Environmental Technologies to Treat Sulfur Pollution : : Principles and Engineering.

Saved in:
Bibliographic Details
Superior document:Integrated Environmental Technology Series
:
Place / Publishing House:London : : IWA Publishing,, 2020.
Ã2020.
Year of Publication:2020
Edition:1st ed.
Language:English
Series:Integrated Environmental Technology Series
Online Access:
Physical Description:1 online resource (545 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Cover
  • Contents
  • Preface
  • List of Contributors
  • Part I: Introduction
  • Chapter 1: Environmental technologies to treat sulfur pollution: How to read this book?
  • 1.1 INTRODUCTION
  • 1.2 THE SULFUR CYCLE
  • 1.3 SULFUR-RELATED PROBLEMS
  • 1.4 TECHNOLOGIES TO DESULFURISE RESOURCES
  • 1.5 TREATMENT OF POLLUTION BY SULFUROUS COMPOUNDS
  • 1.6 USE OF SULFUR CYCLE CONVERSIONS IN ADVANCED WASTEWATER TREATMENT AND RESOURCE RECOVERY
  • REFERENCES
  • Part II: The Sulfur Cycle
  • Chapter 2: The chemical sulfur cycle
  • 2.1 INTRODUCTION
  • 2.1.1 Oxidation states and redox potentials
  • 2.1.2 Catenation of sulfur atoms
  • 2.2 ELEMENTAL SULFUR AND HYDROPHOBIC SULFUR SOLS
  • 2.2.1 Sulfur allotropes
  • 2.2.2 Liquid sulfur
  • 2.2.3 Gaseous sulfur
  • 2.2.4 Sulfur sols from elemental sulfur (Weimarn sols)
  • 2.3 SULFIDE AND POLYSULFIDES
  • 2.3.1 Hydrogen sulfide and sulfide ions
  • 2.3.2 Polysulfides and polysulfanes
  • 2.3.3 Polysulfido complexes of transition metals and ion pairs
  • 2.3.4 Oxidation of sulfide and polysulfide ions by metal ions
  • 2.4 SULFITES, THIOSULFATES, DITHIONITES AND DITHIONATES
  • 2.4.1 Sulfur dioxide, sulfite and disulfite ions as well as sulfurous and sulfonic acids
  • 2.4.2 Thiosulfates and thiosulfuric acid
  • 2.4.3 Dithionites and dithionous acid
  • 2.4.4 Dithionates and dithionic acid
  • 2.5 POLYTHIONATES AND HYDROPHILIC SULFUR SOLS
  • 2.5.1 Polythionates and polythionic acids
  • 2.5.2 Hydrophilic sulfur sols (Raffo and Selmi sols)
  • 2.6 SULFURIC ACID AND SULFATES
  • 2.7 DISPROPORTIONATION OF ELEMENTAL SULFUR IN WATER
  • 2.8 ORGANIC DERIVATIVES OF THE TYPE R-Sn-R (ORGANOPOLYSULFANES)
  • 2.8.1 Synthetic polysulfanes
  • 2.8.2 Naturally occurring polysulfanes
  • REFERENCES
  • Chapter 3: A biochemical view on the biological sulfur cycle
  • 3.1 INTRODUCTION
  • 3.2 IMPORTANT INORGANIC SULFUR COMPOUNDS OF THE BIOLOGICAL SULFUR CYCLE.
  • 3.3 THE BIOLOGICAL SULFUR CYCLE
  • 3.4 DISSIMILATORY REDUCTION OF OXIDIZED SULFUR COMPOUNDS
  • 3.4.1 Dissimilatory reduction of sulfate
  • 3.4.2 Dissimilatory reduction of sulfur cycle intermediates
  • 3.4.2.1 Dissimilatory reduction of sulfite
  • 3.4.2.2 Dissimilatory reduction of thiosulfate
  • 3.4.2.3 Dissimilatory reduction of tetrathionate
  • 3.4.2.4 Dissimilatory reduction of sulfur and polysulfides
  • 3.5 DISSIMILATORY OXIDATION OF REDUCED SULFUR COMPOUNDS
  • 3.5.1 Oxidation of thiosulfate
  • 3.5.1.1 Oxidation of thiosulfate to tetrathionate
  • 3.5.1.2 Oxidation of thiosulfate to sulfate: the Sox system
  • 3.5.1.3 Role of Sox proteins for oxidation of sulfur compounds other than thiosulfate
  • 3.5.2 Tetrathionate oxidation
  • 3.5.3 Oxidation of sulfide and polysulfides
  • 3.5.3.1 Sulfide:quinone oxidoreductase
  • 3.5.3.2 Flavocytochrome c and multitude of sulfide-oxidizing systems
  • 3.5.4 Oxidation of external sulfur
  • 3.5.5 Biogenic sulfur globules
  • 3.5.6 Sox-independent, cytoplasmic oxidation of sulfane sulfur to sulfite
  • 3.5.6.1 rDsr pathway
  • 3.5.6.2 sHdr pathway
  • 3.5.6.3 Formation of sulfite via reactions involving molecular oxygen
  • 3.5.6.3.1 Sulfur dioxygenase
  • 3.5.6.3.2 Sulfur oxygenase reductase
  • 3.5.7 Oxidation of sulfite
  • 3.5.7.1 Oxidation of sulfite outside of the cytoplasm
  • 3.5.7.2 Oxidation of sulfite in the cytoplasm
  • 3.6 SULFUR DISPROPORTIONATION
  • ACKNOWLEDGEMENTS
  • REFERENCES
  • Part III: Sulfur-Related Problems
  • Chapter 4: Sulfur transformations in sewer networks: effects, prediction and mitigation of impacts
  • 4.1 INTRODUCTION
  • 4.2 SEWER NETWORK CHARACTERISTICS AND RELATED POTENTIAL FOR SULFUR TRANSFORMATIONS
  • 4.2.1 Microbial and chemical process characteristics of sewer networks
  • 4.2.2 Wastewater characteristics
  • 4.2.3 Sewer networks
  • 4.2.4 Microbial and chemical processes.
  • 4.2.5 Transport characteristics
  • 4.2.6 Formulation of the sulfur cycle in sewer networks
  • 4.3 EFFECTS OF HYDROGEN SULFIDE IN SEWERS
  • 4.4 FACTORS AFFECTING SULFIDE RELATED PROBLEMS IN SEWERS
  • 4.4.1 Presence of sulfate
  • 4.4.2 Temperature
  • 4.4.3 Dissolved oxygen
  • 4.4.4 pH
  • 4.4.5 Area-to-volume ratio of sewer pipes
  • 4.4.6 Quality and quantity of biodegradable organic matter
  • 4.4.7 Anaerobic residence time in the sewer network
  • 4.4.8 Flow velocity
  • 4.5 PREDICTION OF SULFIDE RELATED ADVERSE EFFECTS IN SEWERS
  • 4.5.1 Empirical equations for sulfide formation in pressure sewers and full flowing gravity sewers
  • 4.5.2 Simple formulated "risk models" for sulfide build-up in gravity sewers
  • 4.5.3 Empirical equations for sulfide formation in gravity sewers
  • 4.5.4 Analytical and conceptual formulated sewer process models
  • 4.5.5 Computational and probabilistic models for sewer deterioration and service life
  • 4.5.6 Final comments for prediction of sulfide related impacts on sewers
  • 4.6 METHODS FOR CONTROL OF SULFIDE PROBLEMS IN SEWERS
  • 4.6.1 Suppression or inhibition of sulfide formation
  • 4.6.1.1 pH increase
  • 4.6.1.2 Mechanical removal of biofilm
  • 4.6.1.3 Injection of oxygen or nitrate dosing
  • 4.6.2 Reduction of the sulfide concentration in the water phase
  • 4.6.2.1 Addition of electron acceptors
  • 4.6.2.2 Iron salt addition
  • 4.6.3 Reduction or dilution of sewer gases
  • REFERENCES
  • Chapter 5: Corrosion and sulfur-related bacteria
  • 5.1 INTRODUCTION
  • 5.2 MECHANISMS
  • 5.2.1 Corrosion of concrete
  • 5.2.1.1 Formation of aqueous hydrogen sulfide
  • 5.2.1.2 Radiation and buildup of hydrogen sulfide
  • 5.2.1.3 Generation of sulfuric acid
  • 5.2.1.4 Deterioration of concrete materials
  • 5.2.2 Corrosion of carbon steel
  • 5.2.2.1 Cathodic depolarization.
  • 5.2.2.2 Chemical microbiologically influenced corrosion (CMIC)
  • 5.2.2.3 Electrical microbiologically influenced corrosion (EMIC)
  • 5.2.2.4 SOB influenced corrosion
  • 5.3 MIC OBSERVATIONS
  • 5.3.1 MIC of concrete
  • 5.3.1.1 Corrosion areas
  • 5.3.1.2 Corrosion rates
  • 5.3.1.3 Cement types
  • 5.3.1.4 Siliceous and calcareous aggregates
  • 5.3.2 MIC of carbon steel
  • 5.3.2.1 Corrosion caused by SRB
  • 5.3.2.2 Corrosion caused by SOB
  • 5.4 MITIGATION AND CONTROL MEASURES
  • 5.4.1 For MIC of concrete
  • 5.4.1.1 Improving sewer design features
  • 5.4.1.2 Controlling sulfide in the sewer environment
  • 5.4.1.3 Improving the performance of concrete
  • 5.4.2 For MIC of carbon steel
  • 5.4.2.1 Biocides
  • 5.4.2.2 Inhibitors
  • 5.4.2.3 Biological inhibition
  • 5.4.2.4 Periodic pigging/assuring cleanliness
  • 5.4.2.5 Protective coatings
  • 5.4.2.6 Cathodic protection
  • REFERENCES
  • Chapter 6: Biological treatment of organic sulfate-rich wastewaters
  • 6.1 INTRODUCTION
  • 6.2 ANAEROBIC TREATMENT OF SULFATE-RICH WASTEWATERS
  • 6.2.1 Competition between sulfate-reducing bacteria and methanogenic archaea
  • 6.2.2 Sulfide toxicity in anaerobic digestion
  • 6.2.3 Techniques for quantification of sulfide toxicity on microbial populations involved in anaerobic digestion
  • 6.2.3.1 Specific methanogenic activity/toxicity tests
  • 6.2.3.2 Specific sulfidogenic activity/toxicity tests
  • 6.2.3.3 Determination of kinetic growth properties of microbial populations
  • 6.2.4 Sulfite toxicity
  • 6.2.5 Cation inhibition in anaerobic digestion
  • 6.3 PROCESS TECHNOLOGY OF TREATMENT OF ORGANIC SULFATE-RICH WASTEWATERS
  • 6.3.1 Modelling the effect of sulfide toxicity in anaerobic digestion
  • 6.3.2 Alleviating sulfide toxicity
  • 6.4 DOWNSTREAM PROCESSES FOR BIOLOGICAL SULFATE-REDUCTION EFFLUENTS
  • 6.4.1 Sulfide partial oxidation to elemental sulfur.
  • 6.4.2 Sulfide oxidation using nitrate as electron acceptor
  • 6.5 SRB-BASED BIOREMEDIATION TECHNIQUES
  • 6.5.1 Treatment of inorganic sulfate-rich wastewaters
  • 6.5.2 Heavy metal removal
  • 6.5.3 Biodegradation of xenobiotics
  • 6.5.4 Micro-aerobic treatment of sulfate-rich wastewaters
  • 6.6 INTEGRATION OF SULFATE REDUCTION IN RESOURCE RECOVERY TECHNOLOGIES
  • 6.6.1 Bio-commodities
  • 6.6.2 Bio-electricity
  • 6.6.3 Biomining and nanoparticles biosynthesis
  • REFERENCES
  • Chapter 7: Biological removal of sulfurous compounds and metals from inorganic wastewaters
  • 7.1 INTRODUCTION
  • 7.2 SULFUR-RICH WASTEWATERS ASSOCIATED WITH MINING ACTIVITIES
  • 7.2.1 Origin of acid mine drainage
  • 7.2.2 Chemical characteristics of AMD
  • 7.2.3 Impact of AMD on the biosphere
  • 7.3 PREVENTION, CONTAINMENT AND TREATMENT OF AMD
  • 7.3.1 Non-biological prevention and remediation systems
  • 7.3.2 Biological remediation systems
  • 7.4 SULFATE REDUCTION IN MINE DRAINAGE WATERS AND OTHER EXTREMELY ACIDIC ENVIRONMENTS
  • 7.4.1 Physiological constraints on sulfate- and sulfur-reduction
  • 7.4.2 Acidophilic sulfate- and sulfur-reducing prokaryotes
  • 7.5 BIOENGINEERING APPROACHES FOR REMEDIATING SULFATE-RICH MINE WATERS
  • 7.5.1 Constructed wetlands
  • 7.5.2 Bioreactor systems
  • 7.5.3 Pros and cons of the options available for remediating acidic sulfurous wastewaters
  • REFERENCES
  • Chapter 8: Electrochemical removal of sulfur pollution
  • 8.1 INTRODUCTION
  • 8.2 ENVIRONMENTAL ELECTROCHEMISTRY TO TREAT SULFUR POLLUTION
  • 8.2.1 Brief introduction to environmental electrochemistry
  • 8.2.2 Basics of electrochemical engineering for environmental applications
  • 8.2.2.1 The electrochemical cell
  • 8.2.2.2 Thermodynamics of electrochemical reactions and the electrode potential
  • 8.2.2.3 Overpotential and ohmic resistance.
  • 8.2.2.4 Efficiencies of the electrochemical process.