • References
  • 9 Light-Shining-Through-Walls Experiments
  • 9.1 Introduction
  • 9.1.1 UBDM Interaction with Photons in a Magnetic Field
  • 9.1.2 Magnets
  • 9.1.3 Light-Tightness
  • 9.2 Boosting Sensitivity with a Production Cavity
  • 9.2.1 Linear Cavity
  • 9.2.2 Cavity Spatial Modes
  • 9.2.3 Stabilization of Optical Cavities
  • 9.2.4 Achieving High Finesse
  • 9.2.5 High-Power Operation
  • 9.3 Dual Cavity LSW Experiments
  • 9.3.1 Dual Resonance
  • 9.3.2 Spatial Overlap
  • 9.3.3 Verification of the Resonance Condition and Spatial Overlap
  • 9.4 Detection Techniques
  • 9.4.1 Heterodyne Interferometry
  • 9.4.2 Transition Edge Sensors
  • 9.5 Conclusion
  • References
  • 10 Global Quantum Sensor Networks as Probes of the Dark Sector
  • 10.1 Introduction
  • 10.2 Portals Into Dark Sector
  • 10.3 How Do Atomic Clocks and Magnetometers Work?
  • 10.3.1 Atomic Clocks
  • 10.3.2 Atomic Magnetometers
  • 10.4 DM Searches with Network of Sensors
  • 10.4.1 Overview of Existing Networks
  • 10.4.2 Network-Based Searches for ``Wavy'' Dark Matter
  • 10.4.3 Network-Based Searches for ``Clumpy'' Dark Matter
  • 10.5 Putting It All Together
  • 10.6 Summary
  • References
  • Correction to: The Search for Ultralight Bosonic Dark Matter
  • Solutions to Chapter Problems
  • References
  • Index.