Data Assimilation Fundamentals : : A Unified Formulation of the State and Parameter Estimation Problem.

Saved in:
Bibliographic Details
Superior document:Springer Textbooks in Earth Sciences, Geography and Environment Series
:
TeilnehmendeR:
Place / Publishing House:Cham : : Springer International Publishing AG,, 2022.
Ã2022.
Year of Publication:2022
Edition:1st ed.
Language:English
Series:Springer Textbooks in Earth Sciences, Geography and Environment Series
Online Access:
Physical Description:1 online resource (251 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 5006961341
ctrlnum (MiAaPQ)5006961341
(Au-PeEL)EBL6961341
(OCoLC)1312727657
collection bib_alma
record_format marc
spelling Evensen, Geir.
Data Assimilation Fundamentals : A Unified Formulation of the State and Parameter Estimation Problem.
1st ed.
Cham : Springer International Publishing AG, 2022.
Ã2022.
1 online resource (251 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Springer Textbooks in Earth Sciences, Geography and Environment Series
Intro -- Preface -- Contents -- Symbols -- List of Approximations -- 1 Introduction -- 2 Problem Formulation -- 2.1 Bayesian Formulation -- 2.1.1 Assimilation Windows -- 2.1.2 Model with Uncertain Inputs -- 2.1.3 Model State -- 2.1.4 State Vector -- 2.1.5 Formulation Over Multiple Assimilation Windows -- 2.1.6 Measurements with Errors -- 2.1.7 Bayesian Inference -- 2.2 Recursive Bayesian Formulation -- 2.2.1 Markov Model -- 2.2.2 Independent Measurements -- 2.2.3 Recursive form of Bayes' -- 2.2.4 Marginal Bayes' for Filtering -- 2.3 Error Propagation -- 2.3.1 Fokker-Planck Equation -- 2.3.2 Covariance Evolution Equation -- 2.3.3 Ensemble Predictions -- 2.4 Various Problem Formulations -- 2.4.1 General Smoother Formulation -- 2.4.2 Filter Formulation -- 2.4.3 Recursive Smoother Formulation -- 2.4.4 A Smoother Formulation for Perfect Models -- 2.4.5 Parameter Estimation -- 2.4.6 Estimating Initial Conditions, Parameters, Controls, and Errors -- 2.5 Including the Predicted Measurements in Bayes Theorem -- 3 Maximum a Posteriori Solution -- 3.1 Maximum a Posteriori (MAP) Estimate -- 3.2 Gaussian Prior and Likelihood -- 3.3 Iterative Solutions -- 3.4 Gauss-Newton Iterations -- 3.5 Incremental Form of Gauss-Newton Iterations -- 4 Strong-Constraint 4DVar -- 4.1 Standard Strong-Constraint 4DVar Method -- 4.1.1 Data-Assimilation Problem -- 4.1.2 Lagrangian Formulation -- 4.1.3 Explaining the Measurement Operator -- 4.1.4 Euler-Lagrange Equations -- 4.2 Incremental Strong-Constraint 4DVar -- 4.2.1 Incremental Formulation -- 4.2.2 Lagrangian Formulation for the Inner Iterations -- 4.2.3 Euler-Lagrange Equations for the Inner Iterations -- 4.3 Preconditioning in Incremental SC-4DVar -- 4.4 Summary of SC-4DVar -- 5 Weak Constraint 4DVar -- 5.1 Forcing Formulation -- 5.2 State-Space Formulation -- 5.3 Incremental Form of the Generalized Inverse.
5.4 Minimizing the Cost Function for the Increment -- 5.5 Observation Space Formulation -- 5.5.1 Original Representer Method -- 5.5.2 Efficient Weak-Constraint Solution in Observation Space -- 6 Kalman Filters and 3DVar -- 6.1 Linear Update from Predicted Measurements -- 6.2 3DVar -- 6.3 Kalman Filter -- 6.4 Optimal Interpolation -- 6.5 Extended Kalman Filter -- 7 Randomized-Maximum-Likelihood Sampling -- 7.1 RML Sampling -- 7.2 Approximate EKF Sampling -- 7.3 Approximate Gauss-Newton Sampling -- 7.4 Least-Squares Best-Fit Model Sensitivity -- 8 Low-Rank Ensemble Methods -- 8.1 Ensemble Approximation -- 8.2 Definition of Ensemble Matrices -- 8.3 Cost Function in the Ensemble Subspace -- 8.4 Ensemble Subspace RML -- 8.5 Ensemble Kalman Filter (EnKF) Update -- 8.6 Ensemble DA with Multiple Updating (ESMDA) -- 8.7 Ensemble 4DVar with Consistent Error Statistics -- 8.8 Square-Root EnKF -- 8.9 Ensemble Subspace Inversion -- 8.10 A Note on the EnKF Analysis Equation -- 9 Fully Nonlinear Data Assimilation -- 9.1 Particle Approximation -- 9.2 Particle Filters -- 9.2.1 The Standard Particle Filter -- 9.2.2 Proposal Densities -- 9.2.3 The Optimal Proposal Density -- 9.2.4 Other Particle Filter Schemes -- 9.3 Particle-Flow Filters -- 9.3.1 Particle Flow Filters via Likelihood Factorization -- 9.3.2 Particle Flows via Distance Minimization -- 10 Localization and Inflation -- 10.1 Background -- 10.2 Various Forms of the EnKF Update -- 10.3 Impact of Sampling Errors in the EnKF Update -- 10.3.1 Spurious Correlations -- 10.3.2 Update Confined to Ensemble Subspace -- 10.3.3 Ensemble Representation of the Measurement Information -- 10.4 Localization in Ensemble Kalman Filters -- 10.4.1 Covariance Localization -- 10.4.2 Localization in Observation Space -- 10.4.3 Localization in Ensemble Space -- 10.4.4 Local Analysis -- 10.5 Adaptive Localization.
10.6 Localization in Time -- 10.7 Inflation -- 10.8 Localization in Particle Filters -- 10.9 Summary -- 11 Methods' Summary -- 11.1 Discussion of Methods -- 11.2 So Which Method to Use? -- blackPart II Examples and Applications-1pt -- 12 A Kalman Filter with the Roessler Model -- 12.1 Roessler Model System -- 12.2 Kalman Filter with the Roessler System -- 12.3 Extended Kalman Filter with the Roessler System -- 13 Linear EnKF Update -- 13.1 EnKF Update Example -- 13.2 Solution Methods -- 13.3 Example 1 (Large Ensemble Size) -- 13.4 Example 2 (Ensemble Size of 100) -- 13.5 Example 3 (Augmenting the Measurement Perturbations) -- 13.6 Example 4 (Large Number of Measurements) -- 14 EnKF for an Advection Equation -- 14.1 Experiment Description -- 14.2 Assimilation Experiment -- 15 EnKF with the Lorenz Equations -- 15.1 The Lorenz'63 Model -- 15.2 Ensemble Smoother Solution -- 15.3 Ensemble Kalman Filter Solution -- 15.4 Ensemble Kalman Smoother Solution -- 16 3Dvar and SC-4DVar for the Lorenz 63 Model -- 16.1 Data Assimilation Set up -- 16.2 Comparing 3DVar and SC-4DVar -- 16.3 Sensitivity to Observation Density in SC-4DVar -- 16.4 3DVar and SC-4DVar with Partial Observations -- 16.5 Sensitivity to the Length of Assimilation Window -- 16.6 SC-4DVar with Multiple Assimilation Windows -- 16.7 A Comparison with Ensemble Methods -- 17 Representer Method with an Ekman-Flow Model -- 17.1 Ekman-Flow Model -- 17.2 Example Experiment -- 17.3 Assimilation of Real Measurements -- 18 Comparison of Methods on a Scalar Model -- 18.1 Scalar Model and Inverse Problem -- 18.2 Discussion of Data-Assimilation Examples -- 18.3 Summary -- 19 Particle Filter for Seismic-Cycle Estimation -- 19.1 Particle Filter for State and Parameter Estimation -- 19.2 Seismic Cycle Model -- 19.3 Data-Assimilation Experiments -- 19.4 Case A: State Estimation.
19.5 Case B: State Estimation with Increased Model Error -- 19.6 Case C: State- and Parameter Estimation -- 19.7 Summary -- 20 Particle Flow for a Quasi-Geostrophic Model -- 20.1 Introduction -- 20.2 Application to the QG Model -- 20.3 Data-Assimilation Experiment -- 20.4 Results -- 21 EnRML for History Matching Petroleum Models -- 21.1 Reservoir Modeling -- 21.2 History Matching Reservoir Models -- 21.3 Example -- 22 ESMDA with a SARS-COV-2 Pandemic Model -- 22.1 An Extended SEIR Model -- 22.2 Example -- 22.3 Sensitivity to Ensemble Size -- 22.4 Sensitivity to MDA Steps -- 22.5 Summary -- 23 Final Summary -- 23.1 Classification of the Nonlinearity -- 23.1.1 Linear to Weakly-Nonlinear Systems with Gaussian Priors -- 23.1.2 Weakly Nonlinear Systems with Gaussian Priors -- 23.1.3 Strongly Nonlinear Systems -- 23.2 Purpose of the Data Assimilation -- 23.2.1 Hindcasts and Re-analyses -- 23.2.2 Prediction Systems -- 23.2.3 Uncertainty Quantification and Risk Assessment -- 23.2.4 Model Improvement and Parameter Estimation -- 23.2.5 Scenario Forecasts and Optimal Controls -- 23.3 How to Reduce Computational Costs -- 23.4 What Will the Future Hold? -- References -- Author Index -- Author Index -- Index -- Index.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic books.
Vossepoel, Femke C.
van Leeuwen, Peter Jan.
Print version: Evensen, Geir Data Assimilation Fundamentals Cham : Springer International Publishing AG,c2022 9783030967086
ProQuest (Firm)
https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6961341 Click to View
language English
format eBook
author Evensen, Geir.
spellingShingle Evensen, Geir.
Data Assimilation Fundamentals : A Unified Formulation of the State and Parameter Estimation Problem.
Springer Textbooks in Earth Sciences, Geography and Environment Series
Intro -- Preface -- Contents -- Symbols -- List of Approximations -- 1 Introduction -- 2 Problem Formulation -- 2.1 Bayesian Formulation -- 2.1.1 Assimilation Windows -- 2.1.2 Model with Uncertain Inputs -- 2.1.3 Model State -- 2.1.4 State Vector -- 2.1.5 Formulation Over Multiple Assimilation Windows -- 2.1.6 Measurements with Errors -- 2.1.7 Bayesian Inference -- 2.2 Recursive Bayesian Formulation -- 2.2.1 Markov Model -- 2.2.2 Independent Measurements -- 2.2.3 Recursive form of Bayes' -- 2.2.4 Marginal Bayes' for Filtering -- 2.3 Error Propagation -- 2.3.1 Fokker-Planck Equation -- 2.3.2 Covariance Evolution Equation -- 2.3.3 Ensemble Predictions -- 2.4 Various Problem Formulations -- 2.4.1 General Smoother Formulation -- 2.4.2 Filter Formulation -- 2.4.3 Recursive Smoother Formulation -- 2.4.4 A Smoother Formulation for Perfect Models -- 2.4.5 Parameter Estimation -- 2.4.6 Estimating Initial Conditions, Parameters, Controls, and Errors -- 2.5 Including the Predicted Measurements in Bayes Theorem -- 3 Maximum a Posteriori Solution -- 3.1 Maximum a Posteriori (MAP) Estimate -- 3.2 Gaussian Prior and Likelihood -- 3.3 Iterative Solutions -- 3.4 Gauss-Newton Iterations -- 3.5 Incremental Form of Gauss-Newton Iterations -- 4 Strong-Constraint 4DVar -- 4.1 Standard Strong-Constraint 4DVar Method -- 4.1.1 Data-Assimilation Problem -- 4.1.2 Lagrangian Formulation -- 4.1.3 Explaining the Measurement Operator -- 4.1.4 Euler-Lagrange Equations -- 4.2 Incremental Strong-Constraint 4DVar -- 4.2.1 Incremental Formulation -- 4.2.2 Lagrangian Formulation for the Inner Iterations -- 4.2.3 Euler-Lagrange Equations for the Inner Iterations -- 4.3 Preconditioning in Incremental SC-4DVar -- 4.4 Summary of SC-4DVar -- 5 Weak Constraint 4DVar -- 5.1 Forcing Formulation -- 5.2 State-Space Formulation -- 5.3 Incremental Form of the Generalized Inverse.
5.4 Minimizing the Cost Function for the Increment -- 5.5 Observation Space Formulation -- 5.5.1 Original Representer Method -- 5.5.2 Efficient Weak-Constraint Solution in Observation Space -- 6 Kalman Filters and 3DVar -- 6.1 Linear Update from Predicted Measurements -- 6.2 3DVar -- 6.3 Kalman Filter -- 6.4 Optimal Interpolation -- 6.5 Extended Kalman Filter -- 7 Randomized-Maximum-Likelihood Sampling -- 7.1 RML Sampling -- 7.2 Approximate EKF Sampling -- 7.3 Approximate Gauss-Newton Sampling -- 7.4 Least-Squares Best-Fit Model Sensitivity -- 8 Low-Rank Ensemble Methods -- 8.1 Ensemble Approximation -- 8.2 Definition of Ensemble Matrices -- 8.3 Cost Function in the Ensemble Subspace -- 8.4 Ensemble Subspace RML -- 8.5 Ensemble Kalman Filter (EnKF) Update -- 8.6 Ensemble DA with Multiple Updating (ESMDA) -- 8.7 Ensemble 4DVar with Consistent Error Statistics -- 8.8 Square-Root EnKF -- 8.9 Ensemble Subspace Inversion -- 8.10 A Note on the EnKF Analysis Equation -- 9 Fully Nonlinear Data Assimilation -- 9.1 Particle Approximation -- 9.2 Particle Filters -- 9.2.1 The Standard Particle Filter -- 9.2.2 Proposal Densities -- 9.2.3 The Optimal Proposal Density -- 9.2.4 Other Particle Filter Schemes -- 9.3 Particle-Flow Filters -- 9.3.1 Particle Flow Filters via Likelihood Factorization -- 9.3.2 Particle Flows via Distance Minimization -- 10 Localization and Inflation -- 10.1 Background -- 10.2 Various Forms of the EnKF Update -- 10.3 Impact of Sampling Errors in the EnKF Update -- 10.3.1 Spurious Correlations -- 10.3.2 Update Confined to Ensemble Subspace -- 10.3.3 Ensemble Representation of the Measurement Information -- 10.4 Localization in Ensemble Kalman Filters -- 10.4.1 Covariance Localization -- 10.4.2 Localization in Observation Space -- 10.4.3 Localization in Ensemble Space -- 10.4.4 Local Analysis -- 10.5 Adaptive Localization.
10.6 Localization in Time -- 10.7 Inflation -- 10.8 Localization in Particle Filters -- 10.9 Summary -- 11 Methods' Summary -- 11.1 Discussion of Methods -- 11.2 So Which Method to Use? -- blackPart II Examples and Applications-1pt -- 12 A Kalman Filter with the Roessler Model -- 12.1 Roessler Model System -- 12.2 Kalman Filter with the Roessler System -- 12.3 Extended Kalman Filter with the Roessler System -- 13 Linear EnKF Update -- 13.1 EnKF Update Example -- 13.2 Solution Methods -- 13.3 Example 1 (Large Ensemble Size) -- 13.4 Example 2 (Ensemble Size of 100) -- 13.5 Example 3 (Augmenting the Measurement Perturbations) -- 13.6 Example 4 (Large Number of Measurements) -- 14 EnKF for an Advection Equation -- 14.1 Experiment Description -- 14.2 Assimilation Experiment -- 15 EnKF with the Lorenz Equations -- 15.1 The Lorenz'63 Model -- 15.2 Ensemble Smoother Solution -- 15.3 Ensemble Kalman Filter Solution -- 15.4 Ensemble Kalman Smoother Solution -- 16 3Dvar and SC-4DVar for the Lorenz 63 Model -- 16.1 Data Assimilation Set up -- 16.2 Comparing 3DVar and SC-4DVar -- 16.3 Sensitivity to Observation Density in SC-4DVar -- 16.4 3DVar and SC-4DVar with Partial Observations -- 16.5 Sensitivity to the Length of Assimilation Window -- 16.6 SC-4DVar with Multiple Assimilation Windows -- 16.7 A Comparison with Ensemble Methods -- 17 Representer Method with an Ekman-Flow Model -- 17.1 Ekman-Flow Model -- 17.2 Example Experiment -- 17.3 Assimilation of Real Measurements -- 18 Comparison of Methods on a Scalar Model -- 18.1 Scalar Model and Inverse Problem -- 18.2 Discussion of Data-Assimilation Examples -- 18.3 Summary -- 19 Particle Filter for Seismic-Cycle Estimation -- 19.1 Particle Filter for State and Parameter Estimation -- 19.2 Seismic Cycle Model -- 19.3 Data-Assimilation Experiments -- 19.4 Case A: State Estimation.
19.5 Case B: State Estimation with Increased Model Error -- 19.6 Case C: State- and Parameter Estimation -- 19.7 Summary -- 20 Particle Flow for a Quasi-Geostrophic Model -- 20.1 Introduction -- 20.2 Application to the QG Model -- 20.3 Data-Assimilation Experiment -- 20.4 Results -- 21 EnRML for History Matching Petroleum Models -- 21.1 Reservoir Modeling -- 21.2 History Matching Reservoir Models -- 21.3 Example -- 22 ESMDA with a SARS-COV-2 Pandemic Model -- 22.1 An Extended SEIR Model -- 22.2 Example -- 22.3 Sensitivity to Ensemble Size -- 22.4 Sensitivity to MDA Steps -- 22.5 Summary -- 23 Final Summary -- 23.1 Classification of the Nonlinearity -- 23.1.1 Linear to Weakly-Nonlinear Systems with Gaussian Priors -- 23.1.2 Weakly Nonlinear Systems with Gaussian Priors -- 23.1.3 Strongly Nonlinear Systems -- 23.2 Purpose of the Data Assimilation -- 23.2.1 Hindcasts and Re-analyses -- 23.2.2 Prediction Systems -- 23.2.3 Uncertainty Quantification and Risk Assessment -- 23.2.4 Model Improvement and Parameter Estimation -- 23.2.5 Scenario Forecasts and Optimal Controls -- 23.3 How to Reduce Computational Costs -- 23.4 What Will the Future Hold? -- References -- Author Index -- Author Index -- Index -- Index.
author_facet Evensen, Geir.
Vossepoel, Femke C.
van Leeuwen, Peter Jan.
author_variant g e ge
author2 Vossepoel, Femke C.
van Leeuwen, Peter Jan.
author2_variant f c v fc fcv
l p j v lpj lpjv
author2_role TeilnehmendeR
TeilnehmendeR
author_sort Evensen, Geir.
title Data Assimilation Fundamentals : A Unified Formulation of the State and Parameter Estimation Problem.
title_sub A Unified Formulation of the State and Parameter Estimation Problem.
title_full Data Assimilation Fundamentals : A Unified Formulation of the State and Parameter Estimation Problem.
title_fullStr Data Assimilation Fundamentals : A Unified Formulation of the State and Parameter Estimation Problem.
title_full_unstemmed Data Assimilation Fundamentals : A Unified Formulation of the State and Parameter Estimation Problem.
title_auth Data Assimilation Fundamentals : A Unified Formulation of the State and Parameter Estimation Problem.
title_new Data Assimilation Fundamentals :
title_sort data assimilation fundamentals : a unified formulation of the state and parameter estimation problem.
series Springer Textbooks in Earth Sciences, Geography and Environment Series
series2 Springer Textbooks in Earth Sciences, Geography and Environment Series
publisher Springer International Publishing AG,
publishDate 2022
physical 1 online resource (251 pages)
edition 1st ed.
contents Intro -- Preface -- Contents -- Symbols -- List of Approximations -- 1 Introduction -- 2 Problem Formulation -- 2.1 Bayesian Formulation -- 2.1.1 Assimilation Windows -- 2.1.2 Model with Uncertain Inputs -- 2.1.3 Model State -- 2.1.4 State Vector -- 2.1.5 Formulation Over Multiple Assimilation Windows -- 2.1.6 Measurements with Errors -- 2.1.7 Bayesian Inference -- 2.2 Recursive Bayesian Formulation -- 2.2.1 Markov Model -- 2.2.2 Independent Measurements -- 2.2.3 Recursive form of Bayes' -- 2.2.4 Marginal Bayes' for Filtering -- 2.3 Error Propagation -- 2.3.1 Fokker-Planck Equation -- 2.3.2 Covariance Evolution Equation -- 2.3.3 Ensemble Predictions -- 2.4 Various Problem Formulations -- 2.4.1 General Smoother Formulation -- 2.4.2 Filter Formulation -- 2.4.3 Recursive Smoother Formulation -- 2.4.4 A Smoother Formulation for Perfect Models -- 2.4.5 Parameter Estimation -- 2.4.6 Estimating Initial Conditions, Parameters, Controls, and Errors -- 2.5 Including the Predicted Measurements in Bayes Theorem -- 3 Maximum a Posteriori Solution -- 3.1 Maximum a Posteriori (MAP) Estimate -- 3.2 Gaussian Prior and Likelihood -- 3.3 Iterative Solutions -- 3.4 Gauss-Newton Iterations -- 3.5 Incremental Form of Gauss-Newton Iterations -- 4 Strong-Constraint 4DVar -- 4.1 Standard Strong-Constraint 4DVar Method -- 4.1.1 Data-Assimilation Problem -- 4.1.2 Lagrangian Formulation -- 4.1.3 Explaining the Measurement Operator -- 4.1.4 Euler-Lagrange Equations -- 4.2 Incremental Strong-Constraint 4DVar -- 4.2.1 Incremental Formulation -- 4.2.2 Lagrangian Formulation for the Inner Iterations -- 4.2.3 Euler-Lagrange Equations for the Inner Iterations -- 4.3 Preconditioning in Incremental SC-4DVar -- 4.4 Summary of SC-4DVar -- 5 Weak Constraint 4DVar -- 5.1 Forcing Formulation -- 5.2 State-Space Formulation -- 5.3 Incremental Form of the Generalized Inverse.
5.4 Minimizing the Cost Function for the Increment -- 5.5 Observation Space Formulation -- 5.5.1 Original Representer Method -- 5.5.2 Efficient Weak-Constraint Solution in Observation Space -- 6 Kalman Filters and 3DVar -- 6.1 Linear Update from Predicted Measurements -- 6.2 3DVar -- 6.3 Kalman Filter -- 6.4 Optimal Interpolation -- 6.5 Extended Kalman Filter -- 7 Randomized-Maximum-Likelihood Sampling -- 7.1 RML Sampling -- 7.2 Approximate EKF Sampling -- 7.3 Approximate Gauss-Newton Sampling -- 7.4 Least-Squares Best-Fit Model Sensitivity -- 8 Low-Rank Ensemble Methods -- 8.1 Ensemble Approximation -- 8.2 Definition of Ensemble Matrices -- 8.3 Cost Function in the Ensemble Subspace -- 8.4 Ensemble Subspace RML -- 8.5 Ensemble Kalman Filter (EnKF) Update -- 8.6 Ensemble DA with Multiple Updating (ESMDA) -- 8.7 Ensemble 4DVar with Consistent Error Statistics -- 8.8 Square-Root EnKF -- 8.9 Ensemble Subspace Inversion -- 8.10 A Note on the EnKF Analysis Equation -- 9 Fully Nonlinear Data Assimilation -- 9.1 Particle Approximation -- 9.2 Particle Filters -- 9.2.1 The Standard Particle Filter -- 9.2.2 Proposal Densities -- 9.2.3 The Optimal Proposal Density -- 9.2.4 Other Particle Filter Schemes -- 9.3 Particle-Flow Filters -- 9.3.1 Particle Flow Filters via Likelihood Factorization -- 9.3.2 Particle Flows via Distance Minimization -- 10 Localization and Inflation -- 10.1 Background -- 10.2 Various Forms of the EnKF Update -- 10.3 Impact of Sampling Errors in the EnKF Update -- 10.3.1 Spurious Correlations -- 10.3.2 Update Confined to Ensemble Subspace -- 10.3.3 Ensemble Representation of the Measurement Information -- 10.4 Localization in Ensemble Kalman Filters -- 10.4.1 Covariance Localization -- 10.4.2 Localization in Observation Space -- 10.4.3 Localization in Ensemble Space -- 10.4.4 Local Analysis -- 10.5 Adaptive Localization.
10.6 Localization in Time -- 10.7 Inflation -- 10.8 Localization in Particle Filters -- 10.9 Summary -- 11 Methods' Summary -- 11.1 Discussion of Methods -- 11.2 So Which Method to Use? -- blackPart II Examples and Applications-1pt -- 12 A Kalman Filter with the Roessler Model -- 12.1 Roessler Model System -- 12.2 Kalman Filter with the Roessler System -- 12.3 Extended Kalman Filter with the Roessler System -- 13 Linear EnKF Update -- 13.1 EnKF Update Example -- 13.2 Solution Methods -- 13.3 Example 1 (Large Ensemble Size) -- 13.4 Example 2 (Ensemble Size of 100) -- 13.5 Example 3 (Augmenting the Measurement Perturbations) -- 13.6 Example 4 (Large Number of Measurements) -- 14 EnKF for an Advection Equation -- 14.1 Experiment Description -- 14.2 Assimilation Experiment -- 15 EnKF with the Lorenz Equations -- 15.1 The Lorenz'63 Model -- 15.2 Ensemble Smoother Solution -- 15.3 Ensemble Kalman Filter Solution -- 15.4 Ensemble Kalman Smoother Solution -- 16 3Dvar and SC-4DVar for the Lorenz 63 Model -- 16.1 Data Assimilation Set up -- 16.2 Comparing 3DVar and SC-4DVar -- 16.3 Sensitivity to Observation Density in SC-4DVar -- 16.4 3DVar and SC-4DVar with Partial Observations -- 16.5 Sensitivity to the Length of Assimilation Window -- 16.6 SC-4DVar with Multiple Assimilation Windows -- 16.7 A Comparison with Ensemble Methods -- 17 Representer Method with an Ekman-Flow Model -- 17.1 Ekman-Flow Model -- 17.2 Example Experiment -- 17.3 Assimilation of Real Measurements -- 18 Comparison of Methods on a Scalar Model -- 18.1 Scalar Model and Inverse Problem -- 18.2 Discussion of Data-Assimilation Examples -- 18.3 Summary -- 19 Particle Filter for Seismic-Cycle Estimation -- 19.1 Particle Filter for State and Parameter Estimation -- 19.2 Seismic Cycle Model -- 19.3 Data-Assimilation Experiments -- 19.4 Case A: State Estimation.
19.5 Case B: State Estimation with Increased Model Error -- 19.6 Case C: State- and Parameter Estimation -- 19.7 Summary -- 20 Particle Flow for a Quasi-Geostrophic Model -- 20.1 Introduction -- 20.2 Application to the QG Model -- 20.3 Data-Assimilation Experiment -- 20.4 Results -- 21 EnRML for History Matching Petroleum Models -- 21.1 Reservoir Modeling -- 21.2 History Matching Reservoir Models -- 21.3 Example -- 22 ESMDA with a SARS-COV-2 Pandemic Model -- 22.1 An Extended SEIR Model -- 22.2 Example -- 22.3 Sensitivity to Ensemble Size -- 22.4 Sensitivity to MDA Steps -- 22.5 Summary -- 23 Final Summary -- 23.1 Classification of the Nonlinearity -- 23.1.1 Linear to Weakly-Nonlinear Systems with Gaussian Priors -- 23.1.2 Weakly Nonlinear Systems with Gaussian Priors -- 23.1.3 Strongly Nonlinear Systems -- 23.2 Purpose of the Data Assimilation -- 23.2.1 Hindcasts and Re-analyses -- 23.2.2 Prediction Systems -- 23.2.3 Uncertainty Quantification and Risk Assessment -- 23.2.4 Model Improvement and Parameter Estimation -- 23.2.5 Scenario Forecasts and Optimal Controls -- 23.3 How to Reduce Computational Costs -- 23.4 What Will the Future Hold? -- References -- Author Index -- Author Index -- Index -- Index.
isbn 9783030967093
9783030967086
callnumber-first G - Geography, Anthropology, Recreation
callnumber-subject GB - Physical Geography
callnumber-label GB3-5030
callnumber-sort GB 13 45030
genre Electronic books.
genre_facet Electronic books.
url https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6961341
illustrated Not Illustrated
oclc_num 1312727657
work_keys_str_mv AT evensengeir dataassimilationfundamentalsaunifiedformulationofthestateandparameterestimationproblem
AT vossepoelfemkec dataassimilationfundamentalsaunifiedformulationofthestateandparameterestimationproblem
AT vanleeuwenpeterjan dataassimilationfundamentalsaunifiedformulationofthestateandparameterestimationproblem
status_str n
ids_txt_mv (MiAaPQ)5006961341
(Au-PeEL)EBL6961341
(OCoLC)1312727657
carrierType_str_mv cr
hierarchy_parent_title Springer Textbooks in Earth Sciences, Geography and Environment Series
is_hierarchy_title Data Assimilation Fundamentals : A Unified Formulation of the State and Parameter Estimation Problem.
container_title Springer Textbooks in Earth Sciences, Geography and Environment Series
author2_original_writing_str_mv noLinkedField
noLinkedField
marc_error Info : Unimarc and ISO-8859-1 translations identical, choosing ISO-8859-1. --- [ 856 : z ]
_version_ 1792331062536306688
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>08609nam a22004573i 4500</leader><controlfield tag="001">5006961341</controlfield><controlfield tag="003">MiAaPQ</controlfield><controlfield tag="005">20240229073846.0</controlfield><controlfield tag="006">m o d | </controlfield><controlfield tag="007">cr cnu||||||||</controlfield><controlfield tag="008">240229s2022 xx o ||||0 eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783030967093</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783030967086</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(MiAaPQ)5006961341</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(Au-PeEL)EBL6961341</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1312727657</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">MiAaPQ</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">MiAaPQ</subfield><subfield code="d">MiAaPQ</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">GB3-5030</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Evensen, Geir.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Data Assimilation Fundamentals :</subfield><subfield code="b">A Unified Formulation of the State and Parameter Estimation Problem.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham :</subfield><subfield code="b">Springer International Publishing AG,</subfield><subfield code="c">2022.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">Ã2022.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (251 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Springer Textbooks in Earth Sciences, Geography and Environment Series</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Intro -- Preface -- Contents -- Symbols -- List of Approximations -- 1 Introduction -- 2 Problem Formulation -- 2.1 Bayesian Formulation -- 2.1.1 Assimilation Windows -- 2.1.2 Model with Uncertain Inputs -- 2.1.3 Model State -- 2.1.4 State Vector -- 2.1.5 Formulation Over Multiple Assimilation Windows -- 2.1.6 Measurements with Errors -- 2.1.7 Bayesian Inference -- 2.2 Recursive Bayesian Formulation -- 2.2.1 Markov Model -- 2.2.2 Independent Measurements -- 2.2.3 Recursive form of Bayes' -- 2.2.4 Marginal Bayes' for Filtering -- 2.3 Error Propagation -- 2.3.1 Fokker-Planck Equation -- 2.3.2 Covariance Evolution Equation -- 2.3.3 Ensemble Predictions -- 2.4 Various Problem Formulations -- 2.4.1 General Smoother Formulation -- 2.4.2 Filter Formulation -- 2.4.3 Recursive Smoother Formulation -- 2.4.4 A Smoother Formulation for Perfect Models -- 2.4.5 Parameter Estimation -- 2.4.6 Estimating Initial Conditions, Parameters, Controls, and Errors -- 2.5 Including the Predicted Measurements in Bayes Theorem -- 3 Maximum a Posteriori Solution -- 3.1 Maximum a Posteriori (MAP) Estimate -- 3.2 Gaussian Prior and Likelihood -- 3.3 Iterative Solutions -- 3.4 Gauss-Newton Iterations -- 3.5 Incremental Form of Gauss-Newton Iterations -- 4 Strong-Constraint 4DVar -- 4.1 Standard Strong-Constraint 4DVar Method -- 4.1.1 Data-Assimilation Problem -- 4.1.2 Lagrangian Formulation -- 4.1.3 Explaining the Measurement Operator -- 4.1.4 Euler-Lagrange Equations -- 4.2 Incremental Strong-Constraint 4DVar -- 4.2.1 Incremental Formulation -- 4.2.2 Lagrangian Formulation for the Inner Iterations -- 4.2.3 Euler-Lagrange Equations for the Inner Iterations -- 4.3 Preconditioning in Incremental SC-4DVar -- 4.4 Summary of SC-4DVar -- 5 Weak Constraint 4DVar -- 5.1 Forcing Formulation -- 5.2 State-Space Formulation -- 5.3 Incremental Form of the Generalized Inverse.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.4 Minimizing the Cost Function for the Increment -- 5.5 Observation Space Formulation -- 5.5.1 Original Representer Method -- 5.5.2 Efficient Weak-Constraint Solution in Observation Space -- 6 Kalman Filters and 3DVar -- 6.1 Linear Update from Predicted Measurements -- 6.2 3DVar -- 6.3 Kalman Filter -- 6.4 Optimal Interpolation -- 6.5 Extended Kalman Filter -- 7 Randomized-Maximum-Likelihood Sampling -- 7.1 RML Sampling -- 7.2 Approximate EKF Sampling -- 7.3 Approximate Gauss-Newton Sampling -- 7.4 Least-Squares Best-Fit Model Sensitivity -- 8 Low-Rank Ensemble Methods -- 8.1 Ensemble Approximation -- 8.2 Definition of Ensemble Matrices -- 8.3 Cost Function in the Ensemble Subspace -- 8.4 Ensemble Subspace RML -- 8.5 Ensemble Kalman Filter (EnKF) Update -- 8.6 Ensemble DA with Multiple Updating (ESMDA) -- 8.7 Ensemble 4DVar with Consistent Error Statistics -- 8.8 Square-Root EnKF -- 8.9 Ensemble Subspace Inversion -- 8.10 A Note on the EnKF Analysis Equation -- 9 Fully Nonlinear Data Assimilation -- 9.1 Particle Approximation -- 9.2 Particle Filters -- 9.2.1 The Standard Particle Filter -- 9.2.2 Proposal Densities -- 9.2.3 The Optimal Proposal Density -- 9.2.4 Other Particle Filter Schemes -- 9.3 Particle-Flow Filters -- 9.3.1 Particle Flow Filters via Likelihood Factorization -- 9.3.2 Particle Flows via Distance Minimization -- 10 Localization and Inflation -- 10.1 Background -- 10.2 Various Forms of the EnKF Update -- 10.3 Impact of Sampling Errors in the EnKF Update -- 10.3.1 Spurious Correlations -- 10.3.2 Update Confined to Ensemble Subspace -- 10.3.3 Ensemble Representation of the Measurement Information -- 10.4 Localization in Ensemble Kalman Filters -- 10.4.1 Covariance Localization -- 10.4.2 Localization in Observation Space -- 10.4.3 Localization in Ensemble Space -- 10.4.4 Local Analysis -- 10.5 Adaptive Localization.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">10.6 Localization in Time -- 10.7 Inflation -- 10.8 Localization in Particle Filters -- 10.9 Summary -- 11 Methods' Summary -- 11.1 Discussion of Methods -- 11.2 So Which Method to Use? -- blackPart II Examples and Applications-1pt -- 12 A Kalman Filter with the Roessler Model -- 12.1 Roessler Model System -- 12.2 Kalman Filter with the Roessler System -- 12.3 Extended Kalman Filter with the Roessler System -- 13 Linear EnKF Update -- 13.1 EnKF Update Example -- 13.2 Solution Methods -- 13.3 Example 1 (Large Ensemble Size) -- 13.4 Example 2 (Ensemble Size of 100) -- 13.5 Example 3 (Augmenting the Measurement Perturbations) -- 13.6 Example 4 (Large Number of Measurements) -- 14 EnKF for an Advection Equation -- 14.1 Experiment Description -- 14.2 Assimilation Experiment -- 15 EnKF with the Lorenz Equations -- 15.1 The Lorenz'63 Model -- 15.2 Ensemble Smoother Solution -- 15.3 Ensemble Kalman Filter Solution -- 15.4 Ensemble Kalman Smoother Solution -- 16 3Dvar and SC-4DVar for the Lorenz 63 Model -- 16.1 Data Assimilation Set up -- 16.2 Comparing 3DVar and SC-4DVar -- 16.3 Sensitivity to Observation Density in SC-4DVar -- 16.4 3DVar and SC-4DVar with Partial Observations -- 16.5 Sensitivity to the Length of Assimilation Window -- 16.6 SC-4DVar with Multiple Assimilation Windows -- 16.7 A Comparison with Ensemble Methods -- 17 Representer Method with an Ekman-Flow Model -- 17.1 Ekman-Flow Model -- 17.2 Example Experiment -- 17.3 Assimilation of Real Measurements -- 18 Comparison of Methods on a Scalar Model -- 18.1 Scalar Model and Inverse Problem -- 18.2 Discussion of Data-Assimilation Examples -- 18.3 Summary -- 19 Particle Filter for Seismic-Cycle Estimation -- 19.1 Particle Filter for State and Parameter Estimation -- 19.2 Seismic Cycle Model -- 19.3 Data-Assimilation Experiments -- 19.4 Case A: State Estimation.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">19.5 Case B: State Estimation with Increased Model Error -- 19.6 Case C: State- and Parameter Estimation -- 19.7 Summary -- 20 Particle Flow for a Quasi-Geostrophic Model -- 20.1 Introduction -- 20.2 Application to the QG Model -- 20.3 Data-Assimilation Experiment -- 20.4 Results -- 21 EnRML for History Matching Petroleum Models -- 21.1 Reservoir Modeling -- 21.2 History Matching Reservoir Models -- 21.3 Example -- 22 ESMDA with a SARS-COV-2 Pandemic Model -- 22.1 An Extended SEIR Model -- 22.2 Example -- 22.3 Sensitivity to Ensemble Size -- 22.4 Sensitivity to MDA Steps -- 22.5 Summary -- 23 Final Summary -- 23.1 Classification of the Nonlinearity -- 23.1.1 Linear to Weakly-Nonlinear Systems with Gaussian Priors -- 23.1.2 Weakly Nonlinear Systems with Gaussian Priors -- 23.1.3 Strongly Nonlinear Systems -- 23.2 Purpose of the Data Assimilation -- 23.2.1 Hindcasts and Re-analyses -- 23.2.2 Prediction Systems -- 23.2.3 Uncertainty Quantification and Risk Assessment -- 23.2.4 Model Improvement and Parameter Estimation -- 23.2.5 Scenario Forecasts and Optimal Controls -- 23.3 How to Reduce Computational Costs -- 23.4 What Will the Future Hold? -- References -- Author Index -- Author Index -- Index -- Index.</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources.</subfield></datafield><datafield tag="590" ind1=" " ind2=" "><subfield code="a">Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. </subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vossepoel, Femke C.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">van Leeuwen, Peter Jan.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Evensen, Geir</subfield><subfield code="t">Data Assimilation Fundamentals</subfield><subfield code="d">Cham : Springer International Publishing AG,c2022</subfield><subfield code="z">9783030967086</subfield></datafield><datafield tag="797" ind1="2" ind2=" "><subfield code="a">ProQuest (Firm)</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Springer Textbooks in Earth Sciences, Geography and Environment Series</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6961341</subfield><subfield code="z">Click to View</subfield></datafield></record></collection>