Modern Introduction To Particle Physics, A (3rd Edition).

Saved in:
Bibliographic Details
:
TeilnehmendeR:
Place / Publishing House:Singapore : : World Scientific Publishing Company,, 2011.
©2012.
Year of Publication:2011
Edition:1st ed.
Language:English
Online Access:
Physical Description:1 online resource (680 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Intro
  • Contents
  • Preface
  • 1. Introduction
  • 1.1 Fundamental Forces
  • 1.1.1 The Gravitational Force
  • 1.1.2 The Weak Nuclear Force
  • 1.1.3 The Electromagnetic Force
  • 1.1.4 The Strong Nuclear Force
  • 1.2 Relative Strength of Four Fundamental Forces
  • 1.3 Range of the Three Basic Forces
  • 1.4 Classification of Matter
  • 1.5 Strong Color Charges
  • 1.6 Fundamental Role of "Charges" in the Unification of Forces
  • 1.7 Strong Quark-Quark Force
  • 1.8 Grand Unification
  • 1.9 Units and Notation
  • 1.10 Problems
  • 1.11 References
  • 2. Scattering and Particle Interaction
  • 2.1 Introduction
  • 2.2 Kinematics of a Scattering Process
  • 2.3 Interaction Picture
  • 2.4 Scattering Matrix (S-Matrix)
  • 2.5 Phase Space
  • 2.6 Examples
  • 2.6.1 Two-body Scattering
  • 2.6.2 Three-body Decay
  • 2.6.2.1 Three-body Phase Space
  • 2.7 Electromagnetic Interaction
  • 2.8 Weak Interaction
  • 2.9 Hadronic Cross-section
  • 2.10 Problems
  • 2.11 References
  • 3. Space-Time Symmetries
  • 3.1 Introduction
  • 3.1.1 Rotation and SO(3) Group
  • 3.1.2 Translation
  • 3.1.3 Lorentz Group
  • 3.2 Invariance Principle
  • 3.2.1 U Continuous
  • 3.2.2 U is Discrete (e.g. Space Reflection)
  • 3.3 Parity
  • 3.4 Intrinsic Parity
  • 3.4.1 Intrinsic Parity of Pion
  • 3.5 Parity Constraints on S-Matrix for Hadronic Reactions
  • 3.5.1 Scattering of Spin 0 Particles on Spin 1/2 Particles
  • 3.5.2 Decay of a Spin 0+ Particle into Three Spinless Particles Each Having Odd Parity
  • 3.6 Time Reversal
  • 3.6.1 Unitarity
  • 3.6.2 Reciprocity Relation
  • 3.7 Applications
  • 3.7.1 Detailed Balance Principle
  • 3.7.1.1 Determination of Spin of the Pion
  • 3.8 Unitarity Constraints
  • 3.8.1 Two-Particle Partial Wave Unitarity
  • 3.9 Problems
  • 4. Internal Symmetries
  • 4.1 Selection Rules and Globally Conserved Quantum Numbers
  • 4.2 Isospin.
  • 4.2.1 Electromagnetic Interaction and Isospin
  • 4.2.2 Weak Interaction and Isospin
  • 4.3 Resonance Production
  • 4.3.1 Δ-resonance
  • 4.3.2 Spin of Δ
  • 4.4 Charge Conjugation
  • 4.5 G-Parity
  • 4.6 Problems
  • 4.7 References
  • 5. Unitary Groups and SU(3)
  • 5.1 Unitary Groups and SU(3)
  • 5.2 Particle Representations in Flavor SU(3)
  • 5.2.1 Mesons
  • 5.2.2 Baryons
  • 5.2.2.1 Baryon States
  • 5.3 U-Spin
  • 5.4 Irreducible Representations of SU(3)
  • 5.4.1 Young's Tableaux
  • 5.5 SU(N)
  • 5.6 Applications of Flavor SU(3)
  • 5.6.1 SU(3) Invariant BBP Couplings
  • 5.6.2 VPP Coupling
  • 5.7 Mass Splitting in Flavor SU(3)
  • 5.8 Problems
  • 5.9 References
  • 6. SU(6) and Quark Model
  • 6.1 SU(6)
  • 6.1.1 SU(6) Wave Function for Mesons
  • 6.2 Magnetic Moments of Baryons
  • 6.3 Radiative Decays of Vector Mesons
  • 6.4 Radiative Decays (Complementary Derivation)
  • 6.4.1 Mesonic Radiative Decays V = P + γ
  • 6.4.2 Baryonic Radiative Decay
  • 6.5 Problems
  • 6.6 References
  • 7. Color, Gauge Principle and Quantum Chromodynamics
  • 7.1 Evidence for Color
  • 7.2 Gauge Principle
  • 7.2.1 Aharanov and Bohm Experiment
  • 7.2.2 Gauge Principle for Relativistic Quantum Mechanics
  • 7.3 Non-Abelion Local Gauge Transformations (Yang-Mills)
  • 7.4 Quantum Chromodynamics (QCD)
  • 7.4.1 Conserved Current
  • 7.4.2 Experimental Determinations of αs(q2) and Asymptotic Freedom of QCD
  • 7.5 Hadron Spectroscopy
  • 7.5.1 One Gluon Exchange Potential
  • 7.5.2 Long Range QCD Motivated Potential
  • 7.5.2.1 The string picture of hadrons
  • 7.5.3 Spin-Spin Interaction
  • 7.6 The Mass Spectrum
  • 7.6.1 Meson Mass Relations
  • 7.6.2 Baryon Mass Spectrum
  • 7.7 Problems
  • 7.8 References
  • 8. Heavy Flavors
  • 8.1 Discovery of Charm
  • 8.1.1 Isospin
  • 8.1.2 SU(3) Classification
  • 8.2 Charm
  • 8.2.1 Heavy Mesons
  • 8.2.2 The Fifth Quark Flavor: Bottom Mesons.
  • 8.2.3 The Sixth Quark Flavor: The Top
  • 8.3 Strong and Radiative Decays of D* Mesons
  • 8.4 Heavy Baryons
  • 8.5 Quarkonium
  • 8.6 Leptonic Decay Width of Quarkonium
  • 8.7 Hadronic Decay Width
  • 8.8 Non-Relativistic Treatment of Quarkonium
  • 8.9 Observations
  • 8.10 Tetraquark
  • 8.11 Problems
  • 8.12 References
  • 9. Heavy Quark Effective Theory
  • 9.1 Effective Lagrangian
  • 9.2 Spin Symmetry of Heavy Quark
  • 9.3 Mass Spectroscopy for Hadrons with One Heavy Quark
  • 9.4 The P-wave Heavy Mesons: Mass Spectroscopy
  • 9.5 Decays of P-wave Mesons
  • 9.6 Problems
  • 9.7 References
  • 10. Weak Interaction
  • 10.1 V − A Interaction
  • 10.1.1 Helicity of the Neutrino
  • 10.2 Classification of Weak Processes
  • 10.2.1 Purely Leptonic Processes
  • 10.2.2 Semileptonic Processes
  • 10.2.3 Non-Leptonic Processes
  • 10.2.4 μ-Decay
  • 10.2.5 Remarks
  • 10.2.5.1 Decay of polarized muon
  • 10.2.6 Semi-Leptonic Processes
  • 10.3 Baryon Decays
  • 10.4 Pseudoscalar Meson Decays
  • 10.4.1 Pion Decay
  • 10.4.1.1 Remarks
  • 10.4.2 Strangeness Changing Semi-Leptonic Decays
  • 10.5 Hadronic Weak Decays
  • 10.5.1 Non-Leptonic Decays of Hyperons
  • 10.5.2 ΔI = 1/2 Rule for Hyperon Decays
  • 10.5.3 Non-leptonic Hyperon Decays in Non-Relativistic Quark Model
  • 10.6 Problems
  • 10.7 References
  • 11. Properties of Weak Hadronic Currents and Chiral Symmetry
  • 11.1 Introduction
  • 11.2 Conserved Vector Current Hypothesis (CVC)
  • 11.3 Partially Conserved Axial Vector Current Hypothesis (PCAC)
  • 11.4 Current Algebra and Chiral Symmetry
  • 11.4.1 Explicit Breaking of Chiral Symmetry
  • 11.4.2 An Application of Chiral Symmetry to Non-Leptonic Decays of Hyperons
  • 11.5 Axial Anomaly
  • 11.6 QCD Sum Rules
  • 11.7 Problems
  • 11.8 References
  • 12. Neutrino
  • 12.1 Introduction
  • 12.2 Intrinsic Properties of Neutrinos
  • 12.3 Mass
  • 12.3.1 Constraints on Neutrino Mass.
  • 12.3.1.1 Direct Limits
  • 12.3.1.2 Double β-Decay
  • 12.3.1.3 Cosmology
  • 12.3.1.4 Astrophysical Constraints
  • 12.3.2 Dirac and Majorana Masses
  • 12.3.3 Fermion Masses in the Standard Model (SM) and See-saw Mechanism
  • 12.4 Neutrino Oscillations
  • 12.4.1 Mikheyev-Smirnov-Wolfenstein Effect
  • 12.4.2 Evolution of Flavor Eigenstates in Matter
  • 12.5 Evidence for Neutrino Oscillations
  • 12.5.1 Disappearance Experiments
  • 12.5.2 Appearance Experiments
  • 12.5.2.1 Atmospheric neutrino anomaly
  • 12.5.2.2 Solar neutrinos
  • 12.6 Neutrino Mass Models and Mixing Matrix and Symmetries
  • 12.7 Neutrino Magnetic Moment
  • 12.8 Problems
  • 12.9 References
  • 13. Electroweak Unification
  • 13.1 Introduction
  • 13.2 Spontaneous Symmetry Breaking and Higgs Mechanism
  • 13.2.1 Higgs Mechanism
  • 13.2.2 Gauge Symmetry Breaking for Chiral U1 U2 Group
  • 13.3 Renormalizability
  • 13.4 Electroweak Unification
  • 13.4.1 Experimental Consequences of the Electroweak Unification
  • 13.4.2 Need for Radiative Corrections
  • 13.4.3 Experiments which Determine sin2θW
  • 13.5 Decay Widths of W and Z Bosons
  • 13.6 Tests of Yang-Mills Character of Gauge Bosons
  • 13.7 Higgs Boson Mass
  • 13.8 Upper Bound
  • 13.8.1 Unitarity
  • 13.8.2 Finiteness of Couplings
  • 13.9 Standard Model, Higgs Boson Searches, Production at Decays
  • 13.9.1 LEP-2
  • 13.9.2 LHC and Tevatron
  • 13.10 Two Higgs Doublet Model (2HDM)
  • 13.11 GIM Mechanism
  • 13.12 Cabibbo-Kobayashi-Maskawa Matrix
  • 13.13 Axial Anomaly
  • 13.14 Problems
  • 13.15 References
  • 14. Deep Inelastic Scattering
  • 14.1 Introduction
  • 14.2 Deep-Inelastic Lepton-Nucleon Scattering
  • 14.3 Parton Model
  • 14.4 Deep Inelastic Neutrino-Nucleon Scattering
  • 14.5 Sum Rules
  • 14.6 Deep-Inelastic Scattering Involving Neutral Weak Currents
  • 14.7 Problems
  • 14.8 References
  • 15. Weak Decays of Heavy Flavors.
  • 15.1 Leptonic Decays of τ Lepton
  • 15.2 Semi-Hadronic Decays of τ Lepton
  • 15.2.1 Special Cases
  • 15.3 Weak Decays of Heavy Flavors
  • 15.3.1 Leptonic Decays of D and B Mesons
  • 15.3.2 Semileptonic Decays of D and B Mesons
  • 15.3.3 (Exclusive) Semileptonic Decays of D and B Mesons
  • 15.3.4 Weak Hadronic Decays of B Mesons
  • 15.3.5 Inclusive Hadronic B Decays
  • 15.3.6 Radiative Decays of Bq Mesons
  • 15.4 Inclusive Hadronic Decays of D-Mesons
  • 15.4.1 Scattering and Annihilation Diagrams
  • 15.5 Problems
  • 15.6 References
  • 16. Particle Mixing and CP-Violation
  • 16.1 Introduction
  • 16.2 CPT and CP Invariance
  • 16.3 CP-Violation in the Standard Model
  • 16.4 Particle Mixing
  • 16.5 K0 − K0 Complex and CP-Violation in K-Decay
  • 16.6 B0 − B0 Complex
  • 16.7 CP-Violation in B-Decays
  • 16.8 CP-Violation in Hadronic Weak Decays of Baryons
  • 16.9 Problems
  • 16.10 References
  • 17. Grand Unification, Supersymmetry and Strings
  • 17.1 Grand Unification
  • 17.1.1 q2 Evolution of Gauge Coupling Constants and the Grand Unification Mass Scale
  • 17.1.2 General Consequences of GUTS
  • 17.2 Poincaré Group and Supersymmetry
  • 17.2.1 Introduction
  • 17.2.2 Poincaré Group
  • 17.2.3 Two-Component Weyl Spinors
  • 17.2.4 Spinor Algebra, Supersymmetry
  • 17.2.5 Supersymmetric Multiplets
  • 17.3 Supersymmetry and Strings
  • 17.3.1 Introduction
  • 17.3.2 Supersymmetry
  • 17.3.2.1 Supersymmetric Yang-Mills: An Example
  • 17.4 String Theory and Duality
  • 17.4.1 M-theory
  • 17.6 Conclusions
  • 17.7 Problems
  • 17.8 References
  • 18. Cosmology and Astroparticle Physics
  • 18.1 Cosmological Principle and Expansion of the Universe
  • 18.2 The Standard Model of Cosmology
  • 18.3 Cosmological Parameters and the Standard Model Solutions
  • 18.4 Accelerating Universe and Dark Energy
  • 18.4.1 Evidence from Supernovae
  • 18.4.2 Evidence from CMB Data.
  • 18.4.3 Quintessence.