Data-Driven Fault Detection and Reasoning for Industrial Monitoring.

Saved in:
Bibliographic Details
Superior document:Intelligent Control and Learning Systems Series ; v.3
:
TeilnehmendeR:
Place / Publishing House:Singapore : : Springer,, 2022.
Ã2022.
Year of Publication:2022
Edition:1st ed.
Language:English
Series:Intelligent Control and Learning Systems Series
Online Access:
Physical Description:1 online resource (277 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Intro
  • Preface
  • Contents
  • Abbreviations
  • 1 Background
  • 1.1 Introduction
  • 1.1.1 Process Monitoring Method
  • 1.1.2 Statistical Process Monitoring
  • 1.2 Fault Detection Index
  • 1.2.1 T2 Statistic
  • 1.2.2 Squared Prediction Error
  • 1.2.3 Mahalanobis Distance
  • 1.2.4 Combined Indices
  • 1.2.5 Control Limits in Non-Gaussian Distribution
  • References
  • 2 Multivariate Statistics in Single Observation Space
  • 2.1 Principal Component Analysis
  • 2.1.1 Mathematical Principle of PCA
  • 2.1.2 PCA Component Extraction Algorithm
  • 2.1.3 PCA Base Fault Detection
  • 2.2 Fisher Discriminant Analysis
  • 2.2.1 Principle of FDA
  • 2.2.2 Comparison of FDA and PCA
  • References
  • 3 Multivariate Statistics Between Two-Observation Spaces
  • 3.1 Canonical Correlation Analysis
  • 3.1.1 Mathematical Principle of CCA
  • 3.1.2 Eigenvalue Decomposition of CCA Algorithm
  • 3.1.3 SVD Solution of CCA Algorithm
  • 3.1.4 CCA-Based Fault Detection
  • 3.2 Partial Least Squares
  • 3.2.1 Fundamental of PLS
  • 3.2.2 PLS Algorithm
  • 3.2.3 Cross-Validation Test
  • References
  • 4 Simulation Platform for Fault Diagnosis
  • 4.1 Tennessee Eastman Process
  • 4.2 Fed-Batch Penicillin Fermentation Process
  • 4.3 Fault Detection Based on PCA, CCA, and PLS
  • 4.4 Fault Classification Based on FDA
  • 4.5 Conclusions
  • References
  • 5 Soft-Transition Sub-PCA Monitoring of Batch Processes
  • 5.1 What Is Phase-Based Sub-PCA
  • 5.2 SVDD-Based Soft-Transition Sub-PCA
  • 5.2.1 Rough Stage-Division Based on Extended Loading Matrix
  • 5.2.2 Detailed Stage-Division Based on SVDD
  • 5.2.3 PCA Modeling for Transition Stage
  • 5.2.4 Monitoring Procedure of Soft-Transition Sub-PCA
  • 5.3 Case Study
  • 5.3.1 Stage Identification and Modeling
  • 5.3.2 Monitoring of Normal Batch
  • 5.3.3 Monitoring of Fault Batch
  • 5.4 Conclusions
  • References.
  • 6 Statistics Decomposition and Monitoring in Original Variable Space
  • 6.1 Two Statistics Decomposition
  • 6.1.1 T2 Statistic Decomposition
  • 6.1.2 SPE Statistic Decomposition
  • 6.1.3 Fault Diagnosis in Original Variable Space
  • 6.2 Combined Index-Based Fault Diagnosis
  • 6.2.1 Combined Index Design
  • 6.2.2 Control Limit of Combined Index
  • 6.3 Case Study
  • 6.3.1 Variable Monitoring via Two Statistics Decomposition
  • 6.3.2 Combined Index-Based Monitoring
  • 6.3.3 Comparative Analysis
  • 6.4 Conclusions
  • References
  • 7 Kernel Fisher Envelope Surface for Pattern Recognition
  • 7.1 Process Monitoring Based on Kernel Fisher Envelope Analysis
  • 7.1.1 Kernel Fisher Envelope Surface
  • 7.1.2 Detection Indicator
  • 7.1.3 KFES-PCA-Based Synthetic Diagnosis in Batch Process
  • 7.2 Simulation Experiment Based on KFES-PCA
  • 7.2.1 Diagnostic Effect on Existing Fault Types
  • 7.2.2 Diagnostic Effect on Unknown Fault Types
  • 7.3 Conclusions
  • References
  • 8 Fault Identification Based on Local Feature Correlation
  • 8.1 Fault Identification Based on Kernel Discriminant Exponent Analysis
  • 8.1.1 Methodology of KEDA
  • 8.1.2 Simulation Experiment
  • 8.2 Fault Identification Based on LLE and EDA
  • 8.2.1 Local Linear Exponential Discriminant Analysis
  • 8.2.2 Neighborhood-Preserving Embedding Discriminant Analysis
  • 8.2.3 Fault Identification Based on LLEDA and NPEDA
  • 8.2.4 Simulation Experiment
  • 8.3 Cluster-LLEDA-Based Hybrid Fault Monitoring
  • 8.3.1 Hybrid Monitoring Strategy
  • 8.3.2 Simulation Study
  • 8.4 Conclusion
  • Reference
  • 9 Global Plus Local Projection to Latent Structures
  • 9.1 Fusion Motivation of Global Structure and Local Structure
  • 9.2 Mathematical Description of Dimensionality Reduction
  • 9.2.1 PLS Optimization Objective
  • 9.2.2 LPP and PCA Optimization Objectives
  • 9.3 Introduction to the GLPLS.
  • 9.4 Basic Principles of GPLPLS
  • 9.4.1 The GPLPLS Model
  • 9.4.2 Relationship Between GPLPLS Models
  • 9.4.3 Principal Components of the GPLPLS Model
  • 9.5 GPLPLS-Based Quality Monitoring
  • 9.5.1 Process and Quality Monitoring Based on GPLPLS
  • 9.5.2 Posterior Monitoring and Evaluation
  • 9.6 TE Process Simulation Analysis
  • 9.6.1 Model and Discussion
  • 9.6.2 Fault Diagnosis Analysis
  • 9.6.3 Comparison of Different GPLPLS Models
  • 9.7 Conclusions
  • References
  • 10 Locality-Preserving Partial Least Squares Regression
  • 10.1 The Relationship Among PCA, PLS, and LPP
  • 10.2 LPPLS Models and LPPLS-Based Fault Detection
  • 10.2.1 The LPPLS Models
  • 10.2.2 LPPLS for Process and Quality Monitoring
  • 10.2.3 Locality-Preserving Capacity Analysis
  • 10.3 Case Study
  • 10.3.1 PLS, GLPLS and LPPLS Models
  • 10.3.2 Quality Monitoring Analysis
  • 10.4 Conclusions
  • References
  • 11 Locally Linear Embedding Orthogonal Projection to Latent Structure
  • 11.1 Comparison of GPLPLS, LPPLS, and LLEPLS
  • 11.2 A Brief Review of the LLE Method
  • 11.3 LLEPLS Models and LLEPLS-Based Fault Detection
  • 11.3.1 LLEPLS Models
  • 11.3.2 LLEPLS for Process and Quality Monitoring
  • 11.4 LLEOPLS Models and LLEOPLS-Based Fault Detection
  • 11.5 Case Study
  • 11.5.1 Models and Discussion
  • 11.5.2 Fault Detection Analysis
  • 11.6 Conclusions
  • References
  • 12 New Robust Projection to Latent Structure
  • 12.1 Motivation of Robust L1-PLS
  • 12.2 Introduction to RSPCA Method
  • 12.3 Basic Principle of L1-PLS
  • 12.4 L1-PLS-Based Process Monitoring
  • 12.5 TE Simulation Analysis
  • 12.5.1 Robustness of Principal Components
  • 12.5.2 Robustness of Prediction and Monitoring Performance
  • 12.6 Conclusions
  • References
  • 13 Bayesian Causal Network for Discrete Variables
  • 13.1 Construction of Bayesian Causal Network
  • 13.1.1 Description of Bayesian Network.
  • 13.1.2 Establishing Multivariate Causal Structure
  • 13.1.3 Network Parameter Learning
  • 13.2 BCN-Based Fault Detection and Inference
  • 13.3 Case Study
  • 13.3.1 Public Data Sets Experiment
  • 13.3.2 TE Process Experiment
  • 13.4 Conclusions
  • References
  • 14 Probabilistic Graphical Model for Continuous Variables
  • 14.1 Construction of Probabilistic Graphical Model
  • 14.1.1 Multivariate Casual Structure Learning
  • 14.1.2 Probability Density Estimation
  • 14.1.3 Evaluation Index of Estimation Quality
  • 14.2 Dynamic Threshold for the Fault Detection
  • 14.3 Forward Fault Diagnosis and Reverse Reasoning
  • 14.4 Case Study: Application to TEP
  • 14.5 Conclusions
  • References.