Big Data in Bioeconomy : : Results from the European DataBio Project.

Saved in:
Bibliographic Details
:
TeilnehmendeR:
Place / Publishing House:Cham : : Springer International Publishing AG,, 2021.
{copy}2021.
Year of Publication:2021
Edition:1st ed.
Language:English
Online Access:
Physical Description:1 online resource (416 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Intro
  • Foreword
  • Introduction
  • Glossary
  • Contents
  • Part I Technological Foundation: Big Data Technologies for BioIndustries
  • 1 Big Data Technologies in DataBio
  • 1.1 Basic Concepts of Big Data
  • 1.2 Pipelines and the BDV Reference Model
  • 1.3 Open, Closed and FAIR Data
  • 1.4 The DataBio Platform
  • 1.5 Introduction to the Technology Chapters
  • Literature
  • 2 Standards and EO Data Platforms
  • 2.1 Introduction
  • 2.2 Standardization Organizations and Initiatives
  • 2.2.1 The Role of Location in Bioeconomy
  • 2.2.2 The Role of Semantics in Bioeconomy
  • 2.3 Architecture Building Blocks for Cloud Based Services
  • 2.4 Principles of an Earth Observation Cloud Architecture for Bioeconomy
  • 2.4.1 Paradigm Shift: From SOA to Web API
  • 2.4.2 Data and Processing Platform
  • 2.4.3 Exploitation Platform
  • 2.5 Standards for an Earth Observation Cloud Architecture
  • 2.5.1 Applications and Application Packages
  • 2.5.2 Application Deployment and Execution Service (ADES)
  • 2.5.3 Execution Management Service (EMS)
  • 2.5.4 AP, ADES, and EMS Interaction
  • 2.6 Standards for Billing and Quoting
  • 2.7 Standards for Security
  • 2.8 Standards for Discovery, Cataloging, and Metadata
  • 2.9 Summary
  • References
  • Part II Data Types
  • 3 Sensor Data
  • 3.1 Introduction
  • 3.2 Internet of Things in Bioeconomy Sectors
  • 3.3 Examples from DataBio
  • 3.3.1 Gaiatrons
  • 3.3.2 AgroNode
  • 3.3.3 SensLog and Data Connectors
  • 3.3.4 Mobile/Machinery Sensors
  • References
  • 4 Remote Sensing
  • 4.1 Introduction
  • 4.2 Earth Observation Relation to Big Data
  • 4.3 Data Formats, Storage and Access
  • 4.3.1 Formats and Standards
  • 4.3.2 Data Sources
  • 4.4 Selected Technologies
  • 4.4.1 Metadata Catalogue
  • 4.4.2 Object Storage and Data Access
  • 4.5 Usage of Earth Observation Data in DataBio's Pilots
  • References
  • 5 Crowdsourced Data.
  • 5.1 Introduction
  • 5.2 SensLog VGI Profile
  • 5.3 Maps as Citizens Science Objects
  • References
  • 6 Genomics Data
  • 6.1 Introduction
  • 6.2 Genomic and Other Omics Data in DataBio
  • 6.3 Genomic Data Management Systems
  • References
  • Part III Data Integration and Modelling
  • 7 Linked Data and Metadata
  • 7.1 Introduction
  • 7.2 Metadata
  • 7.3 Linked Data
  • 7.4 Linked Data Best Practices
  • 7.5 The Linked Open Data (LOD) Cloud
  • 7.6 Enterprise Linked Data (LED)
  • References
  • 8 Linked Data Usages in DataBio
  • 8.1 Introduction
  • 8.2 Linked Data Pipeline Instantiations in DataBio
  • 8.2.1 Linked Data in Agriculture Related to Cereals and Biomass Crops
  • 8.2.2 Linked Sensor Data from Machinery Management
  • 8.2.3 Linked Open EU-Datasets Related to Agriculture and Other Bio Sectors
  • 8.2.4 Linked (Meta) Data of Geospatial Datasets
  • 8.2.5 Linked Fishery Data
  • 8.3 Experiences from DataBio with Linked Data
  • 8.3.1 Usage and Exploitation of Linked Data
  • 8.3.2 Experiences in the Agricultural Domain
  • 8.3.3 Experiences with DBpedia
  • References
  • 9 Data Pipelines: Modeling and Evaluation of Models
  • 9.1 Introduction
  • 9.2 Modelling Data Pipelines
  • 9.2.1 Modelling Software Components
  • 9.2.2 Integrating Components into Data Pipelines
  • 9.3 Models Quality Metrics
  • 9.3.1 Metrics for the Quality of the Modelling with Modelio
  • 9.3.2 ArchiMate Comprehensibility Metrics
  • 9.3.3 Metrics for Model's Size
  • 9.4 Conclusion and Future Vision
  • References
  • Part IV Analytics and Visualization
  • 10 Data Analytics and Machine Learning
  • 10.1 Introduction
  • 10.2 Market
  • 10.3 Technology
  • 10.3.1 Data Analysis Process
  • 10.3.2 Statistical Methods
  • 10.3.3 Data mining
  • 10.3.4 Machine Learning
  • 10.4 Experiences in DataBio
  • 10.4.1 Data Analytics in Agriculture
  • 10.4.2 Data Analytics in Fishery
  • References.
  • 11 Real-Time Data Processing
  • 11.1 Introduction and Motivation
  • 11.2 Market
  • 11.3 Technical Characteristics
  • 11.4 Event Processing Tools
  • 11.5 Experiences in DataBio
  • 11.6 Conclusions
  • References
  • 12 Privacy-Preserving Analytics, Processing and Data Management
  • 12.1 Privacy-Preserving Analytics, Processing and Data Management
  • 12.2 Technology
  • 12.2.1 Secure Multi-Party Computation
  • 12.2.2 Trusted Execution Environments
  • 12.2.3 Homomorphic Encryption
  • 12.2.4 On-The-Fly MPC by Multi-Key Homomorphic Encryption
  • 12.2.5 Comparison of Methods
  • 12.3 Secure Machine Learning of Best Catch Locations
  • 12.4 Pipeline
  • 12.5 Model Development
  • 12.6 User Interface
  • 12.7 Conclusions and Business Impact
  • References
  • 13 Big Data Visualisation
  • 13.1 Advanced Big Data Visualisation
  • 13.2 Techniques for Visualising Very Large Amounts of Geospatial Data
  • 13.2.1 Map Generalisation
  • 13.2.2 Rendered Images Versus the "Real" Data
  • 13.2.3 Use of Graphics Processing Units (GPUs)
  • 13.3 Examples from DataBio Project
  • 13.3.1 Linked Data Visualisation
  • 13.3.2 Complex Integrated Data Visualisation
  • 13.3.3 Web-Based Visualisation of Big Geospatial Vector Data
  • 13.3.4 Visualisation of Historical Earth Observation
  • 13.3.5 Dashboard for Machinery Maintenance
  • References
  • Part V Applications in Agriculture
  • 14 Introduction of Smart Agriculture
  • 14.1 Situation
  • 14.2 Precision Agriculture
  • 14.3 Smart Agriculture
  • References
  • 15 Smart Farming for Sustainable Agricultural Production
  • 15.1 Introduction, Motivation and Goals
  • 15.2 Pilot Set-Up
  • 15.3 Technology Used
  • 15.3.1 Technology Pipeline
  • 15.3.2 Data Used in the Pilot
  • 15.3.3 Reflection on Technology Use
  • 15.4 Business Value and Impact
  • 15.4.1 Business Impact of the Pilot
  • 15.4.2 Business Impact of the Technology on General Level.
  • 15.5 How to Guideline for Practice When and How to Use the Technology
  • 15.6 Summary and Conclusions
  • 16 Genomic Prediction and Selection in Support of Sorghum Value Chains
  • 16.1 Introduction, Motivation and Goals
  • 16.2 Pilot Set-Up
  • 16.3 Technology Used
  • 16.3.1 Phenomics
  • 16.3.2 DNA Isolation, Next-Generation Sequencing/Genotyping, and Bioinformatics
  • 16.3.3 Genomic Predictive and Selection Analytics
  • 16.4 Business Value and Impact
  • 16.5 How to Guideline for Practice When and How to Use the Technology
  • 16.6 Summary and Conclusions
  • References
  • 17 Yield Prediction in Sorghum (Sorghum bicolor (L.) Moench) and Cultivated Potato (Solanum tuberosum L.)
  • 17.1 Introduction, Motivation, and Goals
  • 17.2 Pilot Set-Up
  • 17.3 Technology Used and Yield Prediction
  • 17.3.1 Reflection on the Availability and Quality of Data
  • 17.4 Business Value and Impact
  • 17.5 How to Guideline for Practice When and How to Use the Technology
  • 17.6 Summary and Conclusions
  • References
  • 18 Delineation of Management Zones Using Satellite Imageries
  • 18.1 Introduction, Motivation and Goals
  • 18.1.1 Nitrogen Plant Nutrition Strategies in Site-Specific Crop Management
  • 18.2 Pilot Set-Up
  • 18.3 Technology Used
  • 18.4 Exploitation of Results
  • References
  • 19 Farm Weather Insurance Assessment
  • 19.1 Introduction, Motivation and Goals
  • 19.2 Pilot Set-Up
  • 19.3 Technology Used
  • 19.3.1 Technology Pipeline
  • 19.3.2 Reflection on Technology Use
  • 19.4 Business Value and Impact
  • 19.4.1 Business Impact of the Pilot
  • 19.4.2 Business Impact of the Technology on General Level
  • 19.5 How-to-Guideline for Practice When and How to Use the Technology
  • 19.6 Summary and Conclusion
  • References
  • 20 Copernicus Data and CAP Subsidies Control
  • 20.1 Introduction, Motivation, and Goals
  • 20.2 Pilot Set-Up
  • 20.3 Technology Used.
  • 20.3.1 Technology Pipeline
  • 20.3.2 Data Used in the Pilots
  • 20.3.3 Reflections on Technology Use
  • 20.4 Business Value and Impact
  • 20.4.1 Business Impact of the Pilot
  • 20.4.2 Business Impact of the Technology on General Level
  • 20.5 How-to-Guideline for Practice When and How to Use the Technology
  • 20.6 Summary and Conclusion
  • References
  • 21 Future Vision, Summary and Outlook
  • 21.1 Summary of the Agriculture Pilots Outcomes
  • 21.2 Evaluation of the Implemented Technologies and Future Vision
  • 21.3 Outlook on Further Work in Smart Agriculture
  • References
  • Part VI Applications in Forestry
  • 22 Introduction-State of the Art of Technology and Market Potential for Big Data in Forestry
  • 22.1 Evolving Technologies and Growing Data Volumes
  • 22.2 Expanding Market
  • 22.3 DataBio Forestry Pilots
  • References
  • 23 Finnish Forest Data-Based Metsään.fi-services
  • 23.1 Introduction
  • 23.2 Background and Objectives
  • 23.3 Services
  • 23.4 Technology Pipeline
  • 23.5 Components and Data Sets
  • 23.6 Results
  • 23.7 Perspective
  • 23.8 Benefits and Business Impact
  • 23.9 Future Vision
  • 23.10 More Information
  • Literature
  • 24 Forest Variable Estimation and Change Monitoring Solutions Based on Remote Sensing Big Data
  • 24.1 Introduction, Motivation, and Goals
  • 24.2 Pilot Set-Up
  • 24.3 Technology Used
  • 24.3.1 Technology Pipeline
  • 24.3.2 Data Used in the Pilot
  • 24.3.3 Reflection on Technology Use
  • 24.4 Business Value and Impact
  • 24.5 How-to-Guideline for Practice When and How to Use the Technology
  • 24.6 Summary and Conclusion
  • References
  • 25 Monitoring Forest Health: Big Data Applied to Diseases and Plagues Control
  • 25.1 Introduction, Motivation, and Goals
  • 25.2 Pilot Setup
  • 25.3 Technology Used
  • 25.3.1 Technology Pipeline
  • 25.3.2 Data Used in the Pilot
  • 25.3.3 Reflection on Technology Use.
  • 25.4 Business Value and Impact.