Data-Driven Fault Detection and Reasoning for Industrial Monitoring.

Saved in:
Bibliographic Details
Superior document:Intelligent Control and Learning Systems Series ; v.3
:
TeilnehmendeR:
Place / Publishing House:Singapore : : Springer,, 2022.
Ã2022.
Year of Publication:2022
Edition:1st ed.
Language:English
Series:Intelligent Control and Learning Systems Series
Online Access:
Physical Description:1 online resource (277 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 5006840160
ctrlnum (MiAaPQ)5006840160
(Au-PeEL)EBL6840160
(OCoLC)1292353116
collection bib_alma
record_format marc
spelling Wang, Jing.
Data-Driven Fault Detection and Reasoning for Industrial Monitoring.
1st ed.
Singapore : Springer, 2022.
Ã2022.
1 online resource (277 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Intelligent Control and Learning Systems Series ; v.3
Intro -- Preface -- Contents -- Abbreviations -- 1 Background -- 1.1 Introduction -- 1.1.1 Process Monitoring Method -- 1.1.2 Statistical Process Monitoring -- 1.2 Fault Detection Index -- 1.2.1 T2 Statistic -- 1.2.2 Squared Prediction Error -- 1.2.3 Mahalanobis Distance -- 1.2.4 Combined Indices -- 1.2.5 Control Limits in Non-Gaussian Distribution -- References -- 2 Multivariate Statistics in Single Observation Space -- 2.1 Principal Component Analysis -- 2.1.1 Mathematical Principle of PCA -- 2.1.2 PCA Component Extraction Algorithm -- 2.1.3 PCA Base Fault Detection -- 2.2 Fisher Discriminant Analysis -- 2.2.1 Principle of FDA -- 2.2.2 Comparison of FDA and PCA -- References -- 3 Multivariate Statistics Between Two-Observation Spaces -- 3.1 Canonical Correlation Analysis -- 3.1.1 Mathematical Principle of CCA -- 3.1.2 Eigenvalue Decomposition of CCA Algorithm -- 3.1.3 SVD Solution of CCA Algorithm -- 3.1.4 CCA-Based Fault Detection -- 3.2 Partial Least Squares -- 3.2.1 Fundamental of PLS -- 3.2.2 PLS Algorithm -- 3.2.3 Cross-Validation Test -- References -- 4 Simulation Platform for Fault Diagnosis -- 4.1 Tennessee Eastman Process -- 4.2 Fed-Batch Penicillin Fermentation Process -- 4.3 Fault Detection Based on PCA, CCA, and PLS -- 4.4 Fault Classification Based on FDA -- 4.5 Conclusions -- References -- 5 Soft-Transition Sub-PCA Monitoring of Batch Processes -- 5.1 What Is Phase-Based Sub-PCA -- 5.2 SVDD-Based Soft-Transition Sub-PCA -- 5.2.1 Rough Stage-Division Based on Extended Loading Matrix -- 5.2.2 Detailed Stage-Division Based on SVDD -- 5.2.3 PCA Modeling for Transition Stage -- 5.2.4 Monitoring Procedure of Soft-Transition Sub-PCA -- 5.3 Case Study -- 5.3.1 Stage Identification and Modeling -- 5.3.2 Monitoring of Normal Batch -- 5.3.3 Monitoring of Fault Batch -- 5.4 Conclusions -- References.
6 Statistics Decomposition and Monitoring in Original Variable Space -- 6.1 Two Statistics Decomposition -- 6.1.1 T2 Statistic Decomposition -- 6.1.2 SPE Statistic Decomposition -- 6.1.3 Fault Diagnosis in Original Variable Space -- 6.2 Combined Index-Based Fault Diagnosis -- 6.2.1 Combined Index Design -- 6.2.2 Control Limit of Combined Index -- 6.3 Case Study -- 6.3.1 Variable Monitoring via Two Statistics Decomposition -- 6.3.2 Combined Index-Based Monitoring -- 6.3.3 Comparative Analysis -- 6.4 Conclusions -- References -- 7 Kernel Fisher Envelope Surface for Pattern Recognition -- 7.1 Process Monitoring Based on Kernel Fisher Envelope Analysis -- 7.1.1 Kernel Fisher Envelope Surface -- 7.1.2 Detection Indicator -- 7.1.3 KFES-PCA-Based Synthetic Diagnosis in Batch Process -- 7.2 Simulation Experiment Based on KFES-PCA -- 7.2.1 Diagnostic Effect on Existing Fault Types -- 7.2.2 Diagnostic Effect on Unknown Fault Types -- 7.3 Conclusions -- References -- 8 Fault Identification Based on Local Feature Correlation -- 8.1 Fault Identification Based on Kernel Discriminant Exponent Analysis -- 8.1.1 Methodology of KEDA -- 8.1.2 Simulation Experiment -- 8.2 Fault Identification Based on LLE and EDA -- 8.2.1 Local Linear Exponential Discriminant Analysis -- 8.2.2 Neighborhood-Preserving Embedding Discriminant Analysis -- 8.2.3 Fault Identification Based on LLEDA and NPEDA -- 8.2.4 Simulation Experiment -- 8.3 Cluster-LLEDA-Based Hybrid Fault Monitoring -- 8.3.1 Hybrid Monitoring Strategy -- 8.3.2 Simulation Study -- 8.4 Conclusion -- Reference -- 9 Global Plus Local Projection to Latent Structures -- 9.1 Fusion Motivation of Global Structure and Local Structure -- 9.2 Mathematical Description of Dimensionality Reduction -- 9.2.1 PLS Optimization Objective -- 9.2.2 LPP and PCA Optimization Objectives -- 9.3 Introduction to the GLPLS.
9.4 Basic Principles of GPLPLS -- 9.4.1 The GPLPLS Model -- 9.4.2 Relationship Between GPLPLS Models -- 9.4.3 Principal Components of the GPLPLS Model -- 9.5 GPLPLS-Based Quality Monitoring -- 9.5.1 Process and Quality Monitoring Based on GPLPLS -- 9.5.2 Posterior Monitoring and Evaluation -- 9.6 TE Process Simulation Analysis -- 9.6.1 Model and Discussion -- 9.6.2 Fault Diagnosis Analysis -- 9.6.3 Comparison of Different GPLPLS Models -- 9.7 Conclusions -- References -- 10 Locality-Preserving Partial Least Squares Regression -- 10.1 The Relationship Among PCA, PLS, and LPP -- 10.2 LPPLS Models and LPPLS-Based Fault Detection -- 10.2.1 The LPPLS Models -- 10.2.2 LPPLS for Process and Quality Monitoring -- 10.2.3 Locality-Preserving Capacity Analysis -- 10.3 Case Study -- 10.3.1 PLS, GLPLS and LPPLS Models -- 10.3.2 Quality Monitoring Analysis -- 10.4 Conclusions -- References -- 11 Locally Linear Embedding Orthogonal Projection to Latent Structure -- 11.1 Comparison of GPLPLS, LPPLS, and LLEPLS -- 11.2 A Brief Review of the LLE Method -- 11.3 LLEPLS Models and LLEPLS-Based Fault Detection -- 11.3.1 LLEPLS Models -- 11.3.2 LLEPLS for Process and Quality Monitoring -- 11.4 LLEOPLS Models and LLEOPLS-Based Fault Detection -- 11.5 Case Study -- 11.5.1 Models and Discussion -- 11.5.2 Fault Detection Analysis -- 11.6 Conclusions -- References -- 12 New Robust Projection to Latent Structure -- 12.1 Motivation of Robust L1-PLS -- 12.2 Introduction to RSPCA Method -- 12.3 Basic Principle of L1-PLS -- 12.4 L1-PLS-Based Process Monitoring -- 12.5 TE Simulation Analysis -- 12.5.1 Robustness of Principal Components -- 12.5.2 Robustness of Prediction and Monitoring Performance -- 12.6 Conclusions -- References -- 13 Bayesian Causal Network for Discrete Variables -- 13.1 Construction of Bayesian Causal Network -- 13.1.1 Description of Bayesian Network.
13.1.2 Establishing Multivariate Causal Structure -- 13.1.3 Network Parameter Learning -- 13.2 BCN-Based Fault Detection and Inference -- 13.3 Case Study -- 13.3.1 Public Data Sets Experiment -- 13.3.2 TE Process Experiment -- 13.4 Conclusions -- References -- 14 Probabilistic Graphical Model for Continuous Variables -- 14.1 Construction of Probabilistic Graphical Model -- 14.1.1 Multivariate Casual Structure Learning -- 14.1.2 Probability Density Estimation -- 14.1.3 Evaluation Index of Estimation Quality -- 14.2 Dynamic Threshold for the Fault Detection -- 14.3 Forward Fault Diagnosis and Reverse Reasoning -- 14.4 Case Study: Application to TEP -- 14.5 Conclusions -- References.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic books.
Zhou, Jinglin.
Chen, Xiaolu.
Print version: Wang, Jing Data-Driven Fault Detection and Reasoning for Industrial Monitoring Singapore : Springer,c2022 9789811680434
ProQuest (Firm)
Intelligent Control and Learning Systems Series
https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6840160 Click to View
language English
format eBook
author Wang, Jing.
spellingShingle Wang, Jing.
Data-Driven Fault Detection and Reasoning for Industrial Monitoring.
Intelligent Control and Learning Systems Series ;
Intro -- Preface -- Contents -- Abbreviations -- 1 Background -- 1.1 Introduction -- 1.1.1 Process Monitoring Method -- 1.1.2 Statistical Process Monitoring -- 1.2 Fault Detection Index -- 1.2.1 T2 Statistic -- 1.2.2 Squared Prediction Error -- 1.2.3 Mahalanobis Distance -- 1.2.4 Combined Indices -- 1.2.5 Control Limits in Non-Gaussian Distribution -- References -- 2 Multivariate Statistics in Single Observation Space -- 2.1 Principal Component Analysis -- 2.1.1 Mathematical Principle of PCA -- 2.1.2 PCA Component Extraction Algorithm -- 2.1.3 PCA Base Fault Detection -- 2.2 Fisher Discriminant Analysis -- 2.2.1 Principle of FDA -- 2.2.2 Comparison of FDA and PCA -- References -- 3 Multivariate Statistics Between Two-Observation Spaces -- 3.1 Canonical Correlation Analysis -- 3.1.1 Mathematical Principle of CCA -- 3.1.2 Eigenvalue Decomposition of CCA Algorithm -- 3.1.3 SVD Solution of CCA Algorithm -- 3.1.4 CCA-Based Fault Detection -- 3.2 Partial Least Squares -- 3.2.1 Fundamental of PLS -- 3.2.2 PLS Algorithm -- 3.2.3 Cross-Validation Test -- References -- 4 Simulation Platform for Fault Diagnosis -- 4.1 Tennessee Eastman Process -- 4.2 Fed-Batch Penicillin Fermentation Process -- 4.3 Fault Detection Based on PCA, CCA, and PLS -- 4.4 Fault Classification Based on FDA -- 4.5 Conclusions -- References -- 5 Soft-Transition Sub-PCA Monitoring of Batch Processes -- 5.1 What Is Phase-Based Sub-PCA -- 5.2 SVDD-Based Soft-Transition Sub-PCA -- 5.2.1 Rough Stage-Division Based on Extended Loading Matrix -- 5.2.2 Detailed Stage-Division Based on SVDD -- 5.2.3 PCA Modeling for Transition Stage -- 5.2.4 Monitoring Procedure of Soft-Transition Sub-PCA -- 5.3 Case Study -- 5.3.1 Stage Identification and Modeling -- 5.3.2 Monitoring of Normal Batch -- 5.3.3 Monitoring of Fault Batch -- 5.4 Conclusions -- References.
6 Statistics Decomposition and Monitoring in Original Variable Space -- 6.1 Two Statistics Decomposition -- 6.1.1 T2 Statistic Decomposition -- 6.1.2 SPE Statistic Decomposition -- 6.1.3 Fault Diagnosis in Original Variable Space -- 6.2 Combined Index-Based Fault Diagnosis -- 6.2.1 Combined Index Design -- 6.2.2 Control Limit of Combined Index -- 6.3 Case Study -- 6.3.1 Variable Monitoring via Two Statistics Decomposition -- 6.3.2 Combined Index-Based Monitoring -- 6.3.3 Comparative Analysis -- 6.4 Conclusions -- References -- 7 Kernel Fisher Envelope Surface for Pattern Recognition -- 7.1 Process Monitoring Based on Kernel Fisher Envelope Analysis -- 7.1.1 Kernel Fisher Envelope Surface -- 7.1.2 Detection Indicator -- 7.1.3 KFES-PCA-Based Synthetic Diagnosis in Batch Process -- 7.2 Simulation Experiment Based on KFES-PCA -- 7.2.1 Diagnostic Effect on Existing Fault Types -- 7.2.2 Diagnostic Effect on Unknown Fault Types -- 7.3 Conclusions -- References -- 8 Fault Identification Based on Local Feature Correlation -- 8.1 Fault Identification Based on Kernel Discriminant Exponent Analysis -- 8.1.1 Methodology of KEDA -- 8.1.2 Simulation Experiment -- 8.2 Fault Identification Based on LLE and EDA -- 8.2.1 Local Linear Exponential Discriminant Analysis -- 8.2.2 Neighborhood-Preserving Embedding Discriminant Analysis -- 8.2.3 Fault Identification Based on LLEDA and NPEDA -- 8.2.4 Simulation Experiment -- 8.3 Cluster-LLEDA-Based Hybrid Fault Monitoring -- 8.3.1 Hybrid Monitoring Strategy -- 8.3.2 Simulation Study -- 8.4 Conclusion -- Reference -- 9 Global Plus Local Projection to Latent Structures -- 9.1 Fusion Motivation of Global Structure and Local Structure -- 9.2 Mathematical Description of Dimensionality Reduction -- 9.2.1 PLS Optimization Objective -- 9.2.2 LPP and PCA Optimization Objectives -- 9.3 Introduction to the GLPLS.
9.4 Basic Principles of GPLPLS -- 9.4.1 The GPLPLS Model -- 9.4.2 Relationship Between GPLPLS Models -- 9.4.3 Principal Components of the GPLPLS Model -- 9.5 GPLPLS-Based Quality Monitoring -- 9.5.1 Process and Quality Monitoring Based on GPLPLS -- 9.5.2 Posterior Monitoring and Evaluation -- 9.6 TE Process Simulation Analysis -- 9.6.1 Model and Discussion -- 9.6.2 Fault Diagnosis Analysis -- 9.6.3 Comparison of Different GPLPLS Models -- 9.7 Conclusions -- References -- 10 Locality-Preserving Partial Least Squares Regression -- 10.1 The Relationship Among PCA, PLS, and LPP -- 10.2 LPPLS Models and LPPLS-Based Fault Detection -- 10.2.1 The LPPLS Models -- 10.2.2 LPPLS for Process and Quality Monitoring -- 10.2.3 Locality-Preserving Capacity Analysis -- 10.3 Case Study -- 10.3.1 PLS, GLPLS and LPPLS Models -- 10.3.2 Quality Monitoring Analysis -- 10.4 Conclusions -- References -- 11 Locally Linear Embedding Orthogonal Projection to Latent Structure -- 11.1 Comparison of GPLPLS, LPPLS, and LLEPLS -- 11.2 A Brief Review of the LLE Method -- 11.3 LLEPLS Models and LLEPLS-Based Fault Detection -- 11.3.1 LLEPLS Models -- 11.3.2 LLEPLS for Process and Quality Monitoring -- 11.4 LLEOPLS Models and LLEOPLS-Based Fault Detection -- 11.5 Case Study -- 11.5.1 Models and Discussion -- 11.5.2 Fault Detection Analysis -- 11.6 Conclusions -- References -- 12 New Robust Projection to Latent Structure -- 12.1 Motivation of Robust L1-PLS -- 12.2 Introduction to RSPCA Method -- 12.3 Basic Principle of L1-PLS -- 12.4 L1-PLS-Based Process Monitoring -- 12.5 TE Simulation Analysis -- 12.5.1 Robustness of Principal Components -- 12.5.2 Robustness of Prediction and Monitoring Performance -- 12.6 Conclusions -- References -- 13 Bayesian Causal Network for Discrete Variables -- 13.1 Construction of Bayesian Causal Network -- 13.1.1 Description of Bayesian Network.
13.1.2 Establishing Multivariate Causal Structure -- 13.1.3 Network Parameter Learning -- 13.2 BCN-Based Fault Detection and Inference -- 13.3 Case Study -- 13.3.1 Public Data Sets Experiment -- 13.3.2 TE Process Experiment -- 13.4 Conclusions -- References -- 14 Probabilistic Graphical Model for Continuous Variables -- 14.1 Construction of Probabilistic Graphical Model -- 14.1.1 Multivariate Casual Structure Learning -- 14.1.2 Probability Density Estimation -- 14.1.3 Evaluation Index of Estimation Quality -- 14.2 Dynamic Threshold for the Fault Detection -- 14.3 Forward Fault Diagnosis and Reverse Reasoning -- 14.4 Case Study: Application to TEP -- 14.5 Conclusions -- References.
author_facet Wang, Jing.
Zhou, Jinglin.
Chen, Xiaolu.
author_variant j w jw
author2 Zhou, Jinglin.
Chen, Xiaolu.
author2_variant j z jz
x c xc
author2_role TeilnehmendeR
TeilnehmendeR
author_sort Wang, Jing.
title Data-Driven Fault Detection and Reasoning for Industrial Monitoring.
title_full Data-Driven Fault Detection and Reasoning for Industrial Monitoring.
title_fullStr Data-Driven Fault Detection and Reasoning for Industrial Monitoring.
title_full_unstemmed Data-Driven Fault Detection and Reasoning for Industrial Monitoring.
title_auth Data-Driven Fault Detection and Reasoning for Industrial Monitoring.
title_new Data-Driven Fault Detection and Reasoning for Industrial Monitoring.
title_sort data-driven fault detection and reasoning for industrial monitoring.
series Intelligent Control and Learning Systems Series ;
series2 Intelligent Control and Learning Systems Series ;
publisher Springer,
publishDate 2022
physical 1 online resource (277 pages)
edition 1st ed.
contents Intro -- Preface -- Contents -- Abbreviations -- 1 Background -- 1.1 Introduction -- 1.1.1 Process Monitoring Method -- 1.1.2 Statistical Process Monitoring -- 1.2 Fault Detection Index -- 1.2.1 T2 Statistic -- 1.2.2 Squared Prediction Error -- 1.2.3 Mahalanobis Distance -- 1.2.4 Combined Indices -- 1.2.5 Control Limits in Non-Gaussian Distribution -- References -- 2 Multivariate Statistics in Single Observation Space -- 2.1 Principal Component Analysis -- 2.1.1 Mathematical Principle of PCA -- 2.1.2 PCA Component Extraction Algorithm -- 2.1.3 PCA Base Fault Detection -- 2.2 Fisher Discriminant Analysis -- 2.2.1 Principle of FDA -- 2.2.2 Comparison of FDA and PCA -- References -- 3 Multivariate Statistics Between Two-Observation Spaces -- 3.1 Canonical Correlation Analysis -- 3.1.1 Mathematical Principle of CCA -- 3.1.2 Eigenvalue Decomposition of CCA Algorithm -- 3.1.3 SVD Solution of CCA Algorithm -- 3.1.4 CCA-Based Fault Detection -- 3.2 Partial Least Squares -- 3.2.1 Fundamental of PLS -- 3.2.2 PLS Algorithm -- 3.2.3 Cross-Validation Test -- References -- 4 Simulation Platform for Fault Diagnosis -- 4.1 Tennessee Eastman Process -- 4.2 Fed-Batch Penicillin Fermentation Process -- 4.3 Fault Detection Based on PCA, CCA, and PLS -- 4.4 Fault Classification Based on FDA -- 4.5 Conclusions -- References -- 5 Soft-Transition Sub-PCA Monitoring of Batch Processes -- 5.1 What Is Phase-Based Sub-PCA -- 5.2 SVDD-Based Soft-Transition Sub-PCA -- 5.2.1 Rough Stage-Division Based on Extended Loading Matrix -- 5.2.2 Detailed Stage-Division Based on SVDD -- 5.2.3 PCA Modeling for Transition Stage -- 5.2.4 Monitoring Procedure of Soft-Transition Sub-PCA -- 5.3 Case Study -- 5.3.1 Stage Identification and Modeling -- 5.3.2 Monitoring of Normal Batch -- 5.3.3 Monitoring of Fault Batch -- 5.4 Conclusions -- References.
6 Statistics Decomposition and Monitoring in Original Variable Space -- 6.1 Two Statistics Decomposition -- 6.1.1 T2 Statistic Decomposition -- 6.1.2 SPE Statistic Decomposition -- 6.1.3 Fault Diagnosis in Original Variable Space -- 6.2 Combined Index-Based Fault Diagnosis -- 6.2.1 Combined Index Design -- 6.2.2 Control Limit of Combined Index -- 6.3 Case Study -- 6.3.1 Variable Monitoring via Two Statistics Decomposition -- 6.3.2 Combined Index-Based Monitoring -- 6.3.3 Comparative Analysis -- 6.4 Conclusions -- References -- 7 Kernel Fisher Envelope Surface for Pattern Recognition -- 7.1 Process Monitoring Based on Kernel Fisher Envelope Analysis -- 7.1.1 Kernel Fisher Envelope Surface -- 7.1.2 Detection Indicator -- 7.1.3 KFES-PCA-Based Synthetic Diagnosis in Batch Process -- 7.2 Simulation Experiment Based on KFES-PCA -- 7.2.1 Diagnostic Effect on Existing Fault Types -- 7.2.2 Diagnostic Effect on Unknown Fault Types -- 7.3 Conclusions -- References -- 8 Fault Identification Based on Local Feature Correlation -- 8.1 Fault Identification Based on Kernel Discriminant Exponent Analysis -- 8.1.1 Methodology of KEDA -- 8.1.2 Simulation Experiment -- 8.2 Fault Identification Based on LLE and EDA -- 8.2.1 Local Linear Exponential Discriminant Analysis -- 8.2.2 Neighborhood-Preserving Embedding Discriminant Analysis -- 8.2.3 Fault Identification Based on LLEDA and NPEDA -- 8.2.4 Simulation Experiment -- 8.3 Cluster-LLEDA-Based Hybrid Fault Monitoring -- 8.3.1 Hybrid Monitoring Strategy -- 8.3.2 Simulation Study -- 8.4 Conclusion -- Reference -- 9 Global Plus Local Projection to Latent Structures -- 9.1 Fusion Motivation of Global Structure and Local Structure -- 9.2 Mathematical Description of Dimensionality Reduction -- 9.2.1 PLS Optimization Objective -- 9.2.2 LPP and PCA Optimization Objectives -- 9.3 Introduction to the GLPLS.
9.4 Basic Principles of GPLPLS -- 9.4.1 The GPLPLS Model -- 9.4.2 Relationship Between GPLPLS Models -- 9.4.3 Principal Components of the GPLPLS Model -- 9.5 GPLPLS-Based Quality Monitoring -- 9.5.1 Process and Quality Monitoring Based on GPLPLS -- 9.5.2 Posterior Monitoring and Evaluation -- 9.6 TE Process Simulation Analysis -- 9.6.1 Model and Discussion -- 9.6.2 Fault Diagnosis Analysis -- 9.6.3 Comparison of Different GPLPLS Models -- 9.7 Conclusions -- References -- 10 Locality-Preserving Partial Least Squares Regression -- 10.1 The Relationship Among PCA, PLS, and LPP -- 10.2 LPPLS Models and LPPLS-Based Fault Detection -- 10.2.1 The LPPLS Models -- 10.2.2 LPPLS for Process and Quality Monitoring -- 10.2.3 Locality-Preserving Capacity Analysis -- 10.3 Case Study -- 10.3.1 PLS, GLPLS and LPPLS Models -- 10.3.2 Quality Monitoring Analysis -- 10.4 Conclusions -- References -- 11 Locally Linear Embedding Orthogonal Projection to Latent Structure -- 11.1 Comparison of GPLPLS, LPPLS, and LLEPLS -- 11.2 A Brief Review of the LLE Method -- 11.3 LLEPLS Models and LLEPLS-Based Fault Detection -- 11.3.1 LLEPLS Models -- 11.3.2 LLEPLS for Process and Quality Monitoring -- 11.4 LLEOPLS Models and LLEOPLS-Based Fault Detection -- 11.5 Case Study -- 11.5.1 Models and Discussion -- 11.5.2 Fault Detection Analysis -- 11.6 Conclusions -- References -- 12 New Robust Projection to Latent Structure -- 12.1 Motivation of Robust L1-PLS -- 12.2 Introduction to RSPCA Method -- 12.3 Basic Principle of L1-PLS -- 12.4 L1-PLS-Based Process Monitoring -- 12.5 TE Simulation Analysis -- 12.5.1 Robustness of Principal Components -- 12.5.2 Robustness of Prediction and Monitoring Performance -- 12.6 Conclusions -- References -- 13 Bayesian Causal Network for Discrete Variables -- 13.1 Construction of Bayesian Causal Network -- 13.1.1 Description of Bayesian Network.
13.1.2 Establishing Multivariate Causal Structure -- 13.1.3 Network Parameter Learning -- 13.2 BCN-Based Fault Detection and Inference -- 13.3 Case Study -- 13.3.1 Public Data Sets Experiment -- 13.3.2 TE Process Experiment -- 13.4 Conclusions -- References -- 14 Probabilistic Graphical Model for Continuous Variables -- 14.1 Construction of Probabilistic Graphical Model -- 14.1.1 Multivariate Casual Structure Learning -- 14.1.2 Probability Density Estimation -- 14.1.3 Evaluation Index of Estimation Quality -- 14.2 Dynamic Threshold for the Fault Detection -- 14.3 Forward Fault Diagnosis and Reverse Reasoning -- 14.4 Case Study: Application to TEP -- 14.5 Conclusions -- References.
isbn 9789811680441
9789811680434
callnumber-first T - Technology
callnumber-subject T - General Technology
callnumber-label T59
callnumber-sort T 259.5
genre Electronic books.
genre_facet Electronic books.
url https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6840160
illustrated Not Illustrated
dewey-hundreds 600 - Technology
dewey-tens 620 - Engineering
dewey-ones 629 - Other branches of engineering
dewey-full 629.89
dewey-sort 3629.89
dewey-raw 629.89
dewey-search 629.89
oclc_num 1292353116
work_keys_str_mv AT wangjing datadrivenfaultdetectionandreasoningforindustrialmonitoring
AT zhoujinglin datadrivenfaultdetectionandreasoningforindustrialmonitoring
AT chenxiaolu datadrivenfaultdetectionandreasoningforindustrialmonitoring
status_str n
ids_txt_mv (MiAaPQ)5006840160
(Au-PeEL)EBL6840160
(OCoLC)1292353116
carrierType_str_mv cr
hierarchy_parent_title Intelligent Control and Learning Systems Series ; v.3
is_hierarchy_title Data-Driven Fault Detection and Reasoning for Industrial Monitoring.
container_title Intelligent Control and Learning Systems Series ; v.3
author2_original_writing_str_mv noLinkedField
noLinkedField
marc_error Info : Unimarc and ISO-8859-1 translations identical, choosing ISO-8859-1. --- [ 856 : z ]
_version_ 1792331061517090816
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07983nam a22004693i 4500</leader><controlfield tag="001">5006840160</controlfield><controlfield tag="003">MiAaPQ</controlfield><controlfield tag="005">20240229073845.0</controlfield><controlfield tag="006">m o d | </controlfield><controlfield tag="007">cr cnu||||||||</controlfield><controlfield tag="008">240229s2022 xx o ||||0 eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789811680441</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789811680434</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(MiAaPQ)5006840160</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(Au-PeEL)EBL6840160</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1292353116</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">MiAaPQ</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">MiAaPQ</subfield><subfield code="d">MiAaPQ</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">T59.5</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">629.89</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Jing.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Data-Driven Fault Detection and Reasoning for Industrial Monitoring.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore :</subfield><subfield code="b">Springer,</subfield><subfield code="c">2022.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">Ã2022.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (277 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Intelligent Control and Learning Systems Series ;</subfield><subfield code="v">v.3</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Intro -- Preface -- Contents -- Abbreviations -- 1 Background -- 1.1 Introduction -- 1.1.1 Process Monitoring Method -- 1.1.2 Statistical Process Monitoring -- 1.2 Fault Detection Index -- 1.2.1 T2 Statistic -- 1.2.2 Squared Prediction Error -- 1.2.3 Mahalanobis Distance -- 1.2.4 Combined Indices -- 1.2.5 Control Limits in Non-Gaussian Distribution -- References -- 2 Multivariate Statistics in Single Observation Space -- 2.1 Principal Component Analysis -- 2.1.1 Mathematical Principle of PCA -- 2.1.2 PCA Component Extraction Algorithm -- 2.1.3 PCA Base Fault Detection -- 2.2 Fisher Discriminant Analysis -- 2.2.1 Principle of FDA -- 2.2.2 Comparison of FDA and PCA -- References -- 3 Multivariate Statistics Between Two-Observation Spaces -- 3.1 Canonical Correlation Analysis -- 3.1.1 Mathematical Principle of CCA -- 3.1.2 Eigenvalue Decomposition of CCA Algorithm -- 3.1.3 SVD Solution of CCA Algorithm -- 3.1.4 CCA-Based Fault Detection -- 3.2 Partial Least Squares -- 3.2.1 Fundamental of PLS -- 3.2.2 PLS Algorithm -- 3.2.3 Cross-Validation Test -- References -- 4 Simulation Platform for Fault Diagnosis -- 4.1 Tennessee Eastman Process -- 4.2 Fed-Batch Penicillin Fermentation Process -- 4.3 Fault Detection Based on PCA, CCA, and PLS -- 4.4 Fault Classification Based on FDA -- 4.5 Conclusions -- References -- 5 Soft-Transition Sub-PCA Monitoring of Batch Processes -- 5.1 What Is Phase-Based Sub-PCA -- 5.2 SVDD-Based Soft-Transition Sub-PCA -- 5.2.1 Rough Stage-Division Based on Extended Loading Matrix -- 5.2.2 Detailed Stage-Division Based on SVDD -- 5.2.3 PCA Modeling for Transition Stage -- 5.2.4 Monitoring Procedure of Soft-Transition Sub-PCA -- 5.3 Case Study -- 5.3.1 Stage Identification and Modeling -- 5.3.2 Monitoring of Normal Batch -- 5.3.3 Monitoring of Fault Batch -- 5.4 Conclusions -- References.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6 Statistics Decomposition and Monitoring in Original Variable Space -- 6.1 Two Statistics Decomposition -- 6.1.1 T2 Statistic Decomposition -- 6.1.2 SPE Statistic Decomposition -- 6.1.3 Fault Diagnosis in Original Variable Space -- 6.2 Combined Index-Based Fault Diagnosis -- 6.2.1 Combined Index Design -- 6.2.2 Control Limit of Combined Index -- 6.3 Case Study -- 6.3.1 Variable Monitoring via Two Statistics Decomposition -- 6.3.2 Combined Index-Based Monitoring -- 6.3.3 Comparative Analysis -- 6.4 Conclusions -- References -- 7 Kernel Fisher Envelope Surface for Pattern Recognition -- 7.1 Process Monitoring Based on Kernel Fisher Envelope Analysis -- 7.1.1 Kernel Fisher Envelope Surface -- 7.1.2 Detection Indicator -- 7.1.3 KFES-PCA-Based Synthetic Diagnosis in Batch Process -- 7.2 Simulation Experiment Based on KFES-PCA -- 7.2.1 Diagnostic Effect on Existing Fault Types -- 7.2.2 Diagnostic Effect on Unknown Fault Types -- 7.3 Conclusions -- References -- 8 Fault Identification Based on Local Feature Correlation -- 8.1 Fault Identification Based on Kernel Discriminant Exponent Analysis -- 8.1.1 Methodology of KEDA -- 8.1.2 Simulation Experiment -- 8.2 Fault Identification Based on LLE and EDA -- 8.2.1 Local Linear Exponential Discriminant Analysis -- 8.2.2 Neighborhood-Preserving Embedding Discriminant Analysis -- 8.2.3 Fault Identification Based on LLEDA and NPEDA -- 8.2.4 Simulation Experiment -- 8.3 Cluster-LLEDA-Based Hybrid Fault Monitoring -- 8.3.1 Hybrid Monitoring Strategy -- 8.3.2 Simulation Study -- 8.4 Conclusion -- Reference -- 9 Global Plus Local Projection to Latent Structures -- 9.1 Fusion Motivation of Global Structure and Local Structure -- 9.2 Mathematical Description of Dimensionality Reduction -- 9.2.1 PLS Optimization Objective -- 9.2.2 LPP and PCA Optimization Objectives -- 9.3 Introduction to the GLPLS.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">9.4 Basic Principles of GPLPLS -- 9.4.1 The GPLPLS Model -- 9.4.2 Relationship Between GPLPLS Models -- 9.4.3 Principal Components of the GPLPLS Model -- 9.5 GPLPLS-Based Quality Monitoring -- 9.5.1 Process and Quality Monitoring Based on GPLPLS -- 9.5.2 Posterior Monitoring and Evaluation -- 9.6 TE Process Simulation Analysis -- 9.6.1 Model and Discussion -- 9.6.2 Fault Diagnosis Analysis -- 9.6.3 Comparison of Different GPLPLS Models -- 9.7 Conclusions -- References -- 10 Locality-Preserving Partial Least Squares Regression -- 10.1 The Relationship Among PCA, PLS, and LPP -- 10.2 LPPLS Models and LPPLS-Based Fault Detection -- 10.2.1 The LPPLS Models -- 10.2.2 LPPLS for Process and Quality Monitoring -- 10.2.3 Locality-Preserving Capacity Analysis -- 10.3 Case Study -- 10.3.1 PLS, GLPLS and LPPLS Models -- 10.3.2 Quality Monitoring Analysis -- 10.4 Conclusions -- References -- 11 Locally Linear Embedding Orthogonal Projection to Latent Structure -- 11.1 Comparison of GPLPLS, LPPLS, and LLEPLS -- 11.2 A Brief Review of the LLE Method -- 11.3 LLEPLS Models and LLEPLS-Based Fault Detection -- 11.3.1 LLEPLS Models -- 11.3.2 LLEPLS for Process and Quality Monitoring -- 11.4 LLEOPLS Models and LLEOPLS-Based Fault Detection -- 11.5 Case Study -- 11.5.1 Models and Discussion -- 11.5.2 Fault Detection Analysis -- 11.6 Conclusions -- References -- 12 New Robust Projection to Latent Structure -- 12.1 Motivation of Robust L1-PLS -- 12.2 Introduction to RSPCA Method -- 12.3 Basic Principle of L1-PLS -- 12.4 L1-PLS-Based Process Monitoring -- 12.5 TE Simulation Analysis -- 12.5.1 Robustness of Principal Components -- 12.5.2 Robustness of Prediction and Monitoring Performance -- 12.6 Conclusions -- References -- 13 Bayesian Causal Network for Discrete Variables -- 13.1 Construction of Bayesian Causal Network -- 13.1.1 Description of Bayesian Network.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">13.1.2 Establishing Multivariate Causal Structure -- 13.1.3 Network Parameter Learning -- 13.2 BCN-Based Fault Detection and Inference -- 13.3 Case Study -- 13.3.1 Public Data Sets Experiment -- 13.3.2 TE Process Experiment -- 13.4 Conclusions -- References -- 14 Probabilistic Graphical Model for Continuous Variables -- 14.1 Construction of Probabilistic Graphical Model -- 14.1.1 Multivariate Casual Structure Learning -- 14.1.2 Probability Density Estimation -- 14.1.3 Evaluation Index of Estimation Quality -- 14.2 Dynamic Threshold for the Fault Detection -- 14.3 Forward Fault Diagnosis and Reverse Reasoning -- 14.4 Case Study: Application to TEP -- 14.5 Conclusions -- References.</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources.</subfield></datafield><datafield tag="590" ind1=" " ind2=" "><subfield code="a">Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. </subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Jinglin.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Xiaolu.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Wang, Jing</subfield><subfield code="t">Data-Driven Fault Detection and Reasoning for Industrial Monitoring</subfield><subfield code="d">Singapore : Springer,c2022</subfield><subfield code="z">9789811680434</subfield></datafield><datafield tag="797" ind1="2" ind2=" "><subfield code="a">ProQuest (Firm)</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Intelligent Control and Learning Systems Series</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6840160</subfield><subfield code="z">Click to View</subfield></datafield></record></collection>