Environmental Technologies to Treat Rare Earth Element Pollution.

Saved in:
Bibliographic Details
Superior document:Integrated Environmental Technology Series
:
TeilnehmendeR:
Place / Publishing House:London : : IWA Publishing,, 2022.
Ã2021.
Year of Publication:2022
Edition:1st ed.
Language:English
Series:Integrated Environmental Technology Series
Online Access:
Physical Description:1 online resource (342 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Cover
  • Contents
  • Preface
  • List of Contributors
  • Part I: Environmental Technologies to Treat Rare Earth Pollution
  • Chapter 1: Environmental technologies to treat pollution by rare earth elements
  • 1.1 INTRODUCTION
  • 1.2 BIOGEOCHEMICAL CYCLES OF RARE EARTH ELEMENTS
  • 1.3 RECOVERY OF RARE EARTH ELEMENTS FROM WASTE RESOURCES
  • 1.4 TECHNOLOGIES TO RECOVER RARE EARTH ELEMENTS
  • 1.5 APPLICATION OF RARE EARTH ELEMENTS AS NANOPARTICLES
  • REFERENCES
  • Part II: Biogeochemical Cycles of Rare Earth Elements
  • Chapter 2: Discovery and occurrence of lanthanoids and yttrium
  • 2.1 NAMING AND STRUCTURE OF LANTHANOIDS AND YTTRIUM
  • 2.1.1 Nomenclature
  • 2.1.2 Structure
  • 2.1.3 Other fancy names of REE
  • 2.2 HISTORY OF Y AND REE DISCOVERY
  • 2.2.1 Discovery of REE
  • 2.2.2 Yttrium, Y, 1794
  • 2.2.3 Lanthanum, La, 1839
  • 2.2.4 Cerium, Ce, 1803
  • 2.2.5 Praseodymium, Pr, 1885
  • 2.2.6 Neodymium, Nd, 1885
  • 2.2.7 Promethium, Pm, 1947
  • 2.2.8 Samarium, Sm, 1879
  • 2.2.9 Europium, Eu, 1901
  • 2.2.10 Gadolinium, Gd, 1880
  • 2.2.11 Terbium, Tb, 1843
  • 2.2.12 Dysprosium, Dy, 1886
  • 2.2.13 Holmium, Ho, 1879
  • 2.2.14 Erbium, Er, 1843
  • 2.2.15 Thulium, Tm, 1879
  • 2.2.16 Ytterbium, Yb, 1878
  • 2.2.17 Lutetium, Lu, 1907
  • 2.3 PRESENTATION OF THE SUITE OF LANTHANOIDS AND Y
  • 2.4 OCCURRENCE OF LANTHANOIDS AND Y
  • 2.4.1 REY in rocks
  • 2.4.2 Analyses of REY in abundant minerals
  • 2.4.3 REY distribution in the hydrosphere
  • 2.5 REY DEPOSITS
  • 2.5.1 Geopolitical sources of rare earth elements production
  • 2.5.2 Endogenic enrichment of REY
  • 2.5.2.1 Carbonatites
  • 2.5.2.2 Pegmatites
  • 2.5.2.3 Mountain pass REY deposit
  • 2.5.2.4 Bayan Obo REY deposit
  • 2.5.2.5 Peralkaline igneous deposits
  • 2.5.2.6 Hydrothermal vein deposits
  • 2.5.3 Exogenic enrichment
  • 2.5.3.1 Regolith-hosted REY deposits
  • 2.5.3.2 Ion-adsorbed deposits.
  • 2.5.3.3 Ocean seabed mud
  • 2.5.4 Anthropogenic REY enrichments
  • 2.6 SUMMARY
  • REFERENCES
  • Chapter 3: Occurrence and detection of the rare earth elements
  • 3.1 INTRODUCTION
  • 3.2 MINERALOGY OF THE REE
  • 3.3 PRIMARY SOURCES OF THE RARE EARTH ELEMENTS
  • 3.4 PROCESSES INVOLVED IN THE FORMATION OF REE DEPOSITS
  • 3.4.1 Igneous processes involved in REE deposit formation
  • 3.4.2 Hydrothermal processes involved in REE deposit formation
  • 3.4.3 Sedimentary, secondary and placer processes
  • 3.5 RARE EARTH ELEMENT MINERAL DEPOSIT TYPES
  • 3.5.1 Carbonatites
  • 3.5.2 Alkaline rocks
  • 3.5.3 Granites and rhyolites
  • 3.5.4 Iron oxide-copper-gold (IOCG)
  • 3.5.5 Unconformity-related
  • 3.5.6 Placer and heavy mineral sands
  • 3.5.7 Laterite and ionic clay deposits
  • 3.6 EXPLORATION FOR REE DEPOSITS
  • 3.7 CONCLUSIONS
  • REFERENCES
  • Chapter 4: Sources and applications of rare earth elements
  • 4.1 INTRODUCTION
  • 4.1.1 Occurrence in different geological systems, mineralogy and demand
  • 4.1.2 Behavior of REE in different geological systems
  • 4.2 BRIEF HISTORY OF REE
  • 4.3 TYPES OF REE DEPOSITS
  • 4.3.1 Primary REE deposits
  • 4.3.2 Secondary REE deposits
  • 4.3.2.1 Ion-adsorption deposits
  • 4.3.2.2 Heavy mineral placer deposits
  • 4.4 ALTERNATE SOURCES FOR REE
  • 4.4.1 REE in coal and coal fly ash
  • 4.4.2 REE in ocean-bottom sediments
  • 4.4.3 Phosphorite deposits
  • 4.4.4 REE in river sediments
  • 4.4.5 Waste rock sources from old and closed mines
  • 4.4.6 Red mud
  • 4.4.7 Extraterrestrial REE resources
  • 4.4.8 REE from electronic and industrial waste
  • 4.5 INDUSTRIAL APPLICATIONS
  • 4.5.1 Glass industry
  • 4.5.2 Energy-efficient lighting
  • 4.5.3 Rechargeable batteries
  • 4.5.4 Permanent magnets
  • 4.5.5 Electronics
  • 4.5.6 Catalysts
  • 4.5.7 Alloys
  • 4.5.8 Defense applications
  • 4.5.9 REE in paints and pigments.
  • 4.5.10 REE in agriculture
  • 4.5.11 REE in medicine
  • 4.5.12 Miscellaneous
  • 4.6 LOOKING INTO THE FUTURE
  • REFERENCES
  • Part III: Recovery of Rare Earth Elements from Waste Resources
  • Chapter 5: Rare earth elements recovery from secondary sources
  • 5.1 INTRODUCTION
  • 5.2 SOURCES OF REE
  • 5.2.1 Brine
  • 5.2.2 Coal fly ash
  • 5.3 REE RECOVERY FROM BRINE SOLUTIONS
  • 5.4 REE RECOVERY FROM COAL FLY ASH
  • 5.5 OTHER WASTE SOURCES
  • 5.6 CONCLUSIONS
  • REFERENCES
  • Chapter 6: Rare earth elements recovery from red mud
  • 6.1 INTRODUCTION
  • 6.2 BAUXITE RESIDUE
  • 6.2.1 Production
  • 6.2.2 Composition
  • 6.2.3 Particle size distribution of red mud
  • 6.3 TECHNOLOGY FOR EXTRACTION OF REES FROM BAUXITE RESIDUE
  • 6.3.1 Methods for physical beneficiation
  • 6.3.1.1 General principle of a hydrocyclone operation process
  • 6.3.1.2 General principle of the multi-gravity separator process
  • 6.3.1.3 Hydrocyclone and multi-gravity separator for red mud treatment
  • 6.3.2 Alkali roasting, smelting and leaching
  • 6.3.3 Sulfation, roasting and leaching
  • 6.3.4 Direct leaching of mineral acid
  • 6.3.5 Pre-concentration-acid leaching
  • 6.4 REE SEPARATION PROCESSES
  • 6.4.1 Fractional crystallization and precipitation
  • 6.4.2 Ion exchange
  • 6.4.3 Solvent extraction
  • 6.5 CONCLUSION
  • REFERENCES
  • Part IV: Technologies to Recover Rare Earth Elements
  • Chapter 7 Adsorptive recovery of rare earth elements
  • 7.1 INTRODUCTION
  • 7.2 REE REMOVAL BY CHEMISORBENTS
  • 7.2.1 Silica based adsorbents
  • 7.2.2 Nanomaterials
  • 7.2.3 Surface modification
  • 7.3 BIOSORBENTS FOR THE RECOVERY OF REE
  • 7.3.1 Advantages of biosorbents
  • 7.3.2 Algae based biosorbents
  • 7.3.3 Agrowaste
  • 7.3.3.1 Animal waste
  • 7.3.3.2 Plant-based waste
  • 7.3.4 Activated carbon
  • 7.3.5 Hydrogels
  • 7.4 DESORPTION FOR THE RECOVERY OF ADSORBED REE
  • 7.5 FUTURE PERSPECTIVE.
  • 7.6 CONCLUSION
  • REFERENCES
  • Chapter 8: Microbial recovery of rare earth elements
  • 8.1 INTRODUCTION
  • 8.2 MICROBIAL RECOVERY OF RARE EARTH ELEMENTS
  • 8.2.1 Bioleaching
  • 8.2.2 Rare earth elements microbial interactions as a biorecovery option
  • 8.2.2.1 Microbial cell wall interaction with rare earth elements
  • 8.2.2.2 Microbial resistant mechanisms for the recovery of REE
  • 8.2.2.2.1 Biosorption
  • 8.2.2.2.2 Bioaccumulation
  • 8.2.2.2.3 Biomineralization
  • 8.2.2.2.4 Bioreduction
  • 8.2.3 Selectivity of enzymes as REE recovery strategy
  • 8.2.3.1 The role of REE in microbial metabolism
  • 8.2.3.2 Selectivity of enzymes for REE
  • 8.3 CHALLENGES AND FUTURE PERSPECTIVES OF REE BIORECOVERY
  • REFERENCES
  • Chapter 9: Bioleaching of rare earth elements from industrial and electronic wastes: mechanism and process efficiency
  • 9.1 INTRODUCTION
  • 9.2 MICROBIAL PROCESSES FOR RECOVERY OF RARE EARTH ELEMENTS (REE)
  • 9.2.1 REE mobilization
  • 9.2.1.1 Redoxolysis
  • 9.2.1.2 Acidolysis
  • 9.2.1.3 Complexolysis
  • 9.2.2 REE biorecovery
  • 9.2.2.1 Biosorption
  • 9.2.2.2 Bioaccumulation
  • 9.2.2.3 Bioprecipitation
  • 9.3 ROLE OF ALGAL AND FUNGAL SPECIES IN THE RECOVERY OF REE
  • 9.3.1 Algae
  • 9.3.2 Fungi
  • 9.4 MICROBIAL RECOVERY OF REE FROM DIFFERENT WASTES
  • 9.4.1 Coal fly ash
  • 9.4.2 Electronic wastes
  • 9.4.3 Red mud
  • 9.5 CONCLUSION
  • REFERENCES
  • Chapter 10: Biological recovery of rare earth elements from mine drainage using the sulfidogenic process
  • 10.1 INTRODUCTION
  • 10.2 REACTIVITY OF REE-BEARING MINERALS
  • 10.2.1 Reactivity of REE-bearing carbonates
  • 10.2.2 Reactivity of REE-bearing silicates
  • 10.2.3 Reactivity of REE-bearing phosphates
  • 10.3 CONVENTIONAL METHODS FOR RECOVERY OF REE
  • 10.4 REE-RICH WASTEWATER ASSOCIATED WITH ACID MINE DRAINAGE
  • 10.5 RECOVERY OF REE THROUGH BIOLOGICAL TREATMENT.
  • 10.5.1 SRB treatment of REE-containing mining waste
  • 10.5.2 Treatment of phosphogypsum waste leachate
  • 10.5.2.1 Bioreactor performance
  • 10.5.2.2 Mineralogy of the REE precipitates
  • 10.5.3 Sulfidic treatment of AMD
  • 10.5.3.1 Bioreactor performance
  • 10.5.3.2 Mineralogy of REE precipitates
  • 10.5.3.3 Toxicity of REE to bioreactor sludge
  • 10.6 ECONOMIC FEASIBILITY OF REE RECOVERY FROM SECONDARY SOURCES
  • 10.7 FINAL CONSIDERATION
  • REFERENCES
  • Chapter 11: Plant based removal and recovery of rare earth elements
  • 11.1 INTRODUCTION
  • 11.2 SOURCES AND RELEASE OF REE IN THE ENVIRONMENT
  • 11.2.1 Chemical characteristics of REE
  • 11.2.2 Sources of REE
  • 11.2.2.1 Natural sources
  • 11.2.2.2 Industrial sources
  • 11.3 EXTRACTION AND RECOVERY OF REE
  • 11.3.1 Phytoextraction
  • 11.3.1.1 Agromining
  • 11.3.1.2 REE plant uptake
  • 11.3.1.3 Sequential extraction of REE from soil
  • 11.3.2 Other extraction methods
  • 11.4 PHYTOREMEDIATION OF REE
  • 11.4.1 Plant metabolism for REE phytoremediation
  • 11.4.1.1 Plant species selection
  • 11.4.1.2 Bioindicator plants
  • 11.4.1.3 REE in plant metabolism
  • 11.4.2 Plants biomass for biosorption
  • 11.5 WETLANDS FOR REE RETENTION AND RECOVERY
  • 11.5.1 Natural wetlands
  • 11.5.2 Constructed wetlands
  • 11.6 CONCLUSIONS
  • REFERENCES
  • Part V: Application of Rare Earth Elements as Nanoparticles
  • Chapter 12: Rare earth doped nanoparticles and their applications
  • 12.1 INTRODUCTION
  • 12.2 BIOMEDICAL APPLICATIONS
  • 12.2.1 Nanoparticles for medical treatment
  • 12.2.1.1 Hyperthermal therapy
  • 12.2.1.2 Magnetic resonance imaging (MRI)
  • 12.2.2 Rare earth doped iron oxide nanoparticles
  • 12.2.2.1 Iron oxide nanoparticles
  • 12.2.2.2 Rare earth nanoparticles
  • 12.2.2.3 Rare earth nanoparticle synthesis
  • 12.2.2.3.1 Co-precipitation
  • 12.2.2.3.2 Electrochemical synthesis.
  • 12.2.2.3.3 Thermal decomposition synthesis.