Environmental Technologies to Treat Sulfur Pollution : : Principles and Engineering.

Saved in:
Bibliographic Details
Superior document:Integrated Environmental Technology Series
:
Place / Publishing House:London : : IWA Publishing,, 2020.
Ã2020.
Year of Publication:2020
Edition:1st ed.
Language:English
Series:Integrated Environmental Technology Series
Online Access:
Physical Description:1 online resource (545 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 10981nam a22004573i 4500
001 5006978139
003 MiAaPQ
005 20240229073846.0
006 m o d |
007 cr cnu||||||||
008 240229s2020 xx o ||||0 eng d
020 |a 9781789060966  |q (electronic bk.) 
020 |z 9781789060959 
035 |a (MiAaPQ)5006978139 
035 |a (Au-PeEL)EBL6978139 
035 |a (OCoLC)1232696345 
040 |a MiAaPQ  |b eng  |e rda  |e pn  |c MiAaPQ  |d MiAaPQ 
082 0 |a 363.7/3 
100 1 |a Lens, Piet. 
245 1 0 |a Environmental Technologies to Treat Sulfur Pollution :  |b Principles and Engineering. 
250 |a 1st ed. 
264 1 |a London :  |b IWA Publishing,  |c 2020. 
264 4 |c Ã2020. 
300 |a 1 online resource (545 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Integrated Environmental Technology Series 
505 0 |a Cover -- Contents -- Preface -- List of Contributors -- Part I: Introduction -- Chapter 1: Environmental technologies to treat sulfur pollution: How to read this book? -- 1.1 INTRODUCTION -- 1.2 THE SULFUR CYCLE -- 1.3 SULFUR-RELATED PROBLEMS -- 1.4 TECHNOLOGIES TO DESULFURISE RESOURCES -- 1.5 TREATMENT OF POLLUTION BY SULFUROUS COMPOUNDS -- 1.6 USE OF SULFUR CYCLE CONVERSIONS IN ADVANCED WASTEWATER TREATMENT AND RESOURCE RECOVERY -- REFERENCES -- Part II: The Sulfur Cycle -- Chapter 2: The chemical sulfur cycle -- 2.1 INTRODUCTION -- 2.1.1 Oxidation states and redox potentials -- 2.1.2 Catenation of sulfur atoms -- 2.2 ELEMENTAL SULFUR AND HYDROPHOBIC SULFUR SOLS -- 2.2.1 Sulfur allotropes -- 2.2.2 Liquid sulfur -- 2.2.3 Gaseous sulfur -- 2.2.4 Sulfur sols from elemental sulfur (Weimarn sols) -- 2.3 SULFIDE AND POLYSULFIDES -- 2.3.1 Hydrogen sulfide and sulfide ions -- 2.3.2 Polysulfides and polysulfanes -- 2.3.3 Polysulfido complexes of transition metals and ion pairs -- 2.3.4 Oxidation of sulfide and polysulfide ions by metal ions -- 2.4 SULFITES, THIOSULFATES, DITHIONITES AND DITHIONATES -- 2.4.1 Sulfur dioxide, sulfite and disulfite ions as well as sulfurous and sulfonic acids -- 2.4.2 Thiosulfates and thiosulfuric acid -- 2.4.3 Dithionites and dithionous acid -- 2.4.4 Dithionates and dithionic acid -- 2.5 POLYTHIONATES AND HYDROPHILIC SULFUR SOLS -- 2.5.1 Polythionates and polythionic acids -- 2.5.2 Hydrophilic sulfur sols (Raffo and Selmi sols) -- 2.6 SULFURIC ACID AND SULFATES -- 2.7 DISPROPORTIONATION OF ELEMENTAL SULFUR IN WATER -- 2.8 ORGANIC DERIVATIVES OF THE TYPE R-Sn-R (ORGANOPOLYSULFANES) -- 2.8.1 Synthetic polysulfanes -- 2.8.2 Naturally occurring polysulfanes -- REFERENCES -- Chapter 3: A biochemical view on the biological sulfur cycle -- 3.1 INTRODUCTION -- 3.2 IMPORTANT INORGANIC SULFUR COMPOUNDS OF THE BIOLOGICAL SULFUR CYCLE. 
505 8 |a 3.3 THE BIOLOGICAL SULFUR CYCLE -- 3.4 DISSIMILATORY REDUCTION OF OXIDIZED SULFUR COMPOUNDS -- 3.4.1 Dissimilatory reduction of sulfate -- 3.4.2 Dissimilatory reduction of sulfur cycle intermediates -- 3.4.2.1 Dissimilatory reduction of sulfite -- 3.4.2.2 Dissimilatory reduction of thiosulfate -- 3.4.2.3 Dissimilatory reduction of tetrathionate -- 3.4.2.4 Dissimilatory reduction of sulfur and polysulfides -- 3.5 DISSIMILATORY OXIDATION OF REDUCED SULFUR COMPOUNDS -- 3.5.1 Oxidation of thiosulfate -- 3.5.1.1 Oxidation of thiosulfate to tetrathionate -- 3.5.1.2 Oxidation of thiosulfate to sulfate: the Sox system -- 3.5.1.3 Role of Sox proteins for oxidation of sulfur compounds other than thiosulfate -- 3.5.2 Tetrathionate oxidation -- 3.5.3 Oxidation of sulfide and polysulfides -- 3.5.3.1 Sulfide:quinone oxidoreductase -- 3.5.3.2 Flavocytochrome c and multitude of sulfide-oxidizing systems -- 3.5.4 Oxidation of external sulfur -- 3.5.5 Biogenic sulfur globules -- 3.5.6 Sox-independent, cytoplasmic oxidation of sulfane sulfur to sulfite -- 3.5.6.1 rDsr pathway -- 3.5.6.2 sHdr pathway -- 3.5.6.3 Formation of sulfite via reactions involving molecular oxygen -- 3.5.6.3.1 Sulfur dioxygenase -- 3.5.6.3.2 Sulfur oxygenase reductase -- 3.5.7 Oxidation of sulfite -- 3.5.7.1 Oxidation of sulfite outside of the cytoplasm -- 3.5.7.2 Oxidation of sulfite in the cytoplasm -- 3.6 SULFUR DISPROPORTIONATION -- ACKNOWLEDGEMENTS -- REFERENCES -- Part III: Sulfur-Related Problems -- Chapter 4: Sulfur transformations in sewer networks: effects, prediction and mitigation of impacts -- 4.1 INTRODUCTION -- 4.2 SEWER NETWORK CHARACTERISTICS AND RELATED POTENTIAL FOR SULFUR TRANSFORMATIONS -- 4.2.1 Microbial and chemical process characteristics of sewer networks -- 4.2.2 Wastewater characteristics -- 4.2.3 Sewer networks -- 4.2.4 Microbial and chemical processes. 
505 8 |a 4.2.5 Transport characteristics -- 4.2.6 Formulation of the sulfur cycle in sewer networks -- 4.3 EFFECTS OF HYDROGEN SULFIDE IN SEWERS -- 4.4 FACTORS AFFECTING SULFIDE RELATED PROBLEMS IN SEWERS -- 4.4.1 Presence of sulfate -- 4.4.2 Temperature -- 4.4.3 Dissolved oxygen -- 4.4.4 pH -- 4.4.5 Area-to-volume ratio of sewer pipes -- 4.4.6 Quality and quantity of biodegradable organic matter -- 4.4.7 Anaerobic residence time in the sewer network -- 4.4.8 Flow velocity -- 4.5 PREDICTION OF SULFIDE RELATED ADVERSE EFFECTS IN SEWERS -- 4.5.1 Empirical equations for sulfide formation in pressure sewers and full flowing gravity sewers -- 4.5.2 Simple formulated "risk models" for sulfide build-up in gravity sewers -- 4.5.3 Empirical equations for sulfide formation in gravity sewers -- 4.5.4 Analytical and conceptual formulated sewer process models -- 4.5.5 Computational and probabilistic models for sewer deterioration and service life -- 4.5.6 Final comments for prediction of sulfide related impacts on sewers -- 4.6 METHODS FOR CONTROL OF SULFIDE PROBLEMS IN SEWERS -- 4.6.1 Suppression or inhibition of sulfide formation -- 4.6.1.1 pH increase -- 4.6.1.2 Mechanical removal of biofilm -- 4.6.1.3 Injection of oxygen or nitrate dosing -- 4.6.2 Reduction of the sulfide concentration in the water phase -- 4.6.2.1 Addition of electron acceptors -- 4.6.2.2 Iron salt addition -- 4.6.3 Reduction or dilution of sewer gases -- REFERENCES -- Chapter 5: Corrosion and sulfur-related bacteria -- 5.1 INTRODUCTION -- 5.2 MECHANISMS -- 5.2.1 Corrosion of concrete -- 5.2.1.1 Formation of aqueous hydrogen sulfide -- 5.2.1.2 Radiation and buildup of hydrogen sulfide -- 5.2.1.3 Generation of sulfuric acid -- 5.2.1.4 Deterioration of concrete materials -- 5.2.2 Corrosion of carbon steel -- 5.2.2.1 Cathodic depolarization. 
505 8 |a 5.2.2.2 Chemical microbiologically influenced corrosion (CMIC) -- 5.2.2.3 Electrical microbiologically influenced corrosion (EMIC) -- 5.2.2.4 SOB influenced corrosion -- 5.3 MIC OBSERVATIONS -- 5.3.1 MIC of concrete -- 5.3.1.1 Corrosion areas -- 5.3.1.2 Corrosion rates -- 5.3.1.3 Cement types -- 5.3.1.4 Siliceous and calcareous aggregates -- 5.3.2 MIC of carbon steel -- 5.3.2.1 Corrosion caused by SRB -- 5.3.2.2 Corrosion caused by SOB -- 5.4 MITIGATION AND CONTROL MEASURES -- 5.4.1 For MIC of concrete -- 5.4.1.1 Improving sewer design features -- 5.4.1.2 Controlling sulfide in the sewer environment -- 5.4.1.3 Improving the performance of concrete -- 5.4.2 For MIC of carbon steel -- 5.4.2.1 Biocides -- 5.4.2.2 Inhibitors -- 5.4.2.3 Biological inhibition -- 5.4.2.4 Periodic pigging/assuring cleanliness -- 5.4.2.5 Protective coatings -- 5.4.2.6 Cathodic protection -- REFERENCES -- Chapter 6: Biological treatment of organic sulfate-rich wastewaters -- 6.1 INTRODUCTION -- 6.2 ANAEROBIC TREATMENT OF SULFATE-RICH WASTEWATERS -- 6.2.1 Competition between sulfate-reducing bacteria and methanogenic archaea -- 6.2.2 Sulfide toxicity in anaerobic digestion -- 6.2.3 Techniques for quantification of sulfide toxicity on microbial populations involved in anaerobic digestion -- 6.2.3.1 Specific methanogenic activity/toxicity tests -- 6.2.3.2 Specific sulfidogenic activity/toxicity tests -- 6.2.3.3 Determination of kinetic growth properties of microbial populations -- 6.2.4 Sulfite toxicity -- 6.2.5 Cation inhibition in anaerobic digestion -- 6.3 PROCESS TECHNOLOGY OF TREATMENT OF ORGANIC SULFATE-RICH WASTEWATERS -- 6.3.1 Modelling the effect of sulfide toxicity in anaerobic digestion -- 6.3.2 Alleviating sulfide toxicity -- 6.4 DOWNSTREAM PROCESSES FOR BIOLOGICAL SULFATE-REDUCTION EFFLUENTS -- 6.4.1 Sulfide partial oxidation to elemental sulfur. 
505 8 |a 6.4.2 Sulfide oxidation using nitrate as electron acceptor -- 6.5 SRB-BASED BIOREMEDIATION TECHNIQUES -- 6.5.1 Treatment of inorganic sulfate-rich wastewaters -- 6.5.2 Heavy metal removal -- 6.5.3 Biodegradation of xenobiotics -- 6.5.4 Micro-aerobic treatment of sulfate-rich wastewaters -- 6.6 INTEGRATION OF SULFATE REDUCTION IN RESOURCE RECOVERY TECHNOLOGIES -- 6.6.1 Bio-commodities -- 6.6.2 Bio-electricity -- 6.6.3 Biomining and nanoparticles biosynthesis -- REFERENCES -- Chapter 7: Biological removal of sulfurous compounds and metals from inorganic wastewaters -- 7.1 INTRODUCTION -- 7.2 SULFUR-RICH WASTEWATERS ASSOCIATED WITH MINING ACTIVITIES -- 7.2.1 Origin of acid mine drainage -- 7.2.2 Chemical characteristics of AMD -- 7.2.3 Impact of AMD on the biosphere -- 7.3 PREVENTION, CONTAINMENT AND TREATMENT OF AMD -- 7.3.1 Non-biological prevention and remediation systems -- 7.3.2 Biological remediation systems -- 7.4 SULFATE REDUCTION IN MINE DRAINAGE WATERS AND OTHER EXTREMELY ACIDIC ENVIRONMENTS -- 7.4.1 Physiological constraints on sulfate- and sulfur-reduction -- 7.4.2 Acidophilic sulfate- and sulfur-reducing prokaryotes -- 7.5 BIOENGINEERING APPROACHES FOR REMEDIATING SULFATE-RICH MINE WATERS -- 7.5.1 Constructed wetlands -- 7.5.2 Bioreactor systems -- 7.5.3 Pros and cons of the options available for remediating acidic sulfurous wastewaters -- REFERENCES -- Chapter 8: Electrochemical removal of sulfur pollution -- 8.1 INTRODUCTION -- 8.2 ENVIRONMENTAL ELECTROCHEMISTRY TO TREAT SULFUR POLLUTION -- 8.2.1 Brief introduction to environmental electrochemistry -- 8.2.2 Basics of electrochemical engineering for environmental applications -- 8.2.2.1 The electrochemical cell -- 8.2.2.2 Thermodynamics of electrochemical reactions and the electrode potential -- 8.2.2.3 Overpotential and ohmic resistance. 
505 8 |a 8.2.2.4 Efficiencies of the electrochemical process. 
588 |a Description based on publisher supplied metadata and other sources. 
590 |a Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.  
655 4 |a Electronic books. 
776 0 8 |i Print version:  |a Lens, Piet  |t Environmental Technologies to Treat Sulfur Pollution  |d London : IWA Publishing,c2020  |z 9781789060959 
797 2 |a ProQuest (Firm) 
830 0 |a Integrated Environmental Technology Series 
856 4 0 |u https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6978139  |z Click to View