Data Assimilation Fundamentals : : A Unified Formulation of the State and Parameter Estimation Problem.

Saved in:
Bibliographic Details
Superior document:Springer Textbooks in Earth Sciences, Geography and Environment Series
:
TeilnehmendeR:
Place / Publishing House:Cham : : Springer International Publishing AG,, 2022.
Ã2022.
Year of Publication:2022
Edition:1st ed.
Language:English
Series:Springer Textbooks in Earth Sciences, Geography and Environment Series
Online Access:
Physical Description:1 online resource (251 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Intro
  • Preface
  • Contents
  • Symbols
  • List of Approximations
  • 1 Introduction
  • 2 Problem Formulation
  • 2.1 Bayesian Formulation
  • 2.1.1 Assimilation Windows
  • 2.1.2 Model with Uncertain Inputs
  • 2.1.3 Model State
  • 2.1.4 State Vector
  • 2.1.5 Formulation Over Multiple Assimilation Windows
  • 2.1.6 Measurements with Errors
  • 2.1.7 Bayesian Inference
  • 2.2 Recursive Bayesian Formulation
  • 2.2.1 Markov Model
  • 2.2.2 Independent Measurements
  • 2.2.3 Recursive form of Bayes'
  • 2.2.4 Marginal Bayes' for Filtering
  • 2.3 Error Propagation
  • 2.3.1 Fokker-Planck Equation
  • 2.3.2 Covariance Evolution Equation
  • 2.3.3 Ensemble Predictions
  • 2.4 Various Problem Formulations
  • 2.4.1 General Smoother Formulation
  • 2.4.2 Filter Formulation
  • 2.4.3 Recursive Smoother Formulation
  • 2.4.4 A Smoother Formulation for Perfect Models
  • 2.4.5 Parameter Estimation
  • 2.4.6 Estimating Initial Conditions, Parameters, Controls, and Errors
  • 2.5 Including the Predicted Measurements in Bayes Theorem
  • 3 Maximum a Posteriori Solution
  • 3.1 Maximum a Posteriori (MAP) Estimate
  • 3.2 Gaussian Prior and Likelihood
  • 3.3 Iterative Solutions
  • 3.4 Gauss-Newton Iterations
  • 3.5 Incremental Form of Gauss-Newton Iterations
  • 4 Strong-Constraint 4DVar
  • 4.1 Standard Strong-Constraint 4DVar Method
  • 4.1.1 Data-Assimilation Problem
  • 4.1.2 Lagrangian Formulation
  • 4.1.3 Explaining the Measurement Operator
  • 4.1.4 Euler-Lagrange Equations
  • 4.2 Incremental Strong-Constraint 4DVar
  • 4.2.1 Incremental Formulation
  • 4.2.2 Lagrangian Formulation for the Inner Iterations
  • 4.2.3 Euler-Lagrange Equations for the Inner Iterations
  • 4.3 Preconditioning in Incremental SC-4DVar
  • 4.4 Summary of SC-4DVar
  • 5 Weak Constraint 4DVar
  • 5.1 Forcing Formulation
  • 5.2 State-Space Formulation
  • 5.3 Incremental Form of the Generalized Inverse.
  • 5.4 Minimizing the Cost Function for the Increment
  • 5.5 Observation Space Formulation
  • 5.5.1 Original Representer Method
  • 5.5.2 Efficient Weak-Constraint Solution in Observation Space
  • 6 Kalman Filters and 3DVar
  • 6.1 Linear Update from Predicted Measurements
  • 6.2 3DVar
  • 6.3 Kalman Filter
  • 6.4 Optimal Interpolation
  • 6.5 Extended Kalman Filter
  • 7 Randomized-Maximum-Likelihood Sampling
  • 7.1 RML Sampling
  • 7.2 Approximate EKF Sampling
  • 7.3 Approximate Gauss-Newton Sampling
  • 7.4 Least-Squares Best-Fit Model Sensitivity
  • 8 Low-Rank Ensemble Methods
  • 8.1 Ensemble Approximation
  • 8.2 Definition of Ensemble Matrices
  • 8.3 Cost Function in the Ensemble Subspace
  • 8.4 Ensemble Subspace RML
  • 8.5 Ensemble Kalman Filter (EnKF) Update
  • 8.6 Ensemble DA with Multiple Updating (ESMDA)
  • 8.7 Ensemble 4DVar with Consistent Error Statistics
  • 8.8 Square-Root EnKF
  • 8.9 Ensemble Subspace Inversion
  • 8.10 A Note on the EnKF Analysis Equation
  • 9 Fully Nonlinear Data Assimilation
  • 9.1 Particle Approximation
  • 9.2 Particle Filters
  • 9.2.1 The Standard Particle Filter
  • 9.2.2 Proposal Densities
  • 9.2.3 The Optimal Proposal Density
  • 9.2.4 Other Particle Filter Schemes
  • 9.3 Particle-Flow Filters
  • 9.3.1 Particle Flow Filters via Likelihood Factorization
  • 9.3.2 Particle Flows via Distance Minimization
  • 10 Localization and Inflation
  • 10.1 Background
  • 10.2 Various Forms of the EnKF Update
  • 10.3 Impact of Sampling Errors in the EnKF Update
  • 10.3.1 Spurious Correlations
  • 10.3.2 Update Confined to Ensemble Subspace
  • 10.3.3 Ensemble Representation of the Measurement Information
  • 10.4 Localization in Ensemble Kalman Filters
  • 10.4.1 Covariance Localization
  • 10.4.2 Localization in Observation Space
  • 10.4.3 Localization in Ensemble Space
  • 10.4.4 Local Analysis
  • 10.5 Adaptive Localization.
  • 10.6 Localization in Time
  • 10.7 Inflation
  • 10.8 Localization in Particle Filters
  • 10.9 Summary
  • 11 Methods' Summary
  • 11.1 Discussion of Methods
  • 11.2 So Which Method to Use?
  • blackPart II Examples and Applications-1pt
  • 12 A Kalman Filter with the Roessler Model
  • 12.1 Roessler Model System
  • 12.2 Kalman Filter with the Roessler System
  • 12.3 Extended Kalman Filter with the Roessler System
  • 13 Linear EnKF Update
  • 13.1 EnKF Update Example
  • 13.2 Solution Methods
  • 13.3 Example 1 (Large Ensemble Size)
  • 13.4 Example 2 (Ensemble Size of 100)
  • 13.5 Example 3 (Augmenting the Measurement Perturbations)
  • 13.6 Example 4 (Large Number of Measurements)
  • 14 EnKF for an Advection Equation
  • 14.1 Experiment Description
  • 14.2 Assimilation Experiment
  • 15 EnKF with the Lorenz Equations
  • 15.1 The Lorenz'63 Model
  • 15.2 Ensemble Smoother Solution
  • 15.3 Ensemble Kalman Filter Solution
  • 15.4 Ensemble Kalman Smoother Solution
  • 16 3Dvar and SC-4DVar for the Lorenz 63 Model
  • 16.1 Data Assimilation Set up
  • 16.2 Comparing 3DVar and SC-4DVar
  • 16.3 Sensitivity to Observation Density in SC-4DVar
  • 16.4 3DVar and SC-4DVar with Partial Observations
  • 16.5 Sensitivity to the Length of Assimilation Window
  • 16.6 SC-4DVar with Multiple Assimilation Windows
  • 16.7 A Comparison with Ensemble Methods
  • 17 Representer Method with an Ekman-Flow Model
  • 17.1 Ekman-Flow Model
  • 17.2 Example Experiment
  • 17.3 Assimilation of Real Measurements
  • 18 Comparison of Methods on a Scalar Model
  • 18.1 Scalar Model and Inverse Problem
  • 18.2 Discussion of Data-Assimilation Examples
  • 18.3 Summary
  • 19 Particle Filter for Seismic-Cycle Estimation
  • 19.1 Particle Filter for State and Parameter Estimation
  • 19.2 Seismic Cycle Model
  • 19.3 Data-Assimilation Experiments
  • 19.4 Case A: State Estimation.
  • 19.5 Case B: State Estimation with Increased Model Error
  • 19.6 Case C: State- and Parameter Estimation
  • 19.7 Summary
  • 20 Particle Flow for a Quasi-Geostrophic Model
  • 20.1 Introduction
  • 20.2 Application to the QG Model
  • 20.3 Data-Assimilation Experiment
  • 20.4 Results
  • 21 EnRML for History Matching Petroleum Models
  • 21.1 Reservoir Modeling
  • 21.2 History Matching Reservoir Models
  • 21.3 Example
  • 22 ESMDA with a SARS-COV-2 Pandemic Model
  • 22.1 An Extended SEIR Model
  • 22.2 Example
  • 22.3 Sensitivity to Ensemble Size
  • 22.4 Sensitivity to MDA Steps
  • 22.5 Summary
  • 23 Final Summary
  • 23.1 Classification of the Nonlinearity
  • 23.1.1 Linear to Weakly-Nonlinear Systems with Gaussian Priors
  • 23.1.2 Weakly Nonlinear Systems with Gaussian Priors
  • 23.1.3 Strongly Nonlinear Systems
  • 23.2 Purpose of the Data Assimilation
  • 23.2.1 Hindcasts and Re-analyses
  • 23.2.2 Prediction Systems
  • 23.2.3 Uncertainty Quantification and Risk Assessment
  • 23.2.4 Model Improvement and Parameter Estimation
  • 23.2.5 Scenario Forecasts and Optimal Controls
  • 23.3 How to Reduce Computational Costs
  • 23.4 What Will the Future Hold?
  • References
  • Author Index
  • Author Index
  • Index
  • Index.