Product Development Within Artificial Intelligence, Ethics and Legal Risk : : Exemplary for Safe Autonomous Vehicles.

Saved in:
Bibliographic Details
:
Place / Publishing House:Wiesbaden : : Springer Vieweg. in Springer Fachmedien Wiesbaden GmbH,, 2022.
©2022.
Year of Publication:2022
Edition:1st ed.
Language:English
Online Access:
Physical Description:1 online resource (281 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Intro
  • Foreword
  • Acknowledgments
  • Danksagungen
  • Abstract
  • Zusammenfassung
  • Symbols
  • Contents
  • Abbreviations
  • List of Figures
  • 1 Introduction
  • 1.1 Initial situation
  • 1.2 Objective and Research Questions
  • 2 Findings from Traffic Accident Analysis
  • 2.1 Motivation
  • 2.2 Categorizing the Levels of Driving Automation
  • 2.3 Accident Data to Demonstrate Potential Safety Benefits and Risks
  • 2.4 Federal Road Traffic Accident Statistics in Germany
  • 2.5 German In-Depth Accident Study (GIDAS)
  • 2.6 Road Traffic Accident Statistics in the USA
  • 2.7 International Road Accident Data Collections
  • 2.8 Accident Data Collections of Automobile Manufacturers
  • 2.9 Accident Data of the German Insurance Association
  • 2.10 Accident Data Collections of Consumer Associations (ADAC)
  • 2.11 The Fundamentals of Accident Data Analysis
  • 2.11.1 Level of Data Collection versus Number of Cases
  • 2.11.2 The Validity of Areas of Action Compared to Areas of Efficiency
  • 2.11.3 Potential Safety Benefits Depending on Automation Levels and Degree of Efficiency
  • 2.12 Significance of Possible Predictions Based on Accident Data
  • 2.12.1 A Posteriori Analyses of Accident Data for "Driver Only"/"No Automation"
  • 2.12.2 A Priori Predictions for Assisted and Partially Automated Driving
  • 2.12.3 Potential Safety Benefits and Test Scenarios for Development of Highly and Fully Automated Driving
  • 2.13 Potential Safety Benefits / Risks and Impacts on Testing
  • 2.13.1 Human Error versus Technical Failure in Full Automation
  • 2.13.2 Potential Safety Benefits - Human and Machine Performance
  • 2.13.3 Artificial Intelligence versus Human Perception Limits and Consequence
  • 2.13.4 Human Error versus Artificial Intelligence Incertitudes
  • 2.13.5 Potential Safety Benefits of Fully Automated Vehicles in Inevitable Incidents.
  • 2.14 Conclusion and Outlook
  • 3 Analysis of Poor Visibility Real-World Test Scenarios
  • 3.1 Motivation
  • 3.2 Safe Development, Validation and Testing
  • 3.2.1 Return of Feedback from Lifecycle of Automated Vehicles
  • 3.2.2 Requirements for Automated Driving to Minimize Risk
  • 3.3 Real-World Scenarios for Development and Testing
  • 3.3.1 Machine versus Human Perception Limits with Consequences for Testing
  • 3.3.2 Relevant Real-World Scenarios for Development and Testing
  • 3.3.3 Integration of Relevant Test Scenarios for Safe Automated Vehicles
  • 3.3.4 Test Scenarios and Requirements in Relation to Legal and Ethical Aspects
  • 3.4 Conclusion and Outlook
  • 4 Technical, Legal, and Economic Risks
  • 4.1 Introduction Development
  • 4.2 Motivation
  • 4.3 Questions of Increased Automation's Product Safety
  • 4.4 Continued Technical Development of Assistance Systems - New Opportunities and Risks
  • 4.5 Expectations Regarding Safety of Complex Vehicle Technology
  • 4.5.1 Steadily Rising Consumer Expectations for Vehicle Safety
  • 4.5.2 Current Safety Expectations of Potential Users
  • 4.5.3 Considerations of Risks and Benefits
  • 4.6 Legal Requirements and Effects
  • 4.6.1 Generally Accepted Rules of Technology
  • 4.6.2 The Product Safety Law (ProdSG)
  • 4.6.3 The Product Liability Law (ProdHaftG)
  • 4.6.4 Ethics, Court Judgments to Operational Risk and Avoidability
  • 4.7 Product Safety Enhancement in Automated Vehicles Based on Expert Knowledge from Liability and Warranty Claims
  • 4.7.1 Experience from Product Crises and Traffic Accidents
  • 4.7.2 Potential Hazard Situations at the Beginning of Development
  • 4.7.3 Methods for Assessing Risks during Development
  • 4.7.4 Approval Criteria from Expert Knowledge
  • 4.7.5 Steps to Increase Product Safety of Automated Vehicles in the General Development Process.
  • 4.7.6 Product Monitoring After Market Launch
  • 4.7.7 Steps for Internationally Agreed Best Practices
  • 4.8 Conclusion and Outlook:
  • 5 Qualitative Interviews with Developers
  • 5.1 Response from a Guided Development Process
  • 5.2 Engineers: Sensible Creativity under Time Pressure
  • 5.3 Psychologist within Development: Priority to Driver's Needs
  • 5.4 Executives Focus on Responsibility for Duty of Care
  • 5.5 Advantages of Guideline-Based Development
  • 5.6 Conclusion: Structured Expert Communication Improves Quality
  • 6 Consulting Concept to Develop New Systems
  • 6.1 Intrinsic Motivation
  • 6.2 Consulting Questions to Fulfill Duty of Care
  • 6.3 Conclusion: Structured Guidelines Support a Safe System
  • 7 Summary and Discussion
  • 7.1 Current agile management changes
  • 7.2 Findings
  • 7.3 Integration of findings
  • Annex A: Change in Jurisdiction on the Responsibility for Pedestrian Accidents
  • Annex B: Summarized Questions for Developers
  • Annex C: Questionnaire for Qualitative Interviews with Developers
  • Suggested online questionnaire on guided development
  • Additional Figures
  • Glossary
  • References: Collaborations out of research groups
  • European Commission Project RESPONSE 2
  • European Commission Project RESPONSE 3
  • German Research Project simTD (Safe intelligent mobility - Test Field Germany)
  • Research with Fraunhofer IVI and TU Munich
  • References of the author
  • List of References.