Modern Introduction To Particle Physics, A (3rd Edition).

Saved in:
Bibliographic Details
:
TeilnehmendeR:
Place / Publishing House:Singapore : : World Scientific Publishing Company,, 2011.
©2012.
Year of Publication:2011
Edition:1st ed.
Language:English
Online Access:
Physical Description:1 online resource (680 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 5006954215
ctrlnum (MiAaPQ)5006954215
(Au-PeEL)EBL6954215
(OCoLC)1020688196
collection bib_alma
record_format marc
spelling Fayyazuddin,.
Modern Introduction To Particle Physics, A (3rd Edition).
1st ed.
Singapore : World Scientific Publishing Company, 2011.
©2012.
1 online resource (680 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Intro -- Contents -- Preface -- 1. Introduction -- 1.1 Fundamental Forces -- 1.1.1 The Gravitational Force -- 1.1.2 The Weak Nuclear Force -- 1.1.3 The Electromagnetic Force -- 1.1.4 The Strong Nuclear Force -- 1.2 Relative Strength of Four Fundamental Forces -- 1.3 Range of the Three Basic Forces -- 1.4 Classification of Matter -- 1.5 Strong Color Charges -- 1.6 Fundamental Role of "Charges" in the Unification of Forces -- 1.7 Strong Quark-Quark Force -- 1.8 Grand Unification -- 1.9 Units and Notation -- 1.10 Problems -- 1.11 References -- 2. Scattering and Particle Interaction -- 2.1 Introduction -- 2.2 Kinematics of a Scattering Process -- 2.3 Interaction Picture -- 2.4 Scattering Matrix (S-Matrix) -- 2.5 Phase Space -- 2.6 Examples -- 2.6.1 Two-body Scattering -- 2.6.2 Three-body Decay -- 2.6.2.1 Three-body Phase Space -- 2.7 Electromagnetic Interaction -- 2.8 Weak Interaction -- 2.9 Hadronic Cross-section -- 2.10 Problems -- 2.11 References -- 3. Space-Time Symmetries -- 3.1 Introduction -- 3.1.1 Rotation and SO(3) Group -- 3.1.2 Translation -- 3.1.3 Lorentz Group -- 3.2 Invariance Principle -- 3.2.1 U Continuous -- 3.2.2 U is Discrete (e.g. Space Reflection) -- 3.3 Parity -- 3.4 Intrinsic Parity -- 3.4.1 Intrinsic Parity of Pion -- 3.5 Parity Constraints on S-Matrix for Hadronic Reactions -- 3.5.1 Scattering of Spin 0 Particles on Spin 1/2 Particles -- 3.5.2 Decay of a Spin 0+ Particle into Three Spinless Particles Each Having Odd Parity -- 3.6 Time Reversal -- 3.6.1 Unitarity -- 3.6.2 Reciprocity Relation -- 3.7 Applications -- 3.7.1 Detailed Balance Principle -- 3.7.1.1 Determination of Spin of the Pion -- 3.8 Unitarity Constraints -- 3.8.1 Two-Particle Partial Wave Unitarity -- 3.9 Problems -- 4. Internal Symmetries -- 4.1 Selection Rules and Globally Conserved Quantum Numbers -- 4.2 Isospin.
4.2.1 Electromagnetic Interaction and Isospin -- 4.2.2 Weak Interaction and Isospin -- 4.3 Resonance Production -- 4.3.1 Δ-resonance -- 4.3.2 Spin of Δ -- 4.4 Charge Conjugation -- 4.5 G-Parity -- 4.6 Problems -- 4.7 References -- 5. Unitary Groups and SU(3) -- 5.1 Unitary Groups and SU(3) -- 5.2 Particle Representations in Flavor SU(3) -- 5.2.1 Mesons -- 5.2.2 Baryons -- 5.2.2.1 Baryon States -- 5.3 U-Spin -- 5.4 Irreducible Representations of SU(3) -- 5.4.1 Young's Tableaux -- 5.5 SU(N) -- 5.6 Applications of Flavor SU(3) -- 5.6.1 SU(3) Invariant BBP Couplings -- 5.6.2 VPP Coupling -- 5.7 Mass Splitting in Flavor SU(3) -- 5.8 Problems -- 5.9 References -- 6. SU(6) and Quark Model -- 6.1 SU(6) -- 6.1.1 SU(6) Wave Function for Mesons -- 6.2 Magnetic Moments of Baryons -- 6.3 Radiative Decays of Vector Mesons -- 6.4 Radiative Decays (Complementary Derivation) -- 6.4.1 Mesonic Radiative Decays V = P + γ -- 6.4.2 Baryonic Radiative Decay -- 6.5 Problems -- 6.6 References -- 7. Color, Gauge Principle and Quantum Chromodynamics -- 7.1 Evidence for Color -- 7.2 Gauge Principle -- 7.2.1 Aharanov and Bohm Experiment -- 7.2.2 Gauge Principle for Relativistic Quantum Mechanics -- 7.3 Non-Abelion Local Gauge Transformations (Yang-Mills) -- 7.4 Quantum Chromodynamics (QCD) -- 7.4.1 Conserved Current -- 7.4.2 Experimental Determinations of αs(q2) and Asymptotic Freedom of QCD -- 7.5 Hadron Spectroscopy -- 7.5.1 One Gluon Exchange Potential -- 7.5.2 Long Range QCD Motivated Potential -- 7.5.2.1 The string picture of hadrons -- 7.5.3 Spin-Spin Interaction -- 7.6 The Mass Spectrum -- 7.6.1 Meson Mass Relations -- 7.6.2 Baryon Mass Spectrum -- 7.7 Problems -- 7.8 References -- 8. Heavy Flavors -- 8.1 Discovery of Charm -- 8.1.1 Isospin -- 8.1.2 SU(3) Classification -- 8.2 Charm -- 8.2.1 Heavy Mesons -- 8.2.2 The Fifth Quark Flavor: Bottom Mesons.
8.2.3 The Sixth Quark Flavor: The Top -- 8.3 Strong and Radiative Decays of D* Mesons -- 8.4 Heavy Baryons -- 8.5 Quarkonium -- 8.6 Leptonic Decay Width of Quarkonium -- 8.7 Hadronic Decay Width -- 8.8 Non-Relativistic Treatment of Quarkonium -- 8.9 Observations -- 8.10 Tetraquark -- 8.11 Problems -- 8.12 References -- 9. Heavy Quark Effective Theory -- 9.1 Effective Lagrangian -- 9.2 Spin Symmetry of Heavy Quark -- 9.3 Mass Spectroscopy for Hadrons with One Heavy Quark -- 9.4 The P-wave Heavy Mesons: Mass Spectroscopy -- 9.5 Decays of P-wave Mesons -- 9.6 Problems -- 9.7 References -- 10. Weak Interaction -- 10.1 V − A Interaction -- 10.1.1 Helicity of the Neutrino -- 10.2 Classification of Weak Processes -- 10.2.1 Purely Leptonic Processes -- 10.2.2 Semileptonic Processes -- 10.2.3 Non-Leptonic Processes -- 10.2.4 μ-Decay -- 10.2.5 Remarks -- 10.2.5.1 Decay of polarized muon -- 10.2.6 Semi-Leptonic Processes -- 10.3 Baryon Decays -- 10.4 Pseudoscalar Meson Decays -- 10.4.1 Pion Decay -- 10.4.1.1 Remarks -- 10.4.2 Strangeness Changing Semi-Leptonic Decays -- 10.5 Hadronic Weak Decays -- 10.5.1 Non-Leptonic Decays of Hyperons -- 10.5.2 ΔI = 1/2 Rule for Hyperon Decays -- 10.5.3 Non-leptonic Hyperon Decays in Non-Relativistic Quark Model -- 10.6 Problems -- 10.7 References -- 11. Properties of Weak Hadronic Currents and Chiral Symmetry -- 11.1 Introduction -- 11.2 Conserved Vector Current Hypothesis (CVC) -- 11.3 Partially Conserved Axial Vector Current Hypothesis (PCAC) -- 11.4 Current Algebra and Chiral Symmetry -- 11.4.1 Explicit Breaking of Chiral Symmetry -- 11.4.2 An Application of Chiral Symmetry to Non-Leptonic Decays of Hyperons -- 11.5 Axial Anomaly -- 11.6 QCD Sum Rules -- 11.7 Problems -- 11.8 References -- 12. Neutrino -- 12.1 Introduction -- 12.2 Intrinsic Properties of Neutrinos -- 12.3 Mass -- 12.3.1 Constraints on Neutrino Mass.
12.3.1.1 Direct Limits -- 12.3.1.2 Double β-Decay -- 12.3.1.3 Cosmology -- 12.3.1.4 Astrophysical Constraints -- 12.3.2 Dirac and Majorana Masses -- 12.3.3 Fermion Masses in the Standard Model (SM) and See-saw Mechanism -- 12.4 Neutrino Oscillations -- 12.4.1 Mikheyev-Smirnov-Wolfenstein Effect -- 12.4.2 Evolution of Flavor Eigenstates in Matter -- 12.5 Evidence for Neutrino Oscillations -- 12.5.1 Disappearance Experiments -- 12.5.2 Appearance Experiments -- 12.5.2.1 Atmospheric neutrino anomaly -- 12.5.2.2 Solar neutrinos -- 12.6 Neutrino Mass Models and Mixing Matrix and Symmetries -- 12.7 Neutrino Magnetic Moment -- 12.8 Problems -- 12.9 References -- 13. Electroweak Unification -- 13.1 Introduction -- 13.2 Spontaneous Symmetry Breaking and Higgs Mechanism -- 13.2.1 Higgs Mechanism -- 13.2.2 Gauge Symmetry Breaking for Chiral U1 U2 Group -- 13.3 Renormalizability -- 13.4 Electroweak Unification -- 13.4.1 Experimental Consequences of the Electroweak Unification -- 13.4.2 Need for Radiative Corrections -- 13.4.3 Experiments which Determine sin2θW -- 13.5 Decay Widths of W and Z Bosons -- 13.6 Tests of Yang-Mills Character of Gauge Bosons -- 13.7 Higgs Boson Mass -- 13.8 Upper Bound -- 13.8.1 Unitarity -- 13.8.2 Finiteness of Couplings -- 13.9 Standard Model, Higgs Boson Searches, Production at Decays -- 13.9.1 LEP-2 -- 13.9.2 LHC and Tevatron -- 13.10 Two Higgs Doublet Model (2HDM) -- 13.11 GIM Mechanism -- 13.12 Cabibbo-Kobayashi-Maskawa Matrix -- 13.13 Axial Anomaly -- 13.14 Problems -- 13.15 References -- 14. Deep Inelastic Scattering -- 14.1 Introduction -- 14.2 Deep-Inelastic Lepton-Nucleon Scattering -- 14.3 Parton Model -- 14.4 Deep Inelastic Neutrino-Nucleon Scattering -- 14.5 Sum Rules -- 14.6 Deep-Inelastic Scattering Involving Neutral Weak Currents -- 14.7 Problems -- 14.8 References -- 15. Weak Decays of Heavy Flavors.
15.1 Leptonic Decays of τ Lepton -- 15.2 Semi-Hadronic Decays of τ Lepton -- 15.2.1 Special Cases -- 15.3 Weak Decays of Heavy Flavors -- 15.3.1 Leptonic Decays of D and B Mesons -- 15.3.2 Semileptonic Decays of D and B Mesons -- 15.3.3 (Exclusive) Semileptonic Decays of D and B Mesons -- 15.3.4 Weak Hadronic Decays of B Mesons -- 15.3.5 Inclusive Hadronic B Decays -- 15.3.6 Radiative Decays of Bq Mesons -- 15.4 Inclusive Hadronic Decays of D-Mesons -- 15.4.1 Scattering and Annihilation Diagrams -- 15.5 Problems -- 15.6 References -- 16. Particle Mixing and CP-Violation -- 16.1 Introduction -- 16.2 CPT and CP Invariance -- 16.3 CP-Violation in the Standard Model -- 16.4 Particle Mixing -- 16.5 K0 − K0 Complex and CP-Violation in K-Decay -- 16.6 B0 − B0 Complex -- 16.7 CP-Violation in B-Decays -- 16.8 CP-Violation in Hadronic Weak Decays of Baryons -- 16.9 Problems -- 16.10 References -- 17. Grand Unification, Supersymmetry and Strings -- 17.1 Grand Unification -- 17.1.1 q2 Evolution of Gauge Coupling Constants and the Grand Unification Mass Scale -- 17.1.2 General Consequences of GUTS -- 17.2 Poincaré Group and Supersymmetry -- 17.2.1 Introduction -- 17.2.2 Poincaré Group -- 17.2.3 Two-Component Weyl Spinors -- 17.2.4 Spinor Algebra, Supersymmetry -- 17.2.5 Supersymmetric Multiplets -- 17.3 Supersymmetry and Strings -- 17.3.1 Introduction -- 17.3.2 Supersymmetry -- 17.3.2.1 Supersymmetric Yang-Mills: An Example -- 17.4 String Theory and Duality -- 17.4.1 M-theory -- 17.6 Conclusions -- 17.7 Problems -- 17.8 References -- 18. Cosmology and Astroparticle Physics -- 18.1 Cosmological Principle and Expansion of the Universe -- 18.2 The Standard Model of Cosmology -- 18.3 Cosmological Parameters and the Standard Model Solutions -- 18.4 Accelerating Universe and Dark Energy -- 18.4.1 Evidence from Supernovae -- 18.4.2 Evidence from CMB Data.
18.4.3 Quintessence.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic books.
Riazuddin,.
Print version: Fayyazuddin, . Modern Introduction To Particle Physics, A (3rd Edition) Singapore : World Scientific Publishing Company,c2011 9789814338837
ProQuest (Firm)
https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6954215 Click to View
language English
format eBook
author Fayyazuddin,.
spellingShingle Fayyazuddin,.
Modern Introduction To Particle Physics, A (3rd Edition).
Intro -- Contents -- Preface -- 1. Introduction -- 1.1 Fundamental Forces -- 1.1.1 The Gravitational Force -- 1.1.2 The Weak Nuclear Force -- 1.1.3 The Electromagnetic Force -- 1.1.4 The Strong Nuclear Force -- 1.2 Relative Strength of Four Fundamental Forces -- 1.3 Range of the Three Basic Forces -- 1.4 Classification of Matter -- 1.5 Strong Color Charges -- 1.6 Fundamental Role of "Charges" in the Unification of Forces -- 1.7 Strong Quark-Quark Force -- 1.8 Grand Unification -- 1.9 Units and Notation -- 1.10 Problems -- 1.11 References -- 2. Scattering and Particle Interaction -- 2.1 Introduction -- 2.2 Kinematics of a Scattering Process -- 2.3 Interaction Picture -- 2.4 Scattering Matrix (S-Matrix) -- 2.5 Phase Space -- 2.6 Examples -- 2.6.1 Two-body Scattering -- 2.6.2 Three-body Decay -- 2.6.2.1 Three-body Phase Space -- 2.7 Electromagnetic Interaction -- 2.8 Weak Interaction -- 2.9 Hadronic Cross-section -- 2.10 Problems -- 2.11 References -- 3. Space-Time Symmetries -- 3.1 Introduction -- 3.1.1 Rotation and SO(3) Group -- 3.1.2 Translation -- 3.1.3 Lorentz Group -- 3.2 Invariance Principle -- 3.2.1 U Continuous -- 3.2.2 U is Discrete (e.g. Space Reflection) -- 3.3 Parity -- 3.4 Intrinsic Parity -- 3.4.1 Intrinsic Parity of Pion -- 3.5 Parity Constraints on S-Matrix for Hadronic Reactions -- 3.5.1 Scattering of Spin 0 Particles on Spin 1/2 Particles -- 3.5.2 Decay of a Spin 0+ Particle into Three Spinless Particles Each Having Odd Parity -- 3.6 Time Reversal -- 3.6.1 Unitarity -- 3.6.2 Reciprocity Relation -- 3.7 Applications -- 3.7.1 Detailed Balance Principle -- 3.7.1.1 Determination of Spin of the Pion -- 3.8 Unitarity Constraints -- 3.8.1 Two-Particle Partial Wave Unitarity -- 3.9 Problems -- 4. Internal Symmetries -- 4.1 Selection Rules and Globally Conserved Quantum Numbers -- 4.2 Isospin.
4.2.1 Electromagnetic Interaction and Isospin -- 4.2.2 Weak Interaction and Isospin -- 4.3 Resonance Production -- 4.3.1 Δ-resonance -- 4.3.2 Spin of Δ -- 4.4 Charge Conjugation -- 4.5 G-Parity -- 4.6 Problems -- 4.7 References -- 5. Unitary Groups and SU(3) -- 5.1 Unitary Groups and SU(3) -- 5.2 Particle Representations in Flavor SU(3) -- 5.2.1 Mesons -- 5.2.2 Baryons -- 5.2.2.1 Baryon States -- 5.3 U-Spin -- 5.4 Irreducible Representations of SU(3) -- 5.4.1 Young's Tableaux -- 5.5 SU(N) -- 5.6 Applications of Flavor SU(3) -- 5.6.1 SU(3) Invariant BBP Couplings -- 5.6.2 VPP Coupling -- 5.7 Mass Splitting in Flavor SU(3) -- 5.8 Problems -- 5.9 References -- 6. SU(6) and Quark Model -- 6.1 SU(6) -- 6.1.1 SU(6) Wave Function for Mesons -- 6.2 Magnetic Moments of Baryons -- 6.3 Radiative Decays of Vector Mesons -- 6.4 Radiative Decays (Complementary Derivation) -- 6.4.1 Mesonic Radiative Decays V = P + γ -- 6.4.2 Baryonic Radiative Decay -- 6.5 Problems -- 6.6 References -- 7. Color, Gauge Principle and Quantum Chromodynamics -- 7.1 Evidence for Color -- 7.2 Gauge Principle -- 7.2.1 Aharanov and Bohm Experiment -- 7.2.2 Gauge Principle for Relativistic Quantum Mechanics -- 7.3 Non-Abelion Local Gauge Transformations (Yang-Mills) -- 7.4 Quantum Chromodynamics (QCD) -- 7.4.1 Conserved Current -- 7.4.2 Experimental Determinations of αs(q2) and Asymptotic Freedom of QCD -- 7.5 Hadron Spectroscopy -- 7.5.1 One Gluon Exchange Potential -- 7.5.2 Long Range QCD Motivated Potential -- 7.5.2.1 The string picture of hadrons -- 7.5.3 Spin-Spin Interaction -- 7.6 The Mass Spectrum -- 7.6.1 Meson Mass Relations -- 7.6.2 Baryon Mass Spectrum -- 7.7 Problems -- 7.8 References -- 8. Heavy Flavors -- 8.1 Discovery of Charm -- 8.1.1 Isospin -- 8.1.2 SU(3) Classification -- 8.2 Charm -- 8.2.1 Heavy Mesons -- 8.2.2 The Fifth Quark Flavor: Bottom Mesons.
8.2.3 The Sixth Quark Flavor: The Top -- 8.3 Strong and Radiative Decays of D* Mesons -- 8.4 Heavy Baryons -- 8.5 Quarkonium -- 8.6 Leptonic Decay Width of Quarkonium -- 8.7 Hadronic Decay Width -- 8.8 Non-Relativistic Treatment of Quarkonium -- 8.9 Observations -- 8.10 Tetraquark -- 8.11 Problems -- 8.12 References -- 9. Heavy Quark Effective Theory -- 9.1 Effective Lagrangian -- 9.2 Spin Symmetry of Heavy Quark -- 9.3 Mass Spectroscopy for Hadrons with One Heavy Quark -- 9.4 The P-wave Heavy Mesons: Mass Spectroscopy -- 9.5 Decays of P-wave Mesons -- 9.6 Problems -- 9.7 References -- 10. Weak Interaction -- 10.1 V − A Interaction -- 10.1.1 Helicity of the Neutrino -- 10.2 Classification of Weak Processes -- 10.2.1 Purely Leptonic Processes -- 10.2.2 Semileptonic Processes -- 10.2.3 Non-Leptonic Processes -- 10.2.4 μ-Decay -- 10.2.5 Remarks -- 10.2.5.1 Decay of polarized muon -- 10.2.6 Semi-Leptonic Processes -- 10.3 Baryon Decays -- 10.4 Pseudoscalar Meson Decays -- 10.4.1 Pion Decay -- 10.4.1.1 Remarks -- 10.4.2 Strangeness Changing Semi-Leptonic Decays -- 10.5 Hadronic Weak Decays -- 10.5.1 Non-Leptonic Decays of Hyperons -- 10.5.2 ΔI = 1/2 Rule for Hyperon Decays -- 10.5.3 Non-leptonic Hyperon Decays in Non-Relativistic Quark Model -- 10.6 Problems -- 10.7 References -- 11. Properties of Weak Hadronic Currents and Chiral Symmetry -- 11.1 Introduction -- 11.2 Conserved Vector Current Hypothesis (CVC) -- 11.3 Partially Conserved Axial Vector Current Hypothesis (PCAC) -- 11.4 Current Algebra and Chiral Symmetry -- 11.4.1 Explicit Breaking of Chiral Symmetry -- 11.4.2 An Application of Chiral Symmetry to Non-Leptonic Decays of Hyperons -- 11.5 Axial Anomaly -- 11.6 QCD Sum Rules -- 11.7 Problems -- 11.8 References -- 12. Neutrino -- 12.1 Introduction -- 12.2 Intrinsic Properties of Neutrinos -- 12.3 Mass -- 12.3.1 Constraints on Neutrino Mass.
12.3.1.1 Direct Limits -- 12.3.1.2 Double β-Decay -- 12.3.1.3 Cosmology -- 12.3.1.4 Astrophysical Constraints -- 12.3.2 Dirac and Majorana Masses -- 12.3.3 Fermion Masses in the Standard Model (SM) and See-saw Mechanism -- 12.4 Neutrino Oscillations -- 12.4.1 Mikheyev-Smirnov-Wolfenstein Effect -- 12.4.2 Evolution of Flavor Eigenstates in Matter -- 12.5 Evidence for Neutrino Oscillations -- 12.5.1 Disappearance Experiments -- 12.5.2 Appearance Experiments -- 12.5.2.1 Atmospheric neutrino anomaly -- 12.5.2.2 Solar neutrinos -- 12.6 Neutrino Mass Models and Mixing Matrix and Symmetries -- 12.7 Neutrino Magnetic Moment -- 12.8 Problems -- 12.9 References -- 13. Electroweak Unification -- 13.1 Introduction -- 13.2 Spontaneous Symmetry Breaking and Higgs Mechanism -- 13.2.1 Higgs Mechanism -- 13.2.2 Gauge Symmetry Breaking for Chiral U1 U2 Group -- 13.3 Renormalizability -- 13.4 Electroweak Unification -- 13.4.1 Experimental Consequences of the Electroweak Unification -- 13.4.2 Need for Radiative Corrections -- 13.4.3 Experiments which Determine sin2θW -- 13.5 Decay Widths of W and Z Bosons -- 13.6 Tests of Yang-Mills Character of Gauge Bosons -- 13.7 Higgs Boson Mass -- 13.8 Upper Bound -- 13.8.1 Unitarity -- 13.8.2 Finiteness of Couplings -- 13.9 Standard Model, Higgs Boson Searches, Production at Decays -- 13.9.1 LEP-2 -- 13.9.2 LHC and Tevatron -- 13.10 Two Higgs Doublet Model (2HDM) -- 13.11 GIM Mechanism -- 13.12 Cabibbo-Kobayashi-Maskawa Matrix -- 13.13 Axial Anomaly -- 13.14 Problems -- 13.15 References -- 14. Deep Inelastic Scattering -- 14.1 Introduction -- 14.2 Deep-Inelastic Lepton-Nucleon Scattering -- 14.3 Parton Model -- 14.4 Deep Inelastic Neutrino-Nucleon Scattering -- 14.5 Sum Rules -- 14.6 Deep-Inelastic Scattering Involving Neutral Weak Currents -- 14.7 Problems -- 14.8 References -- 15. Weak Decays of Heavy Flavors.
15.1 Leptonic Decays of τ Lepton -- 15.2 Semi-Hadronic Decays of τ Lepton -- 15.2.1 Special Cases -- 15.3 Weak Decays of Heavy Flavors -- 15.3.1 Leptonic Decays of D and B Mesons -- 15.3.2 Semileptonic Decays of D and B Mesons -- 15.3.3 (Exclusive) Semileptonic Decays of D and B Mesons -- 15.3.4 Weak Hadronic Decays of B Mesons -- 15.3.5 Inclusive Hadronic B Decays -- 15.3.6 Radiative Decays of Bq Mesons -- 15.4 Inclusive Hadronic Decays of D-Mesons -- 15.4.1 Scattering and Annihilation Diagrams -- 15.5 Problems -- 15.6 References -- 16. Particle Mixing and CP-Violation -- 16.1 Introduction -- 16.2 CPT and CP Invariance -- 16.3 CP-Violation in the Standard Model -- 16.4 Particle Mixing -- 16.5 K0 − K0 Complex and CP-Violation in K-Decay -- 16.6 B0 − B0 Complex -- 16.7 CP-Violation in B-Decays -- 16.8 CP-Violation in Hadronic Weak Decays of Baryons -- 16.9 Problems -- 16.10 References -- 17. Grand Unification, Supersymmetry and Strings -- 17.1 Grand Unification -- 17.1.1 q2 Evolution of Gauge Coupling Constants and the Grand Unification Mass Scale -- 17.1.2 General Consequences of GUTS -- 17.2 Poincaré Group and Supersymmetry -- 17.2.1 Introduction -- 17.2.2 Poincaré Group -- 17.2.3 Two-Component Weyl Spinors -- 17.2.4 Spinor Algebra, Supersymmetry -- 17.2.5 Supersymmetric Multiplets -- 17.3 Supersymmetry and Strings -- 17.3.1 Introduction -- 17.3.2 Supersymmetry -- 17.3.2.1 Supersymmetric Yang-Mills: An Example -- 17.4 String Theory and Duality -- 17.4.1 M-theory -- 17.6 Conclusions -- 17.7 Problems -- 17.8 References -- 18. Cosmology and Astroparticle Physics -- 18.1 Cosmological Principle and Expansion of the Universe -- 18.2 The Standard Model of Cosmology -- 18.3 Cosmological Parameters and the Standard Model Solutions -- 18.4 Accelerating Universe and Dark Energy -- 18.4.1 Evidence from Supernovae -- 18.4.2 Evidence from CMB Data.
18.4.3 Quintessence.
author_facet Fayyazuddin,.
Riazuddin,.
author_variant f
author2 Riazuddin,.
author2_variant r
author2_role TeilnehmendeR
author_sort Fayyazuddin,.
title Modern Introduction To Particle Physics, A (3rd Edition).
title_full Modern Introduction To Particle Physics, A (3rd Edition).
title_fullStr Modern Introduction To Particle Physics, A (3rd Edition).
title_full_unstemmed Modern Introduction To Particle Physics, A (3rd Edition).
title_auth Modern Introduction To Particle Physics, A (3rd Edition).
title_new Modern Introduction To Particle Physics, A (3rd Edition).
title_sort modern introduction to particle physics, a (3rd edition).
publisher World Scientific Publishing Company,
publishDate 2011
physical 1 online resource (680 pages)
edition 1st ed.
contents Intro -- Contents -- Preface -- 1. Introduction -- 1.1 Fundamental Forces -- 1.1.1 The Gravitational Force -- 1.1.2 The Weak Nuclear Force -- 1.1.3 The Electromagnetic Force -- 1.1.4 The Strong Nuclear Force -- 1.2 Relative Strength of Four Fundamental Forces -- 1.3 Range of the Three Basic Forces -- 1.4 Classification of Matter -- 1.5 Strong Color Charges -- 1.6 Fundamental Role of "Charges" in the Unification of Forces -- 1.7 Strong Quark-Quark Force -- 1.8 Grand Unification -- 1.9 Units and Notation -- 1.10 Problems -- 1.11 References -- 2. Scattering and Particle Interaction -- 2.1 Introduction -- 2.2 Kinematics of a Scattering Process -- 2.3 Interaction Picture -- 2.4 Scattering Matrix (S-Matrix) -- 2.5 Phase Space -- 2.6 Examples -- 2.6.1 Two-body Scattering -- 2.6.2 Three-body Decay -- 2.6.2.1 Three-body Phase Space -- 2.7 Electromagnetic Interaction -- 2.8 Weak Interaction -- 2.9 Hadronic Cross-section -- 2.10 Problems -- 2.11 References -- 3. Space-Time Symmetries -- 3.1 Introduction -- 3.1.1 Rotation and SO(3) Group -- 3.1.2 Translation -- 3.1.3 Lorentz Group -- 3.2 Invariance Principle -- 3.2.1 U Continuous -- 3.2.2 U is Discrete (e.g. Space Reflection) -- 3.3 Parity -- 3.4 Intrinsic Parity -- 3.4.1 Intrinsic Parity of Pion -- 3.5 Parity Constraints on S-Matrix for Hadronic Reactions -- 3.5.1 Scattering of Spin 0 Particles on Spin 1/2 Particles -- 3.5.2 Decay of a Spin 0+ Particle into Three Spinless Particles Each Having Odd Parity -- 3.6 Time Reversal -- 3.6.1 Unitarity -- 3.6.2 Reciprocity Relation -- 3.7 Applications -- 3.7.1 Detailed Balance Principle -- 3.7.1.1 Determination of Spin of the Pion -- 3.8 Unitarity Constraints -- 3.8.1 Two-Particle Partial Wave Unitarity -- 3.9 Problems -- 4. Internal Symmetries -- 4.1 Selection Rules and Globally Conserved Quantum Numbers -- 4.2 Isospin.
4.2.1 Electromagnetic Interaction and Isospin -- 4.2.2 Weak Interaction and Isospin -- 4.3 Resonance Production -- 4.3.1 Δ-resonance -- 4.3.2 Spin of Δ -- 4.4 Charge Conjugation -- 4.5 G-Parity -- 4.6 Problems -- 4.7 References -- 5. Unitary Groups and SU(3) -- 5.1 Unitary Groups and SU(3) -- 5.2 Particle Representations in Flavor SU(3) -- 5.2.1 Mesons -- 5.2.2 Baryons -- 5.2.2.1 Baryon States -- 5.3 U-Spin -- 5.4 Irreducible Representations of SU(3) -- 5.4.1 Young's Tableaux -- 5.5 SU(N) -- 5.6 Applications of Flavor SU(3) -- 5.6.1 SU(3) Invariant BBP Couplings -- 5.6.2 VPP Coupling -- 5.7 Mass Splitting in Flavor SU(3) -- 5.8 Problems -- 5.9 References -- 6. SU(6) and Quark Model -- 6.1 SU(6) -- 6.1.1 SU(6) Wave Function for Mesons -- 6.2 Magnetic Moments of Baryons -- 6.3 Radiative Decays of Vector Mesons -- 6.4 Radiative Decays (Complementary Derivation) -- 6.4.1 Mesonic Radiative Decays V = P + γ -- 6.4.2 Baryonic Radiative Decay -- 6.5 Problems -- 6.6 References -- 7. Color, Gauge Principle and Quantum Chromodynamics -- 7.1 Evidence for Color -- 7.2 Gauge Principle -- 7.2.1 Aharanov and Bohm Experiment -- 7.2.2 Gauge Principle for Relativistic Quantum Mechanics -- 7.3 Non-Abelion Local Gauge Transformations (Yang-Mills) -- 7.4 Quantum Chromodynamics (QCD) -- 7.4.1 Conserved Current -- 7.4.2 Experimental Determinations of αs(q2) and Asymptotic Freedom of QCD -- 7.5 Hadron Spectroscopy -- 7.5.1 One Gluon Exchange Potential -- 7.5.2 Long Range QCD Motivated Potential -- 7.5.2.1 The string picture of hadrons -- 7.5.3 Spin-Spin Interaction -- 7.6 The Mass Spectrum -- 7.6.1 Meson Mass Relations -- 7.6.2 Baryon Mass Spectrum -- 7.7 Problems -- 7.8 References -- 8. Heavy Flavors -- 8.1 Discovery of Charm -- 8.1.1 Isospin -- 8.1.2 SU(3) Classification -- 8.2 Charm -- 8.2.1 Heavy Mesons -- 8.2.2 The Fifth Quark Flavor: Bottom Mesons.
8.2.3 The Sixth Quark Flavor: The Top -- 8.3 Strong and Radiative Decays of D* Mesons -- 8.4 Heavy Baryons -- 8.5 Quarkonium -- 8.6 Leptonic Decay Width of Quarkonium -- 8.7 Hadronic Decay Width -- 8.8 Non-Relativistic Treatment of Quarkonium -- 8.9 Observations -- 8.10 Tetraquark -- 8.11 Problems -- 8.12 References -- 9. Heavy Quark Effective Theory -- 9.1 Effective Lagrangian -- 9.2 Spin Symmetry of Heavy Quark -- 9.3 Mass Spectroscopy for Hadrons with One Heavy Quark -- 9.4 The P-wave Heavy Mesons: Mass Spectroscopy -- 9.5 Decays of P-wave Mesons -- 9.6 Problems -- 9.7 References -- 10. Weak Interaction -- 10.1 V − A Interaction -- 10.1.1 Helicity of the Neutrino -- 10.2 Classification of Weak Processes -- 10.2.1 Purely Leptonic Processes -- 10.2.2 Semileptonic Processes -- 10.2.3 Non-Leptonic Processes -- 10.2.4 μ-Decay -- 10.2.5 Remarks -- 10.2.5.1 Decay of polarized muon -- 10.2.6 Semi-Leptonic Processes -- 10.3 Baryon Decays -- 10.4 Pseudoscalar Meson Decays -- 10.4.1 Pion Decay -- 10.4.1.1 Remarks -- 10.4.2 Strangeness Changing Semi-Leptonic Decays -- 10.5 Hadronic Weak Decays -- 10.5.1 Non-Leptonic Decays of Hyperons -- 10.5.2 ΔI = 1/2 Rule for Hyperon Decays -- 10.5.3 Non-leptonic Hyperon Decays in Non-Relativistic Quark Model -- 10.6 Problems -- 10.7 References -- 11. Properties of Weak Hadronic Currents and Chiral Symmetry -- 11.1 Introduction -- 11.2 Conserved Vector Current Hypothesis (CVC) -- 11.3 Partially Conserved Axial Vector Current Hypothesis (PCAC) -- 11.4 Current Algebra and Chiral Symmetry -- 11.4.1 Explicit Breaking of Chiral Symmetry -- 11.4.2 An Application of Chiral Symmetry to Non-Leptonic Decays of Hyperons -- 11.5 Axial Anomaly -- 11.6 QCD Sum Rules -- 11.7 Problems -- 11.8 References -- 12. Neutrino -- 12.1 Introduction -- 12.2 Intrinsic Properties of Neutrinos -- 12.3 Mass -- 12.3.1 Constraints on Neutrino Mass.
12.3.1.1 Direct Limits -- 12.3.1.2 Double β-Decay -- 12.3.1.3 Cosmology -- 12.3.1.4 Astrophysical Constraints -- 12.3.2 Dirac and Majorana Masses -- 12.3.3 Fermion Masses in the Standard Model (SM) and See-saw Mechanism -- 12.4 Neutrino Oscillations -- 12.4.1 Mikheyev-Smirnov-Wolfenstein Effect -- 12.4.2 Evolution of Flavor Eigenstates in Matter -- 12.5 Evidence for Neutrino Oscillations -- 12.5.1 Disappearance Experiments -- 12.5.2 Appearance Experiments -- 12.5.2.1 Atmospheric neutrino anomaly -- 12.5.2.2 Solar neutrinos -- 12.6 Neutrino Mass Models and Mixing Matrix and Symmetries -- 12.7 Neutrino Magnetic Moment -- 12.8 Problems -- 12.9 References -- 13. Electroweak Unification -- 13.1 Introduction -- 13.2 Spontaneous Symmetry Breaking and Higgs Mechanism -- 13.2.1 Higgs Mechanism -- 13.2.2 Gauge Symmetry Breaking for Chiral U1 U2 Group -- 13.3 Renormalizability -- 13.4 Electroweak Unification -- 13.4.1 Experimental Consequences of the Electroweak Unification -- 13.4.2 Need for Radiative Corrections -- 13.4.3 Experiments which Determine sin2θW -- 13.5 Decay Widths of W and Z Bosons -- 13.6 Tests of Yang-Mills Character of Gauge Bosons -- 13.7 Higgs Boson Mass -- 13.8 Upper Bound -- 13.8.1 Unitarity -- 13.8.2 Finiteness of Couplings -- 13.9 Standard Model, Higgs Boson Searches, Production at Decays -- 13.9.1 LEP-2 -- 13.9.2 LHC and Tevatron -- 13.10 Two Higgs Doublet Model (2HDM) -- 13.11 GIM Mechanism -- 13.12 Cabibbo-Kobayashi-Maskawa Matrix -- 13.13 Axial Anomaly -- 13.14 Problems -- 13.15 References -- 14. Deep Inelastic Scattering -- 14.1 Introduction -- 14.2 Deep-Inelastic Lepton-Nucleon Scattering -- 14.3 Parton Model -- 14.4 Deep Inelastic Neutrino-Nucleon Scattering -- 14.5 Sum Rules -- 14.6 Deep-Inelastic Scattering Involving Neutral Weak Currents -- 14.7 Problems -- 14.8 References -- 15. Weak Decays of Heavy Flavors.
15.1 Leptonic Decays of τ Lepton -- 15.2 Semi-Hadronic Decays of τ Lepton -- 15.2.1 Special Cases -- 15.3 Weak Decays of Heavy Flavors -- 15.3.1 Leptonic Decays of D and B Mesons -- 15.3.2 Semileptonic Decays of D and B Mesons -- 15.3.3 (Exclusive) Semileptonic Decays of D and B Mesons -- 15.3.4 Weak Hadronic Decays of B Mesons -- 15.3.5 Inclusive Hadronic B Decays -- 15.3.6 Radiative Decays of Bq Mesons -- 15.4 Inclusive Hadronic Decays of D-Mesons -- 15.4.1 Scattering and Annihilation Diagrams -- 15.5 Problems -- 15.6 References -- 16. Particle Mixing and CP-Violation -- 16.1 Introduction -- 16.2 CPT and CP Invariance -- 16.3 CP-Violation in the Standard Model -- 16.4 Particle Mixing -- 16.5 K0 − K0 Complex and CP-Violation in K-Decay -- 16.6 B0 − B0 Complex -- 16.7 CP-Violation in B-Decays -- 16.8 CP-Violation in Hadronic Weak Decays of Baryons -- 16.9 Problems -- 16.10 References -- 17. Grand Unification, Supersymmetry and Strings -- 17.1 Grand Unification -- 17.1.1 q2 Evolution of Gauge Coupling Constants and the Grand Unification Mass Scale -- 17.1.2 General Consequences of GUTS -- 17.2 Poincaré Group and Supersymmetry -- 17.2.1 Introduction -- 17.2.2 Poincaré Group -- 17.2.3 Two-Component Weyl Spinors -- 17.2.4 Spinor Algebra, Supersymmetry -- 17.2.5 Supersymmetric Multiplets -- 17.3 Supersymmetry and Strings -- 17.3.1 Introduction -- 17.3.2 Supersymmetry -- 17.3.2.1 Supersymmetric Yang-Mills: An Example -- 17.4 String Theory and Duality -- 17.4.1 M-theory -- 17.6 Conclusions -- 17.7 Problems -- 17.8 References -- 18. Cosmology and Astroparticle Physics -- 18.1 Cosmological Principle and Expansion of the Universe -- 18.2 The Standard Model of Cosmology -- 18.3 Cosmological Parameters and the Standard Model Solutions -- 18.4 Accelerating Universe and Dark Energy -- 18.4.1 Evidence from Supernovae -- 18.4.2 Evidence from CMB Data.
18.4.3 Quintessence.
isbn 9789814338851
9789814338837
genre Electronic books.
genre_facet Electronic books.
url https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6954215
illustrated Not Illustrated
oclc_num 1020688196
work_keys_str_mv AT fayyazuddin modernintroductiontoparticlephysicsa3rdedition
AT riazuddin modernintroductiontoparticlephysicsa3rdedition
status_str n
ids_txt_mv (MiAaPQ)5006954215
(Au-PeEL)EBL6954215
(OCoLC)1020688196
carrierType_str_mv cr
is_hierarchy_title Modern Introduction To Particle Physics, A (3rd Edition).
author2_original_writing_str_mv noLinkedField
_version_ 1792331062539452416
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>10993nam a22004333i 4500</leader><controlfield tag="001">5006954215</controlfield><controlfield tag="003">MiAaPQ</controlfield><controlfield tag="005">20240229073846.0</controlfield><controlfield tag="006">m o d | </controlfield><controlfield tag="007">cr cnu||||||||</controlfield><controlfield tag="008">240229s2011 xx o ||||0 eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814338851</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789814338837</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(MiAaPQ)5006954215</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(Au-PeEL)EBL6954215</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1020688196</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">MiAaPQ</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">MiAaPQ</subfield><subfield code="d">MiAaPQ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fayyazuddin,.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modern Introduction To Particle Physics, A (3rd Edition).</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore :</subfield><subfield code="b">World Scientific Publishing Company,</subfield><subfield code="c">2011.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2012.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (680 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Intro -- Contents -- Preface -- 1. Introduction -- 1.1 Fundamental Forces -- 1.1.1 The Gravitational Force -- 1.1.2 The Weak Nuclear Force -- 1.1.3 The Electromagnetic Force -- 1.1.4 The Strong Nuclear Force -- 1.2 Relative Strength of Four Fundamental Forces -- 1.3 Range of the Three Basic Forces -- 1.4 Classification of Matter -- 1.5 Strong Color Charges -- 1.6 Fundamental Role of "Charges" in the Unification of Forces -- 1.7 Strong Quark-Quark Force -- 1.8 Grand Unification -- 1.9 Units and Notation -- 1.10 Problems -- 1.11 References -- 2. Scattering and Particle Interaction -- 2.1 Introduction -- 2.2 Kinematics of a Scattering Process -- 2.3 Interaction Picture -- 2.4 Scattering Matrix (S-Matrix) -- 2.5 Phase Space -- 2.6 Examples -- 2.6.1 Two-body Scattering -- 2.6.2 Three-body Decay -- 2.6.2.1 Three-body Phase Space -- 2.7 Electromagnetic Interaction -- 2.8 Weak Interaction -- 2.9 Hadronic Cross-section -- 2.10 Problems -- 2.11 References -- 3. Space-Time Symmetries -- 3.1 Introduction -- 3.1.1 Rotation and SO(3) Group -- 3.1.2 Translation -- 3.1.3 Lorentz Group -- 3.2 Invariance Principle -- 3.2.1 U Continuous -- 3.2.2 U is Discrete (e.g. Space Reflection) -- 3.3 Parity -- 3.4 Intrinsic Parity -- 3.4.1 Intrinsic Parity of Pion -- 3.5 Parity Constraints on S-Matrix for Hadronic Reactions -- 3.5.1 Scattering of Spin 0 Particles on Spin 1/2 Particles -- 3.5.2 Decay of a Spin 0+ Particle into Three Spinless Particles Each Having Odd Parity -- 3.6 Time Reversal -- 3.6.1 Unitarity -- 3.6.2 Reciprocity Relation -- 3.7 Applications -- 3.7.1 Detailed Balance Principle -- 3.7.1.1 Determination of Spin of the Pion -- 3.8 Unitarity Constraints -- 3.8.1 Two-Particle Partial Wave Unitarity -- 3.9 Problems -- 4. Internal Symmetries -- 4.1 Selection Rules and Globally Conserved Quantum Numbers -- 4.2 Isospin.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.2.1 Electromagnetic Interaction and Isospin -- 4.2.2 Weak Interaction and Isospin -- 4.3 Resonance Production -- 4.3.1 Δ-resonance -- 4.3.2 Spin of Δ -- 4.4 Charge Conjugation -- 4.5 G-Parity -- 4.6 Problems -- 4.7 References -- 5. Unitary Groups and SU(3) -- 5.1 Unitary Groups and SU(3) -- 5.2 Particle Representations in Flavor SU(3) -- 5.2.1 Mesons -- 5.2.2 Baryons -- 5.2.2.1 Baryon States -- 5.3 U-Spin -- 5.4 Irreducible Representations of SU(3) -- 5.4.1 Young's Tableaux -- 5.5 SU(N) -- 5.6 Applications of Flavor SU(3) -- 5.6.1 SU(3) Invariant BBP Couplings -- 5.6.2 VPP Coupling -- 5.7 Mass Splitting in Flavor SU(3) -- 5.8 Problems -- 5.9 References -- 6. SU(6) and Quark Model -- 6.1 SU(6) -- 6.1.1 SU(6) Wave Function for Mesons -- 6.2 Magnetic Moments of Baryons -- 6.3 Radiative Decays of Vector Mesons -- 6.4 Radiative Decays (Complementary Derivation) -- 6.4.1 Mesonic Radiative Decays V = P + γ -- 6.4.2 Baryonic Radiative Decay -- 6.5 Problems -- 6.6 References -- 7. Color, Gauge Principle and Quantum Chromodynamics -- 7.1 Evidence for Color -- 7.2 Gauge Principle -- 7.2.1 Aharanov and Bohm Experiment -- 7.2.2 Gauge Principle for Relativistic Quantum Mechanics -- 7.3 Non-Abelion Local Gauge Transformations (Yang-Mills) -- 7.4 Quantum Chromodynamics (QCD) -- 7.4.1 Conserved Current -- 7.4.2 Experimental Determinations of αs(q2) and Asymptotic Freedom of QCD -- 7.5 Hadron Spectroscopy -- 7.5.1 One Gluon Exchange Potential -- 7.5.2 Long Range QCD Motivated Potential -- 7.5.2.1 The string picture of hadrons -- 7.5.3 Spin-Spin Interaction -- 7.6 The Mass Spectrum -- 7.6.1 Meson Mass Relations -- 7.6.2 Baryon Mass Spectrum -- 7.7 Problems -- 7.8 References -- 8. Heavy Flavors -- 8.1 Discovery of Charm -- 8.1.1 Isospin -- 8.1.2 SU(3) Classification -- 8.2 Charm -- 8.2.1 Heavy Mesons -- 8.2.2 The Fifth Quark Flavor: Bottom Mesons.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">8.2.3 The Sixth Quark Flavor: The Top -- 8.3 Strong and Radiative Decays of D* Mesons -- 8.4 Heavy Baryons -- 8.5 Quarkonium -- 8.6 Leptonic Decay Width of Quarkonium -- 8.7 Hadronic Decay Width -- 8.8 Non-Relativistic Treatment of Quarkonium -- 8.9 Observations -- 8.10 Tetraquark -- 8.11 Problems -- 8.12 References -- 9. Heavy Quark Effective Theory -- 9.1 Effective Lagrangian -- 9.2 Spin Symmetry of Heavy Quark -- 9.3 Mass Spectroscopy for Hadrons with One Heavy Quark -- 9.4 The P-wave Heavy Mesons: Mass Spectroscopy -- 9.5 Decays of P-wave Mesons -- 9.6 Problems -- 9.7 References -- 10. Weak Interaction -- 10.1 V − A Interaction -- 10.1.1 Helicity of the Neutrino -- 10.2 Classification of Weak Processes -- 10.2.1 Purely Leptonic Processes -- 10.2.2 Semileptonic Processes -- 10.2.3 Non-Leptonic Processes -- 10.2.4 μ-Decay -- 10.2.5 Remarks -- 10.2.5.1 Decay of polarized muon -- 10.2.6 Semi-Leptonic Processes -- 10.3 Baryon Decays -- 10.4 Pseudoscalar Meson Decays -- 10.4.1 Pion Decay -- 10.4.1.1 Remarks -- 10.4.2 Strangeness Changing Semi-Leptonic Decays -- 10.5 Hadronic Weak Decays -- 10.5.1 Non-Leptonic Decays of Hyperons -- 10.5.2 ΔI = 1/2 Rule for Hyperon Decays -- 10.5.3 Non-leptonic Hyperon Decays in Non-Relativistic Quark Model -- 10.6 Problems -- 10.7 References -- 11. Properties of Weak Hadronic Currents and Chiral Symmetry -- 11.1 Introduction -- 11.2 Conserved Vector Current Hypothesis (CVC) -- 11.3 Partially Conserved Axial Vector Current Hypothesis (PCAC) -- 11.4 Current Algebra and Chiral Symmetry -- 11.4.1 Explicit Breaking of Chiral Symmetry -- 11.4.2 An Application of Chiral Symmetry to Non-Leptonic Decays of Hyperons -- 11.5 Axial Anomaly -- 11.6 QCD Sum Rules -- 11.7 Problems -- 11.8 References -- 12. Neutrino -- 12.1 Introduction -- 12.2 Intrinsic Properties of Neutrinos -- 12.3 Mass -- 12.3.1 Constraints on Neutrino Mass.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">12.3.1.1 Direct Limits -- 12.3.1.2 Double β-Decay -- 12.3.1.3 Cosmology -- 12.3.1.4 Astrophysical Constraints -- 12.3.2 Dirac and Majorana Masses -- 12.3.3 Fermion Masses in the Standard Model (SM) and See-saw Mechanism -- 12.4 Neutrino Oscillations -- 12.4.1 Mikheyev-Smirnov-Wolfenstein Effect -- 12.4.2 Evolution of Flavor Eigenstates in Matter -- 12.5 Evidence for Neutrino Oscillations -- 12.5.1 Disappearance Experiments -- 12.5.2 Appearance Experiments -- 12.5.2.1 Atmospheric neutrino anomaly -- 12.5.2.2 Solar neutrinos -- 12.6 Neutrino Mass Models and Mixing Matrix and Symmetries -- 12.7 Neutrino Magnetic Moment -- 12.8 Problems -- 12.9 References -- 13. Electroweak Unification -- 13.1 Introduction -- 13.2 Spontaneous Symmetry Breaking and Higgs Mechanism -- 13.2.1 Higgs Mechanism -- 13.2.2 Gauge Symmetry Breaking for Chiral U1 U2 Group -- 13.3 Renormalizability -- 13.4 Electroweak Unification -- 13.4.1 Experimental Consequences of the Electroweak Unification -- 13.4.2 Need for Radiative Corrections -- 13.4.3 Experiments which Determine sin2θW -- 13.5 Decay Widths of W and Z Bosons -- 13.6 Tests of Yang-Mills Character of Gauge Bosons -- 13.7 Higgs Boson Mass -- 13.8 Upper Bound -- 13.8.1 Unitarity -- 13.8.2 Finiteness of Couplings -- 13.9 Standard Model, Higgs Boson Searches, Production at Decays -- 13.9.1 LEP-2 -- 13.9.2 LHC and Tevatron -- 13.10 Two Higgs Doublet Model (2HDM) -- 13.11 GIM Mechanism -- 13.12 Cabibbo-Kobayashi-Maskawa Matrix -- 13.13 Axial Anomaly -- 13.14 Problems -- 13.15 References -- 14. Deep Inelastic Scattering -- 14.1 Introduction -- 14.2 Deep-Inelastic Lepton-Nucleon Scattering -- 14.3 Parton Model -- 14.4 Deep Inelastic Neutrino-Nucleon Scattering -- 14.5 Sum Rules -- 14.6 Deep-Inelastic Scattering Involving Neutral Weak Currents -- 14.7 Problems -- 14.8 References -- 15. Weak Decays of Heavy Flavors.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">15.1 Leptonic Decays of τ Lepton -- 15.2 Semi-Hadronic Decays of τ Lepton -- 15.2.1 Special Cases -- 15.3 Weak Decays of Heavy Flavors -- 15.3.1 Leptonic Decays of D and B Mesons -- 15.3.2 Semileptonic Decays of D and B Mesons -- 15.3.3 (Exclusive) Semileptonic Decays of D and B Mesons -- 15.3.4 Weak Hadronic Decays of B Mesons -- 15.3.5 Inclusive Hadronic B Decays -- 15.3.6 Radiative Decays of Bq Mesons -- 15.4 Inclusive Hadronic Decays of D-Mesons -- 15.4.1 Scattering and Annihilation Diagrams -- 15.5 Problems -- 15.6 References -- 16. Particle Mixing and CP-Violation -- 16.1 Introduction -- 16.2 CPT and CP Invariance -- 16.3 CP-Violation in the Standard Model -- 16.4 Particle Mixing -- 16.5 K0 − K0 Complex and CP-Violation in K-Decay -- 16.6 B0 − B0 Complex -- 16.7 CP-Violation in B-Decays -- 16.8 CP-Violation in Hadronic Weak Decays of Baryons -- 16.9 Problems -- 16.10 References -- 17. Grand Unification, Supersymmetry and Strings -- 17.1 Grand Unification -- 17.1.1 q2 Evolution of Gauge Coupling Constants and the Grand Unification Mass Scale -- 17.1.2 General Consequences of GUTS -- 17.2 Poincaré Group and Supersymmetry -- 17.2.1 Introduction -- 17.2.2 Poincaré Group -- 17.2.3 Two-Component Weyl Spinors -- 17.2.4 Spinor Algebra, Supersymmetry -- 17.2.5 Supersymmetric Multiplets -- 17.3 Supersymmetry and Strings -- 17.3.1 Introduction -- 17.3.2 Supersymmetry -- 17.3.2.1 Supersymmetric Yang-Mills: An Example -- 17.4 String Theory and Duality -- 17.4.1 M-theory -- 17.6 Conclusions -- 17.7 Problems -- 17.8 References -- 18. Cosmology and Astroparticle Physics -- 18.1 Cosmological Principle and Expansion of the Universe -- 18.2 The Standard Model of Cosmology -- 18.3 Cosmological Parameters and the Standard Model Solutions -- 18.4 Accelerating Universe and Dark Energy -- 18.4.1 Evidence from Supernovae -- 18.4.2 Evidence from CMB Data.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">18.4.3 Quintessence.</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources.</subfield></datafield><datafield tag="590" ind1=" " ind2=" "><subfield code="a">Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. </subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Riazuddin,.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Fayyazuddin, .</subfield><subfield code="t">Modern Introduction To Particle Physics, A (3rd Edition)</subfield><subfield code="d">Singapore : World Scientific Publishing Company,c2011</subfield><subfield code="z">9789814338837</subfield></datafield><datafield tag="797" ind1="2" ind2=" "><subfield code="a">ProQuest (Firm)</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6954215</subfield><subfield code="z">Click to View</subfield></datafield></record></collection>