The Search for Ultralight Bosonic Dark Matter.

Saved in:
Bibliographic Details
:
TeilnehmendeR:
Place / Publishing House:Cham : : Springer International Publishing AG,, 2022.
©2023.
Year of Publication:2022
Edition:1st ed.
Language:English
Online Access:
Physical Description:1 online resource (375 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 5007102044
ctrlnum (MiAaPQ)5007102044
(Au-PeEL)EBL7102044
(OCoLC)1351750277
collection bib_alma
record_format marc
spelling Jackson Kimball, Derek F.
The Search for Ultralight Bosonic Dark Matter.
1st ed.
Cham : Springer International Publishing AG, 2022.
©2023.
1 online resource (375 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Intro -- Preface -- Contents -- Contributors -- Definitions of Commonly Used Acronyms and Mathematical Symbols -- Units and Conversion Factors -- 1 Introduction to Dark Matter -- 1.1 Why Do We Think There Is Dark Matter? -- 1.2 What Do (We Think) We Know About Dark Matter? -- 1.3 What Could Dark Matter Be? -- 1.4 Ultralight Bosonic Dark Matter -- 1.5 Conclusion -- References -- 2 Ultralight Bosonic Dark Matter Theory -- 2.1 Introduction -- 2.2 Bosonic Field Lagrangians -- 2.3 Why New Bosons Might Be Ultralight -- 2.4 Portals Between the Dark Sector and the Standard Model -- 2.4.1 Interactions Between Ultralight Bosonic Fields and Standard Model Particles -- 2.4.2 Axion-Photon Interaction -- 2.4.3 Axion-Fermion Interaction -- 2.5 Theoretical Motivations for Ultralight Bosons -- 2.5.1 Peccei-Quinn Solution to the Strong CP Problem and the QCD Axion -- 2.5.2 The Hierarchy Problem and the Relaxion -- 2.5.3 UBDM from Extra Dimensions -- 2.6 Non-thermal Production of UBDM -- 2.6.1 Vacuum Misalignment -- 2.6.2 Vector Field Misalignment -- 2.6.3 Scalar Field Misalignment -- References -- 3 Astrophysical Searches and Constraints -- 3.1 Astrophysical Search Channels -- 3.2 Gravitational Probes of UBDM -- 3.2.1 The CMB and Linear Structure Formation -- 3.2.2 Schrödinger-Poisson Equations -- 3.2.3 Galaxies and Nonlinear Structure -- 3.2.4 Black Hole Superradiance -- 3.2.5 Summary of Gravitational Constraints -- 3.3 Axion Compact Objects -- 3.3.1 Axion Stars -- 3.3.2 Miniclusters -- 3.4 Indirect Detection of UBDM -- 3.4.1 Stellar and Supernova Energy Loss -- 3.4.2 Axion-Photon Conversion -- References -- 4 Microwave Cavity Searches -- 4.1 Historical Introduction -- 4.2 Detection Principles -- 4.2.1 Signal Power -- 4.2.2 Noise Considerations -- 4.2.3 Scan Rate -- 4.3 Resonant Microwave Cavities -- 4.3.1 Resonant Cavity Modes -- 4.3.2 Quality Factor.
4.3.3 Form Factor -- 4.3.4 Tuning and Mode Density -- 4.3.5 Multiple Cavity Systems -- 4.3.6 Testing Cavities -- 4.4 Amplifiers -- 4.4.1 Quantum-Limited Amplifiers -- 4.4.2 Sub-quantum Limited Amplifiers -- 4.5 Operational Experiments -- References -- 5 Solar Production of Ultralight Bosons -- 5.1 Production of Axions in the Sun -- 5.1.1 Solar Models and the Origin of Solar Axions -- 5.1.2 Non-Primakoff Solar Axions -- 5.1.3 Constraints on the Solar Axion Flux -- 5.1.4 Do Axions Escape from the Sun? -- 5.2 Axion-to-Photon Conversion Probability for Solar Axions -- 5.2.1 Coherence Condition and Conversion Probability in Vacuum -- 5.2.2 Coherence Condition and Conversion Probability in a Buffer Gas -- 5.2.2.1 Effective Mass of the Photon -- 5.2.2.2 Momentum Transfer -- 5.2.2.3 The Absorption of Photons in a Buffer Gas -- 5.2.2.4 Mass Range of Coherence -- 5.3 Expected Number of Photons from Solar Axion Conversion -- 5.4 Axion Helioscope Experiments -- 5.4.1 Concept of Axion Helioscopes -- 5.4.2 Current and Future Axion Helioscopes -- 5.4.2.1 The CERN Axion Solar Telescope (CAST) -- 5.4.2.2 The International Axion Observatory (IAXO) -- 5.4.2.3 Physics Prospects of IAXO -- 5.5 Alternative Experiments to Search for Solar Axions -- 5.5.1 Stationary Helioscopes -- 5.5.2 Crystalline Detectors Using Primakoff-Bragg Conversion -- 5.5.3 Non-Primakoff Effect Conversions -- References -- 6 Magnetic Resonance Searches -- 6.1 Searching for Axionlike Dark Matter via Nuclear Magnetic Resonance -- 6.1.1 Interactions with Nuclear Spins -- 6.1.1.1 The EDM Interaction with P,T-odd Moments of Nucleons and Nuclei -- 6.1.1.2 The Gradient Interaction -- 6.1.2 Interactions with Electron Spins -- 6.2 Basics of NMR -- 6.2.1 Nuclear Magnetism -- 6.2.2 Nuclear Spin Dynamics -- 6.2.3 Nuclear Spin Interactions -- 6.2.3.1 Chemical Shielding -- 6.2.3.2 Direct Dipole-Dipole Coupling.
6.2.3.3 Indirect Spin-Spin Coupling -- 6.2.3.4 Quadrupolar Coupling -- 6.2.4 Zero-to-Ultralow-Field NMR -- 6.3 Detecting Spin Evolution due to Axionlike Dark Matter -- 6.3.1 Axion-Induced NMR Signals -- 6.3.2 Inductive Coil Detection -- 6.3.3 Superconducting Quantum Interference Devices -- 6.3.4 Atomic Vapor Sensors -- 6.3.4.1 Spin-Exchange-Collision-Free (SERF) Magnetometry -- 6.3.5 Magnetic Noise Suppression -- 6.4 Experimental Searches -- References -- 7 Dark Matter Radios -- 7.1 Hidden Photons -- 7.2 Hidden Photon Electrodynamics -- 7.3 Hidden Electric and Magnetic Fields as Dark Matter -- 7.4 Dark Matter Radio Experimental Scheme -- 7.4.1 Electric Field Due to Hidden Photons Within Shields -- 7.4.2 Magnetic Field Due to Hidden Photons Within Shields -- 7.4.3 DM Radio Inside a Cylindrical Shield -- 7.5 Out-of-Band Sensitivity -- 7.6 Sensitivity of Dark Matter Radio Experiments -- References -- 8 Laboratory Searches for Exotic Spin-Dependent Interactions -- 8.1 Introduction -- 8.1.1 Dark Matter and New Spin-Dependent Interactions -- 8.1.2 New Spin-Dependent Interactions -- 8.2 Spin-Dependent Interactions Mediated by Light Bosons: Classification -- 8.2.1 Interactions Mediated by Massive Spin-0 Bosons -- 8.2.1.1 Scalar-Scalar Interaction -- 8.2.1.2 Pseudoscalar-Scalar Interaction -- 8.2.1.3 Pseudoscalar-Pseudoscalar Interaction -- 8.2.2 Interactions Mediated by Massive Spin-1 Bosons -- 8.2.2.1 Vector-Vector Interaction -- 8.2.2.2 Axial-Vector-Vector Interaction -- 8.2.2.3 Axial-Vector-Axial-Vector Interaction -- 8.2.3 Interactions Mediated by Massless Spin-1 Bosons -- 8.2.3.1 Tensor-Tensor Interaction -- 8.2.3.2 Pseudotensor-Pseudotensor Interaction -- 8.2.3.3 Pseudotensor-Tensor Interaction -- 8.3 Searches for New Interactions Between Polarized Electrons and Unpolarized Nucleons -- 8.3.1 Torsion Pendulum Experiments.
8.3.2 Electron-Spin Based Magnetometer Searches -- 8.3.3 Spectroscopic Constraints with Trapped Ions -- 8.4 Monopole-Dipole Searches with Polarized Nuclear Spins and Unpolarized Nucleons -- 8.4.1 Axion Searches with Comagnetometers -- 8.4.1.1 Noble Gas Comagnetometer -- 8.4.1.2 Noble Gas: Alkali Comagnetometer Searches -- 8.4.2 NMR-Based Spin-Dependent Searches -- 8.4.3 Resonant NMR-Based Spin-Dependent Interaction Search: ARIADNE -- 8.5 Spectroscopic Measurements of Spin-Spin Coupled Interactions -- 8.6 Outlook -- References -- 9 Light-Shining-Through-Walls Experiments -- 9.1 Introduction -- 9.1.1 UBDM Interaction with Photons in a Magnetic Field -- 9.1.2 Magnets -- 9.1.3 Light-Tightness -- 9.2 Boosting Sensitivity with a Production Cavity -- 9.2.1 Linear Cavity -- 9.2.2 Cavity Spatial Modes -- 9.2.3 Stabilization of Optical Cavities -- 9.2.4 Achieving High Finesse -- 9.2.5 High-Power Operation -- 9.3 Dual Cavity LSW Experiments -- 9.3.1 Dual Resonance -- 9.3.2 Spatial Overlap -- 9.3.3 Verification of the Resonance Condition and Spatial Overlap -- 9.4 Detection Techniques -- 9.4.1 Heterodyne Interferometry -- 9.4.2 Transition Edge Sensors -- 9.5 Conclusion -- References -- 10 Global Quantum Sensor Networks as Probes of the Dark Sector -- 10.1 Introduction -- 10.2 Portals Into Dark Sector -- 10.3 How Do Atomic Clocks and Magnetometers Work? -- 10.3.1 Atomic Clocks -- 10.3.2 Atomic Magnetometers -- 10.4 DM Searches with Network of Sensors -- 10.4.1 Overview of Existing Networks -- 10.4.2 Network-Based Searches for ``Wavy'' Dark Matter -- 10.4.3 Network-Based Searches for ``Clumpy'' Dark Matter -- 10.5 Putting It All Together -- 10.6 Summary -- References -- Correction to: The Search for Ultralight Bosonic Dark Matter -- Solutions to Chapter Problems -- References -- Index.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic books.
van Bibber, Karl.
Print version: Jackson Kimball, Derek F. The Search for Ultralight Bosonic Dark Matter Cham : Springer International Publishing AG,c2022 9783030958510
ProQuest (Firm)
https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=7102044 Click to View
language English
format eBook
author Jackson Kimball, Derek F.
spellingShingle Jackson Kimball, Derek F.
The Search for Ultralight Bosonic Dark Matter.
Intro -- Preface -- Contents -- Contributors -- Definitions of Commonly Used Acronyms and Mathematical Symbols -- Units and Conversion Factors -- 1 Introduction to Dark Matter -- 1.1 Why Do We Think There Is Dark Matter? -- 1.2 What Do (We Think) We Know About Dark Matter? -- 1.3 What Could Dark Matter Be? -- 1.4 Ultralight Bosonic Dark Matter -- 1.5 Conclusion -- References -- 2 Ultralight Bosonic Dark Matter Theory -- 2.1 Introduction -- 2.2 Bosonic Field Lagrangians -- 2.3 Why New Bosons Might Be Ultralight -- 2.4 Portals Between the Dark Sector and the Standard Model -- 2.4.1 Interactions Between Ultralight Bosonic Fields and Standard Model Particles -- 2.4.2 Axion-Photon Interaction -- 2.4.3 Axion-Fermion Interaction -- 2.5 Theoretical Motivations for Ultralight Bosons -- 2.5.1 Peccei-Quinn Solution to the Strong CP Problem and the QCD Axion -- 2.5.2 The Hierarchy Problem and the Relaxion -- 2.5.3 UBDM from Extra Dimensions -- 2.6 Non-thermal Production of UBDM -- 2.6.1 Vacuum Misalignment -- 2.6.2 Vector Field Misalignment -- 2.6.3 Scalar Field Misalignment -- References -- 3 Astrophysical Searches and Constraints -- 3.1 Astrophysical Search Channels -- 3.2 Gravitational Probes of UBDM -- 3.2.1 The CMB and Linear Structure Formation -- 3.2.2 Schrödinger-Poisson Equations -- 3.2.3 Galaxies and Nonlinear Structure -- 3.2.4 Black Hole Superradiance -- 3.2.5 Summary of Gravitational Constraints -- 3.3 Axion Compact Objects -- 3.3.1 Axion Stars -- 3.3.2 Miniclusters -- 3.4 Indirect Detection of UBDM -- 3.4.1 Stellar and Supernova Energy Loss -- 3.4.2 Axion-Photon Conversion -- References -- 4 Microwave Cavity Searches -- 4.1 Historical Introduction -- 4.2 Detection Principles -- 4.2.1 Signal Power -- 4.2.2 Noise Considerations -- 4.2.3 Scan Rate -- 4.3 Resonant Microwave Cavities -- 4.3.1 Resonant Cavity Modes -- 4.3.2 Quality Factor.
4.3.3 Form Factor -- 4.3.4 Tuning and Mode Density -- 4.3.5 Multiple Cavity Systems -- 4.3.6 Testing Cavities -- 4.4 Amplifiers -- 4.4.1 Quantum-Limited Amplifiers -- 4.4.2 Sub-quantum Limited Amplifiers -- 4.5 Operational Experiments -- References -- 5 Solar Production of Ultralight Bosons -- 5.1 Production of Axions in the Sun -- 5.1.1 Solar Models and the Origin of Solar Axions -- 5.1.2 Non-Primakoff Solar Axions -- 5.1.3 Constraints on the Solar Axion Flux -- 5.1.4 Do Axions Escape from the Sun? -- 5.2 Axion-to-Photon Conversion Probability for Solar Axions -- 5.2.1 Coherence Condition and Conversion Probability in Vacuum -- 5.2.2 Coherence Condition and Conversion Probability in a Buffer Gas -- 5.2.2.1 Effective Mass of the Photon -- 5.2.2.2 Momentum Transfer -- 5.2.2.3 The Absorption of Photons in a Buffer Gas -- 5.2.2.4 Mass Range of Coherence -- 5.3 Expected Number of Photons from Solar Axion Conversion -- 5.4 Axion Helioscope Experiments -- 5.4.1 Concept of Axion Helioscopes -- 5.4.2 Current and Future Axion Helioscopes -- 5.4.2.1 The CERN Axion Solar Telescope (CAST) -- 5.4.2.2 The International Axion Observatory (IAXO) -- 5.4.2.3 Physics Prospects of IAXO -- 5.5 Alternative Experiments to Search for Solar Axions -- 5.5.1 Stationary Helioscopes -- 5.5.2 Crystalline Detectors Using Primakoff-Bragg Conversion -- 5.5.3 Non-Primakoff Effect Conversions -- References -- 6 Magnetic Resonance Searches -- 6.1 Searching for Axionlike Dark Matter via Nuclear Magnetic Resonance -- 6.1.1 Interactions with Nuclear Spins -- 6.1.1.1 The EDM Interaction with P,T-odd Moments of Nucleons and Nuclei -- 6.1.1.2 The Gradient Interaction -- 6.1.2 Interactions with Electron Spins -- 6.2 Basics of NMR -- 6.2.1 Nuclear Magnetism -- 6.2.2 Nuclear Spin Dynamics -- 6.2.3 Nuclear Spin Interactions -- 6.2.3.1 Chemical Shielding -- 6.2.3.2 Direct Dipole-Dipole Coupling.
6.2.3.3 Indirect Spin-Spin Coupling -- 6.2.3.4 Quadrupolar Coupling -- 6.2.4 Zero-to-Ultralow-Field NMR -- 6.3 Detecting Spin Evolution due to Axionlike Dark Matter -- 6.3.1 Axion-Induced NMR Signals -- 6.3.2 Inductive Coil Detection -- 6.3.3 Superconducting Quantum Interference Devices -- 6.3.4 Atomic Vapor Sensors -- 6.3.4.1 Spin-Exchange-Collision-Free (SERF) Magnetometry -- 6.3.5 Magnetic Noise Suppression -- 6.4 Experimental Searches -- References -- 7 Dark Matter Radios -- 7.1 Hidden Photons -- 7.2 Hidden Photon Electrodynamics -- 7.3 Hidden Electric and Magnetic Fields as Dark Matter -- 7.4 Dark Matter Radio Experimental Scheme -- 7.4.1 Electric Field Due to Hidden Photons Within Shields -- 7.4.2 Magnetic Field Due to Hidden Photons Within Shields -- 7.4.3 DM Radio Inside a Cylindrical Shield -- 7.5 Out-of-Band Sensitivity -- 7.6 Sensitivity of Dark Matter Radio Experiments -- References -- 8 Laboratory Searches for Exotic Spin-Dependent Interactions -- 8.1 Introduction -- 8.1.1 Dark Matter and New Spin-Dependent Interactions -- 8.1.2 New Spin-Dependent Interactions -- 8.2 Spin-Dependent Interactions Mediated by Light Bosons: Classification -- 8.2.1 Interactions Mediated by Massive Spin-0 Bosons -- 8.2.1.1 Scalar-Scalar Interaction -- 8.2.1.2 Pseudoscalar-Scalar Interaction -- 8.2.1.3 Pseudoscalar-Pseudoscalar Interaction -- 8.2.2 Interactions Mediated by Massive Spin-1 Bosons -- 8.2.2.1 Vector-Vector Interaction -- 8.2.2.2 Axial-Vector-Vector Interaction -- 8.2.2.3 Axial-Vector-Axial-Vector Interaction -- 8.2.3 Interactions Mediated by Massless Spin-1 Bosons -- 8.2.3.1 Tensor-Tensor Interaction -- 8.2.3.2 Pseudotensor-Pseudotensor Interaction -- 8.2.3.3 Pseudotensor-Tensor Interaction -- 8.3 Searches for New Interactions Between Polarized Electrons and Unpolarized Nucleons -- 8.3.1 Torsion Pendulum Experiments.
8.3.2 Electron-Spin Based Magnetometer Searches -- 8.3.3 Spectroscopic Constraints with Trapped Ions -- 8.4 Monopole-Dipole Searches with Polarized Nuclear Spins and Unpolarized Nucleons -- 8.4.1 Axion Searches with Comagnetometers -- 8.4.1.1 Noble Gas Comagnetometer -- 8.4.1.2 Noble Gas: Alkali Comagnetometer Searches -- 8.4.2 NMR-Based Spin-Dependent Searches -- 8.4.3 Resonant NMR-Based Spin-Dependent Interaction Search: ARIADNE -- 8.5 Spectroscopic Measurements of Spin-Spin Coupled Interactions -- 8.6 Outlook -- References -- 9 Light-Shining-Through-Walls Experiments -- 9.1 Introduction -- 9.1.1 UBDM Interaction with Photons in a Magnetic Field -- 9.1.2 Magnets -- 9.1.3 Light-Tightness -- 9.2 Boosting Sensitivity with a Production Cavity -- 9.2.1 Linear Cavity -- 9.2.2 Cavity Spatial Modes -- 9.2.3 Stabilization of Optical Cavities -- 9.2.4 Achieving High Finesse -- 9.2.5 High-Power Operation -- 9.3 Dual Cavity LSW Experiments -- 9.3.1 Dual Resonance -- 9.3.2 Spatial Overlap -- 9.3.3 Verification of the Resonance Condition and Spatial Overlap -- 9.4 Detection Techniques -- 9.4.1 Heterodyne Interferometry -- 9.4.2 Transition Edge Sensors -- 9.5 Conclusion -- References -- 10 Global Quantum Sensor Networks as Probes of the Dark Sector -- 10.1 Introduction -- 10.2 Portals Into Dark Sector -- 10.3 How Do Atomic Clocks and Magnetometers Work? -- 10.3.1 Atomic Clocks -- 10.3.2 Atomic Magnetometers -- 10.4 DM Searches with Network of Sensors -- 10.4.1 Overview of Existing Networks -- 10.4.2 Network-Based Searches for ``Wavy'' Dark Matter -- 10.4.3 Network-Based Searches for ``Clumpy'' Dark Matter -- 10.5 Putting It All Together -- 10.6 Summary -- References -- Correction to: The Search for Ultralight Bosonic Dark Matter -- Solutions to Chapter Problems -- References -- Index.
author_facet Jackson Kimball, Derek F.
van Bibber, Karl.
author_variant k d f j kdf kdfj
author2 van Bibber, Karl.
author2_variant b k v bk bkv
author2_role TeilnehmendeR
author_sort Jackson Kimball, Derek F.
title The Search for Ultralight Bosonic Dark Matter.
title_full The Search for Ultralight Bosonic Dark Matter.
title_fullStr The Search for Ultralight Bosonic Dark Matter.
title_full_unstemmed The Search for Ultralight Bosonic Dark Matter.
title_auth The Search for Ultralight Bosonic Dark Matter.
title_new The Search for Ultralight Bosonic Dark Matter.
title_sort the search for ultralight bosonic dark matter.
publisher Springer International Publishing AG,
publishDate 2022
physical 1 online resource (375 pages)
edition 1st ed.
contents Intro -- Preface -- Contents -- Contributors -- Definitions of Commonly Used Acronyms and Mathematical Symbols -- Units and Conversion Factors -- 1 Introduction to Dark Matter -- 1.1 Why Do We Think There Is Dark Matter? -- 1.2 What Do (We Think) We Know About Dark Matter? -- 1.3 What Could Dark Matter Be? -- 1.4 Ultralight Bosonic Dark Matter -- 1.5 Conclusion -- References -- 2 Ultralight Bosonic Dark Matter Theory -- 2.1 Introduction -- 2.2 Bosonic Field Lagrangians -- 2.3 Why New Bosons Might Be Ultralight -- 2.4 Portals Between the Dark Sector and the Standard Model -- 2.4.1 Interactions Between Ultralight Bosonic Fields and Standard Model Particles -- 2.4.2 Axion-Photon Interaction -- 2.4.3 Axion-Fermion Interaction -- 2.5 Theoretical Motivations for Ultralight Bosons -- 2.5.1 Peccei-Quinn Solution to the Strong CP Problem and the QCD Axion -- 2.5.2 The Hierarchy Problem and the Relaxion -- 2.5.3 UBDM from Extra Dimensions -- 2.6 Non-thermal Production of UBDM -- 2.6.1 Vacuum Misalignment -- 2.6.2 Vector Field Misalignment -- 2.6.3 Scalar Field Misalignment -- References -- 3 Astrophysical Searches and Constraints -- 3.1 Astrophysical Search Channels -- 3.2 Gravitational Probes of UBDM -- 3.2.1 The CMB and Linear Structure Formation -- 3.2.2 Schrödinger-Poisson Equations -- 3.2.3 Galaxies and Nonlinear Structure -- 3.2.4 Black Hole Superradiance -- 3.2.5 Summary of Gravitational Constraints -- 3.3 Axion Compact Objects -- 3.3.1 Axion Stars -- 3.3.2 Miniclusters -- 3.4 Indirect Detection of UBDM -- 3.4.1 Stellar and Supernova Energy Loss -- 3.4.2 Axion-Photon Conversion -- References -- 4 Microwave Cavity Searches -- 4.1 Historical Introduction -- 4.2 Detection Principles -- 4.2.1 Signal Power -- 4.2.2 Noise Considerations -- 4.2.3 Scan Rate -- 4.3 Resonant Microwave Cavities -- 4.3.1 Resonant Cavity Modes -- 4.3.2 Quality Factor.
4.3.3 Form Factor -- 4.3.4 Tuning and Mode Density -- 4.3.5 Multiple Cavity Systems -- 4.3.6 Testing Cavities -- 4.4 Amplifiers -- 4.4.1 Quantum-Limited Amplifiers -- 4.4.2 Sub-quantum Limited Amplifiers -- 4.5 Operational Experiments -- References -- 5 Solar Production of Ultralight Bosons -- 5.1 Production of Axions in the Sun -- 5.1.1 Solar Models and the Origin of Solar Axions -- 5.1.2 Non-Primakoff Solar Axions -- 5.1.3 Constraints on the Solar Axion Flux -- 5.1.4 Do Axions Escape from the Sun? -- 5.2 Axion-to-Photon Conversion Probability for Solar Axions -- 5.2.1 Coherence Condition and Conversion Probability in Vacuum -- 5.2.2 Coherence Condition and Conversion Probability in a Buffer Gas -- 5.2.2.1 Effective Mass of the Photon -- 5.2.2.2 Momentum Transfer -- 5.2.2.3 The Absorption of Photons in a Buffer Gas -- 5.2.2.4 Mass Range of Coherence -- 5.3 Expected Number of Photons from Solar Axion Conversion -- 5.4 Axion Helioscope Experiments -- 5.4.1 Concept of Axion Helioscopes -- 5.4.2 Current and Future Axion Helioscopes -- 5.4.2.1 The CERN Axion Solar Telescope (CAST) -- 5.4.2.2 The International Axion Observatory (IAXO) -- 5.4.2.3 Physics Prospects of IAXO -- 5.5 Alternative Experiments to Search for Solar Axions -- 5.5.1 Stationary Helioscopes -- 5.5.2 Crystalline Detectors Using Primakoff-Bragg Conversion -- 5.5.3 Non-Primakoff Effect Conversions -- References -- 6 Magnetic Resonance Searches -- 6.1 Searching for Axionlike Dark Matter via Nuclear Magnetic Resonance -- 6.1.1 Interactions with Nuclear Spins -- 6.1.1.1 The EDM Interaction with P,T-odd Moments of Nucleons and Nuclei -- 6.1.1.2 The Gradient Interaction -- 6.1.2 Interactions with Electron Spins -- 6.2 Basics of NMR -- 6.2.1 Nuclear Magnetism -- 6.2.2 Nuclear Spin Dynamics -- 6.2.3 Nuclear Spin Interactions -- 6.2.3.1 Chemical Shielding -- 6.2.3.2 Direct Dipole-Dipole Coupling.
6.2.3.3 Indirect Spin-Spin Coupling -- 6.2.3.4 Quadrupolar Coupling -- 6.2.4 Zero-to-Ultralow-Field NMR -- 6.3 Detecting Spin Evolution due to Axionlike Dark Matter -- 6.3.1 Axion-Induced NMR Signals -- 6.3.2 Inductive Coil Detection -- 6.3.3 Superconducting Quantum Interference Devices -- 6.3.4 Atomic Vapor Sensors -- 6.3.4.1 Spin-Exchange-Collision-Free (SERF) Magnetometry -- 6.3.5 Magnetic Noise Suppression -- 6.4 Experimental Searches -- References -- 7 Dark Matter Radios -- 7.1 Hidden Photons -- 7.2 Hidden Photon Electrodynamics -- 7.3 Hidden Electric and Magnetic Fields as Dark Matter -- 7.4 Dark Matter Radio Experimental Scheme -- 7.4.1 Electric Field Due to Hidden Photons Within Shields -- 7.4.2 Magnetic Field Due to Hidden Photons Within Shields -- 7.4.3 DM Radio Inside a Cylindrical Shield -- 7.5 Out-of-Band Sensitivity -- 7.6 Sensitivity of Dark Matter Radio Experiments -- References -- 8 Laboratory Searches for Exotic Spin-Dependent Interactions -- 8.1 Introduction -- 8.1.1 Dark Matter and New Spin-Dependent Interactions -- 8.1.2 New Spin-Dependent Interactions -- 8.2 Spin-Dependent Interactions Mediated by Light Bosons: Classification -- 8.2.1 Interactions Mediated by Massive Spin-0 Bosons -- 8.2.1.1 Scalar-Scalar Interaction -- 8.2.1.2 Pseudoscalar-Scalar Interaction -- 8.2.1.3 Pseudoscalar-Pseudoscalar Interaction -- 8.2.2 Interactions Mediated by Massive Spin-1 Bosons -- 8.2.2.1 Vector-Vector Interaction -- 8.2.2.2 Axial-Vector-Vector Interaction -- 8.2.2.3 Axial-Vector-Axial-Vector Interaction -- 8.2.3 Interactions Mediated by Massless Spin-1 Bosons -- 8.2.3.1 Tensor-Tensor Interaction -- 8.2.3.2 Pseudotensor-Pseudotensor Interaction -- 8.2.3.3 Pseudotensor-Tensor Interaction -- 8.3 Searches for New Interactions Between Polarized Electrons and Unpolarized Nucleons -- 8.3.1 Torsion Pendulum Experiments.
8.3.2 Electron-Spin Based Magnetometer Searches -- 8.3.3 Spectroscopic Constraints with Trapped Ions -- 8.4 Monopole-Dipole Searches with Polarized Nuclear Spins and Unpolarized Nucleons -- 8.4.1 Axion Searches with Comagnetometers -- 8.4.1.1 Noble Gas Comagnetometer -- 8.4.1.2 Noble Gas: Alkali Comagnetometer Searches -- 8.4.2 NMR-Based Spin-Dependent Searches -- 8.4.3 Resonant NMR-Based Spin-Dependent Interaction Search: ARIADNE -- 8.5 Spectroscopic Measurements of Spin-Spin Coupled Interactions -- 8.6 Outlook -- References -- 9 Light-Shining-Through-Walls Experiments -- 9.1 Introduction -- 9.1.1 UBDM Interaction with Photons in a Magnetic Field -- 9.1.2 Magnets -- 9.1.3 Light-Tightness -- 9.2 Boosting Sensitivity with a Production Cavity -- 9.2.1 Linear Cavity -- 9.2.2 Cavity Spatial Modes -- 9.2.3 Stabilization of Optical Cavities -- 9.2.4 Achieving High Finesse -- 9.2.5 High-Power Operation -- 9.3 Dual Cavity LSW Experiments -- 9.3.1 Dual Resonance -- 9.3.2 Spatial Overlap -- 9.3.3 Verification of the Resonance Condition and Spatial Overlap -- 9.4 Detection Techniques -- 9.4.1 Heterodyne Interferometry -- 9.4.2 Transition Edge Sensors -- 9.5 Conclusion -- References -- 10 Global Quantum Sensor Networks as Probes of the Dark Sector -- 10.1 Introduction -- 10.2 Portals Into Dark Sector -- 10.3 How Do Atomic Clocks and Magnetometers Work? -- 10.3.1 Atomic Clocks -- 10.3.2 Atomic Magnetometers -- 10.4 DM Searches with Network of Sensors -- 10.4.1 Overview of Existing Networks -- 10.4.2 Network-Based Searches for ``Wavy'' Dark Matter -- 10.4.3 Network-Based Searches for ``Clumpy'' Dark Matter -- 10.5 Putting It All Together -- 10.6 Summary -- References -- Correction to: The Search for Ultralight Bosonic Dark Matter -- Solutions to Chapter Problems -- References -- Index.
isbn 9783030958527
9783030958510
callnumber-first Q - Science
callnumber-subject QC - Physics
callnumber-label QC770-798
callnumber-sort QC 3770 3798
genre Electronic books.
genre_facet Electronic books.
url https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=7102044
illustrated Not Illustrated
oclc_num 1351750277
work_keys_str_mv AT jacksonkimballderekf thesearchforultralightbosonicdarkmatter
AT vanbibberkarl thesearchforultralightbosonicdarkmatter
AT jacksonkimballderekf searchforultralightbosonicdarkmatter
AT vanbibberkarl searchforultralightbosonicdarkmatter
status_str n
ids_txt_mv (MiAaPQ)5007102044
(Au-PeEL)EBL7102044
(OCoLC)1351750277
carrierType_str_mv cr
is_hierarchy_title The Search for Ultralight Bosonic Dark Matter.
author2_original_writing_str_mv noLinkedField
marc_error Info : MARC8 translation shorter than ISO-8859-1, choosing MARC8. --- [ 856 : z ]
_version_ 1792331064932302848
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>08983nam a22004213i 4500</leader><controlfield tag="001">5007102044</controlfield><controlfield tag="003">MiAaPQ</controlfield><controlfield tag="005">20240229073847.0</controlfield><controlfield tag="006">m o d | </controlfield><controlfield tag="007">cr cnu||||||||</controlfield><controlfield tag="008">240229s2022 xx o ||||0 eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783030958527</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783030958510</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(MiAaPQ)5007102044</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(Au-PeEL)EBL7102044</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1351750277</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">MiAaPQ</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">MiAaPQ</subfield><subfield code="d">MiAaPQ</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QC770-798</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jackson Kimball, Derek F.</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The Search for Ultralight Bosonic Dark Matter.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham :</subfield><subfield code="b">Springer International Publishing AG,</subfield><subfield code="c">2022.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2023.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (375 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Intro -- Preface -- Contents -- Contributors -- Definitions of Commonly Used Acronyms and Mathematical Symbols -- Units and Conversion Factors -- 1 Introduction to Dark Matter -- 1.1 Why Do We Think There Is Dark Matter? -- 1.2 What Do (We Think) We Know About Dark Matter? -- 1.3 What Could Dark Matter Be? -- 1.4 Ultralight Bosonic Dark Matter -- 1.5 Conclusion -- References -- 2 Ultralight Bosonic Dark Matter Theory -- 2.1 Introduction -- 2.2 Bosonic Field Lagrangians -- 2.3 Why New Bosons Might Be Ultralight -- 2.4 Portals Between the Dark Sector and the Standard Model -- 2.4.1 Interactions Between Ultralight Bosonic Fields and Standard Model Particles -- 2.4.2 Axion-Photon Interaction -- 2.4.3 Axion-Fermion Interaction -- 2.5 Theoretical Motivations for Ultralight Bosons -- 2.5.1 Peccei-Quinn Solution to the Strong CP Problem and the QCD Axion -- 2.5.2 The Hierarchy Problem and the Relaxion -- 2.5.3 UBDM from Extra Dimensions -- 2.6 Non-thermal Production of UBDM -- 2.6.1 Vacuum Misalignment -- 2.6.2 Vector Field Misalignment -- 2.6.3 Scalar Field Misalignment -- References -- 3 Astrophysical Searches and Constraints -- 3.1 Astrophysical Search Channels -- 3.2 Gravitational Probes of UBDM -- 3.2.1 The CMB and Linear Structure Formation -- 3.2.2 Schrödinger-Poisson Equations -- 3.2.3 Galaxies and Nonlinear Structure -- 3.2.4 Black Hole Superradiance -- 3.2.5 Summary of Gravitational Constraints -- 3.3 Axion Compact Objects -- 3.3.1 Axion Stars -- 3.3.2 Miniclusters -- 3.4 Indirect Detection of UBDM -- 3.4.1 Stellar and Supernova Energy Loss -- 3.4.2 Axion-Photon Conversion -- References -- 4 Microwave Cavity Searches -- 4.1 Historical Introduction -- 4.2 Detection Principles -- 4.2.1 Signal Power -- 4.2.2 Noise Considerations -- 4.2.3 Scan Rate -- 4.3 Resonant Microwave Cavities -- 4.3.1 Resonant Cavity Modes -- 4.3.2 Quality Factor.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.3.3 Form Factor -- 4.3.4 Tuning and Mode Density -- 4.3.5 Multiple Cavity Systems -- 4.3.6 Testing Cavities -- 4.4 Amplifiers -- 4.4.1 Quantum-Limited Amplifiers -- 4.4.2 Sub-quantum Limited Amplifiers -- 4.5 Operational Experiments -- References -- 5 Solar Production of Ultralight Bosons -- 5.1 Production of Axions in the Sun -- 5.1.1 Solar Models and the Origin of Solar Axions -- 5.1.2 Non-Primakoff Solar Axions -- 5.1.3 Constraints on the Solar Axion Flux -- 5.1.4 Do Axions Escape from the Sun? -- 5.2 Axion-to-Photon Conversion Probability for Solar Axions -- 5.2.1 Coherence Condition and Conversion Probability in Vacuum -- 5.2.2 Coherence Condition and Conversion Probability in a Buffer Gas -- 5.2.2.1 Effective Mass of the Photon -- 5.2.2.2 Momentum Transfer -- 5.2.2.3 The Absorption of Photons in a Buffer Gas -- 5.2.2.4 Mass Range of Coherence -- 5.3 Expected Number of Photons from Solar Axion Conversion -- 5.4 Axion Helioscope Experiments -- 5.4.1 Concept of Axion Helioscopes -- 5.4.2 Current and Future Axion Helioscopes -- 5.4.2.1 The CERN Axion Solar Telescope (CAST) -- 5.4.2.2 The International Axion Observatory (IAXO) -- 5.4.2.3 Physics Prospects of IAXO -- 5.5 Alternative Experiments to Search for Solar Axions -- 5.5.1 Stationary Helioscopes -- 5.5.2 Crystalline Detectors Using Primakoff-Bragg Conversion -- 5.5.3 Non-Primakoff Effect Conversions -- References -- 6 Magnetic Resonance Searches -- 6.1 Searching for Axionlike Dark Matter via Nuclear Magnetic Resonance -- 6.1.1 Interactions with Nuclear Spins -- 6.1.1.1 The EDM Interaction with P,T-odd Moments of Nucleons and Nuclei -- 6.1.1.2 The Gradient Interaction -- 6.1.2 Interactions with Electron Spins -- 6.2 Basics of NMR -- 6.2.1 Nuclear Magnetism -- 6.2.2 Nuclear Spin Dynamics -- 6.2.3 Nuclear Spin Interactions -- 6.2.3.1 Chemical Shielding -- 6.2.3.2 Direct Dipole-Dipole Coupling.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.2.3.3 Indirect Spin-Spin Coupling -- 6.2.3.4 Quadrupolar Coupling -- 6.2.4 Zero-to-Ultralow-Field NMR -- 6.3 Detecting Spin Evolution due to Axionlike Dark Matter -- 6.3.1 Axion-Induced NMR Signals -- 6.3.2 Inductive Coil Detection -- 6.3.3 Superconducting Quantum Interference Devices -- 6.3.4 Atomic Vapor Sensors -- 6.3.4.1 Spin-Exchange-Collision-Free (SERF) Magnetometry -- 6.3.5 Magnetic Noise Suppression -- 6.4 Experimental Searches -- References -- 7 Dark Matter Radios -- 7.1 Hidden Photons -- 7.2 Hidden Photon Electrodynamics -- 7.3 Hidden Electric and Magnetic Fields as Dark Matter -- 7.4 Dark Matter Radio Experimental Scheme -- 7.4.1 Electric Field Due to Hidden Photons Within Shields -- 7.4.2 Magnetic Field Due to Hidden Photons Within Shields -- 7.4.3 DM Radio Inside a Cylindrical Shield -- 7.5 Out-of-Band Sensitivity -- 7.6 Sensitivity of Dark Matter Radio Experiments -- References -- 8 Laboratory Searches for Exotic Spin-Dependent Interactions -- 8.1 Introduction -- 8.1.1 Dark Matter and New Spin-Dependent Interactions -- 8.1.2 New Spin-Dependent Interactions -- 8.2 Spin-Dependent Interactions Mediated by Light Bosons: Classification -- 8.2.1 Interactions Mediated by Massive Spin-0 Bosons -- 8.2.1.1 Scalar-Scalar Interaction -- 8.2.1.2 Pseudoscalar-Scalar Interaction -- 8.2.1.3 Pseudoscalar-Pseudoscalar Interaction -- 8.2.2 Interactions Mediated by Massive Spin-1 Bosons -- 8.2.2.1 Vector-Vector Interaction -- 8.2.2.2 Axial-Vector-Vector Interaction -- 8.2.2.3 Axial-Vector-Axial-Vector Interaction -- 8.2.3 Interactions Mediated by Massless Spin-1 Bosons -- 8.2.3.1 Tensor-Tensor Interaction -- 8.2.3.2 Pseudotensor-Pseudotensor Interaction -- 8.2.3.3 Pseudotensor-Tensor Interaction -- 8.3 Searches for New Interactions Between Polarized Electrons and Unpolarized Nucleons -- 8.3.1 Torsion Pendulum Experiments.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">8.3.2 Electron-Spin Based Magnetometer Searches -- 8.3.3 Spectroscopic Constraints with Trapped Ions -- 8.4 Monopole-Dipole Searches with Polarized Nuclear Spins and Unpolarized Nucleons -- 8.4.1 Axion Searches with Comagnetometers -- 8.4.1.1 Noble Gas Comagnetometer -- 8.4.1.2 Noble Gas: Alkali Comagnetometer Searches -- 8.4.2 NMR-Based Spin-Dependent Searches -- 8.4.3 Resonant NMR-Based Spin-Dependent Interaction Search: ARIADNE -- 8.5 Spectroscopic Measurements of Spin-Spin Coupled Interactions -- 8.6 Outlook -- References -- 9 Light-Shining-Through-Walls Experiments -- 9.1 Introduction -- 9.1.1 UBDM Interaction with Photons in a Magnetic Field -- 9.1.2 Magnets -- 9.1.3 Light-Tightness -- 9.2 Boosting Sensitivity with a Production Cavity -- 9.2.1 Linear Cavity -- 9.2.2 Cavity Spatial Modes -- 9.2.3 Stabilization of Optical Cavities -- 9.2.4 Achieving High Finesse -- 9.2.5 High-Power Operation -- 9.3 Dual Cavity LSW Experiments -- 9.3.1 Dual Resonance -- 9.3.2 Spatial Overlap -- 9.3.3 Verification of the Resonance Condition and Spatial Overlap -- 9.4 Detection Techniques -- 9.4.1 Heterodyne Interferometry -- 9.4.2 Transition Edge Sensors -- 9.5 Conclusion -- References -- 10 Global Quantum Sensor Networks as Probes of the Dark Sector -- 10.1 Introduction -- 10.2 Portals Into Dark Sector -- 10.3 How Do Atomic Clocks and Magnetometers Work? -- 10.3.1 Atomic Clocks -- 10.3.2 Atomic Magnetometers -- 10.4 DM Searches with Network of Sensors -- 10.4.1 Overview of Existing Networks -- 10.4.2 Network-Based Searches for ``Wavy'' Dark Matter -- 10.4.3 Network-Based Searches for ``Clumpy'' Dark Matter -- 10.5 Putting It All Together -- 10.6 Summary -- References -- Correction to: The Search for Ultralight Bosonic Dark Matter -- Solutions to Chapter Problems -- References -- Index.</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources.</subfield></datafield><datafield tag="590" ind1=" " ind2=" "><subfield code="a">Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. </subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">van Bibber, Karl.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Jackson Kimball, Derek F.</subfield><subfield code="t">The Search for Ultralight Bosonic Dark Matter</subfield><subfield code="d">Cham : Springer International Publishing AG,c2022</subfield><subfield code="z">9783030958510</subfield></datafield><datafield tag="797" ind1="2" ind2=" "><subfield code="a">ProQuest (Firm)</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=7102044</subfield><subfield code="z">Click to View</subfield></datafield></record></collection>