Big Data in Bioeconomy : : Results from the European DataBio Project.

Saved in:
Bibliographic Details
:
TeilnehmendeR:
Place / Publishing House:Cham : : Springer International Publishing AG,, 2021.
{copy}2021.
Year of Publication:2021
Edition:1st ed.
Language:English
Online Access:
Physical Description:1 online resource (416 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 5006700223
ctrlnum (MiAaPQ)5006700223
(Au-PeEL)EBL6700223
(OCoLC)1264407940
collection bib_alma
record_format marc
spelling Södergård, Caj.
Big Data in Bioeconomy : Results from the European DataBio Project.
1st ed.
Cham : Springer International Publishing AG, 2021.
{copy}2021.
1 online resource (416 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Intro -- Foreword -- Introduction -- Glossary -- Contents -- Part I Technological Foundation: Big Data Technologies for BioIndustries -- 1 Big Data Technologies in DataBio -- 1.1 Basic Concepts of Big Data -- 1.2 Pipelines and the BDV Reference Model -- 1.3 Open, Closed and FAIR Data -- 1.4 The DataBio Platform -- 1.5 Introduction to the Technology Chapters -- Literature -- 2 Standards and EO Data Platforms -- 2.1 Introduction -- 2.2 Standardization Organizations and Initiatives -- 2.2.1 The Role of Location in Bioeconomy -- 2.2.2 The Role of Semantics in Bioeconomy -- 2.3 Architecture Building Blocks for Cloud Based Services -- 2.4 Principles of an Earth Observation Cloud Architecture for Bioeconomy -- 2.4.1 Paradigm Shift: From SOA to Web API -- 2.4.2 Data and Processing Platform -- 2.4.3 Exploitation Platform -- 2.5 Standards for an Earth Observation Cloud Architecture -- 2.5.1 Applications and Application Packages -- 2.5.2 Application Deployment and Execution Service (ADES) -- 2.5.3 Execution Management Service (EMS) -- 2.5.4 AP, ADES, and EMS Interaction -- 2.6 Standards for Billing and Quoting -- 2.7 Standards for Security -- 2.8 Standards for Discovery, Cataloging, and Metadata -- 2.9 Summary -- References -- Part II Data Types -- 3 Sensor Data -- 3.1 Introduction -- 3.2 Internet of Things in Bioeconomy Sectors -- 3.3 Examples from DataBio -- 3.3.1 Gaiatrons -- 3.3.2 AgroNode -- 3.3.3 SensLog and Data Connectors -- 3.3.4 Mobile/Machinery Sensors -- References -- 4 Remote Sensing -- 4.1 Introduction -- 4.2 Earth Observation Relation to Big Data -- 4.3 Data Formats, Storage and Access -- 4.3.1 Formats and Standards -- 4.3.2 Data Sources -- 4.4 Selected Technologies -- 4.4.1 Metadata Catalogue -- 4.4.2 Object Storage and Data Access -- 4.5 Usage of Earth Observation Data in DataBio's Pilots -- References -- 5 Crowdsourced Data.
5.1 Introduction -- 5.2 SensLog VGI Profile -- 5.3 Maps as Citizens Science Objects -- References -- 6 Genomics Data -- 6.1 Introduction -- 6.2 Genomic and Other Omics Data in DataBio -- 6.3 Genomic Data Management Systems -- References -- Part III Data Integration and Modelling -- 7 Linked Data and Metadata -- 7.1 Introduction -- 7.2 Metadata -- 7.3 Linked Data -- 7.4 Linked Data Best Practices -- 7.5 The Linked Open Data (LOD) Cloud -- 7.6 Enterprise Linked Data (LED) -- References -- 8 Linked Data Usages in DataBio -- 8.1 Introduction -- 8.2 Linked Data Pipeline Instantiations in DataBio -- 8.2.1 Linked Data in Agriculture Related to Cereals and Biomass Crops -- 8.2.2 Linked Sensor Data from Machinery Management -- 8.2.3 Linked Open EU-Datasets Related to Agriculture and Other Bio Sectors -- 8.2.4 Linked (Meta) Data of Geospatial Datasets -- 8.2.5 Linked Fishery Data -- 8.3 Experiences from DataBio with Linked Data -- 8.3.1 Usage and Exploitation of Linked Data -- 8.3.2 Experiences in the Agricultural Domain -- 8.3.3 Experiences with DBpedia -- References -- 9 Data Pipelines: Modeling and Evaluation of Models -- 9.1 Introduction -- 9.2 Modelling Data Pipelines -- 9.2.1 Modelling Software Components -- 9.2.2 Integrating Components into Data Pipelines -- 9.3 Models Quality Metrics -- 9.3.1 Metrics for the Quality of the Modelling with Modelio -- 9.3.2 ArchiMate Comprehensibility Metrics -- 9.3.3 Metrics for Model's Size -- 9.4 Conclusion and Future Vision -- References -- Part IV Analytics and Visualization -- 10 Data Analytics and Machine Learning -- 10.1 Introduction -- 10.2 Market -- 10.3 Technology -- 10.3.1 Data Analysis Process -- 10.3.2 Statistical Methods -- 10.3.3 Data mining -- 10.3.4 Machine Learning -- 10.4 Experiences in DataBio -- 10.4.1 Data Analytics in Agriculture -- 10.4.2 Data Analytics in Fishery -- References.
11 Real-Time Data Processing -- 11.1 Introduction and Motivation -- 11.2 Market -- 11.3 Technical Characteristics -- 11.4 Event Processing Tools -- 11.5 Experiences in DataBio -- 11.6 Conclusions -- References -- 12 Privacy-Preserving Analytics, Processing and Data Management -- 12.1 Privacy-Preserving Analytics, Processing and Data Management -- 12.2 Technology -- 12.2.1 Secure Multi-Party Computation -- 12.2.2 Trusted Execution Environments -- 12.2.3 Homomorphic Encryption -- 12.2.4 On-The-Fly MPC by Multi-Key Homomorphic Encryption -- 12.2.5 Comparison of Methods -- 12.3 Secure Machine Learning of Best Catch Locations -- 12.4 Pipeline -- 12.5 Model Development -- 12.6 User Interface -- 12.7 Conclusions and Business Impact -- References -- 13 Big Data Visualisation -- 13.1 Advanced Big Data Visualisation -- 13.2 Techniques for Visualising Very Large Amounts of Geospatial Data -- 13.2.1 Map Generalisation -- 13.2.2 Rendered Images Versus the "Real" Data -- 13.2.3 Use of Graphics Processing Units (GPUs) -- 13.3 Examples from DataBio Project -- 13.3.1 Linked Data Visualisation -- 13.3.2 Complex Integrated Data Visualisation -- 13.3.3 Web-Based Visualisation of Big Geospatial Vector Data -- 13.3.4 Visualisation of Historical Earth Observation -- 13.3.5 Dashboard for Machinery Maintenance -- References -- Part V Applications in Agriculture -- 14 Introduction of Smart Agriculture -- 14.1 Situation -- 14.2 Precision Agriculture -- 14.3 Smart Agriculture -- References -- 15 Smart Farming for Sustainable Agricultural Production -- 15.1 Introduction, Motivation and Goals -- 15.2 Pilot Set-Up -- 15.3 Technology Used -- 15.3.1 Technology Pipeline -- 15.3.2 Data Used in the Pilot -- 15.3.3 Reflection on Technology Use -- 15.4 Business Value and Impact -- 15.4.1 Business Impact of the Pilot -- 15.4.2 Business Impact of the Technology on General Level.
15.5 How to Guideline for Practice When and How to Use the Technology -- 15.6 Summary and Conclusions -- 16 Genomic Prediction and Selection in Support of Sorghum Value Chains -- 16.1 Introduction, Motivation and Goals -- 16.2 Pilot Set-Up -- 16.3 Technology Used -- 16.3.1 Phenomics -- 16.3.2 DNA Isolation, Next-Generation Sequencing/Genotyping, and Bioinformatics -- 16.3.3 Genomic Predictive and Selection Analytics -- 16.4 Business Value and Impact -- 16.5 How to Guideline for Practice When and How to Use the Technology -- 16.6 Summary and Conclusions -- References -- 17 Yield Prediction in Sorghum (Sorghum bicolor (L.) Moench) and Cultivated Potato (Solanum tuberosum L.) -- 17.1 Introduction, Motivation, and Goals -- 17.2 Pilot Set-Up -- 17.3 Technology Used and Yield Prediction -- 17.3.1 Reflection on the Availability and Quality of Data -- 17.4 Business Value and Impact -- 17.5 How to Guideline for Practice When and How to Use the Technology -- 17.6 Summary and Conclusions -- References -- 18 Delineation of Management Zones Using Satellite Imageries -- 18.1 Introduction, Motivation and Goals -- 18.1.1 Nitrogen Plant Nutrition Strategies in Site-Specific Crop Management -- 18.2 Pilot Set-Up -- 18.3 Technology Used -- 18.4 Exploitation of Results -- References -- 19 Farm Weather Insurance Assessment -- 19.1 Introduction, Motivation and Goals -- 19.2 Pilot Set-Up -- 19.3 Technology Used -- 19.3.1 Technology Pipeline -- 19.3.2 Reflection on Technology Use -- 19.4 Business Value and Impact -- 19.4.1 Business Impact of the Pilot -- 19.4.2 Business Impact of the Technology on General Level -- 19.5 How-to-Guideline for Practice When and How to Use the Technology -- 19.6 Summary and Conclusion -- References -- 20 Copernicus Data and CAP Subsidies Control -- 20.1 Introduction, Motivation, and Goals -- 20.2 Pilot Set-Up -- 20.3 Technology Used.
20.3.1 Technology Pipeline -- 20.3.2 Data Used in the Pilots -- 20.3.3 Reflections on Technology Use -- 20.4 Business Value and Impact -- 20.4.1 Business Impact of the Pilot -- 20.4.2 Business Impact of the Technology on General Level -- 20.5 How-to-Guideline for Practice When and How to Use the Technology -- 20.6 Summary and Conclusion -- References -- 21 Future Vision, Summary and Outlook -- 21.1 Summary of the Agriculture Pilots Outcomes -- 21.2 Evaluation of the Implemented Technologies and Future Vision -- 21.3 Outlook on Further Work in Smart Agriculture -- References -- Part VI Applications in Forestry -- 22 Introduction-State of the Art of Technology and Market Potential for Big Data in Forestry -- 22.1 Evolving Technologies and Growing Data Volumes -- 22.2 Expanding Market -- 22.3 DataBio Forestry Pilots -- References -- 23 Finnish Forest Data-Based Metsään.fi-services -- 23.1 Introduction -- 23.2 Background and Objectives -- 23.3 Services -- 23.4 Technology Pipeline -- 23.5 Components and Data Sets -- 23.6 Results -- 23.7 Perspective -- 23.8 Benefits and Business Impact -- 23.9 Future Vision -- 23.10 More Information -- Literature -- 24 Forest Variable Estimation and Change Monitoring Solutions Based on Remote Sensing Big Data -- 24.1 Introduction, Motivation, and Goals -- 24.2 Pilot Set-Up -- 24.3 Technology Used -- 24.3.1 Technology Pipeline -- 24.3.2 Data Used in the Pilot -- 24.3.3 Reflection on Technology Use -- 24.4 Business Value and Impact -- 24.5 How-to-Guideline for Practice When and How to Use the Technology -- 24.6 Summary and Conclusion -- References -- 25 Monitoring Forest Health: Big Data Applied to Diseases and Plagues Control -- 25.1 Introduction, Motivation, and Goals -- 25.2 Pilot Setup -- 25.3 Technology Used -- 25.3.1 Technology Pipeline -- 25.3.2 Data Used in the Pilot -- 25.3.3 Reflection on Technology Use.
25.4 Business Value and Impact.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic books.
Mildorf, Tomas.
Habyarimana, Ephrem.
Berre, Arne J.
Fernandes, Jose A.
Zinke-Wehlmann, Christian.
Print version: Södergård, Caj Big Data in Bioeconomy Cham : Springer International Publishing AG,c2021 9783030710682
ProQuest (Firm)
https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6700223 Click to View
language English
format eBook
author Södergård, Caj.
spellingShingle Södergård, Caj.
Big Data in Bioeconomy : Results from the European DataBio Project.
Intro -- Foreword -- Introduction -- Glossary -- Contents -- Part I Technological Foundation: Big Data Technologies for BioIndustries -- 1 Big Data Technologies in DataBio -- 1.1 Basic Concepts of Big Data -- 1.2 Pipelines and the BDV Reference Model -- 1.3 Open, Closed and FAIR Data -- 1.4 The DataBio Platform -- 1.5 Introduction to the Technology Chapters -- Literature -- 2 Standards and EO Data Platforms -- 2.1 Introduction -- 2.2 Standardization Organizations and Initiatives -- 2.2.1 The Role of Location in Bioeconomy -- 2.2.2 The Role of Semantics in Bioeconomy -- 2.3 Architecture Building Blocks for Cloud Based Services -- 2.4 Principles of an Earth Observation Cloud Architecture for Bioeconomy -- 2.4.1 Paradigm Shift: From SOA to Web API -- 2.4.2 Data and Processing Platform -- 2.4.3 Exploitation Platform -- 2.5 Standards for an Earth Observation Cloud Architecture -- 2.5.1 Applications and Application Packages -- 2.5.2 Application Deployment and Execution Service (ADES) -- 2.5.3 Execution Management Service (EMS) -- 2.5.4 AP, ADES, and EMS Interaction -- 2.6 Standards for Billing and Quoting -- 2.7 Standards for Security -- 2.8 Standards for Discovery, Cataloging, and Metadata -- 2.9 Summary -- References -- Part II Data Types -- 3 Sensor Data -- 3.1 Introduction -- 3.2 Internet of Things in Bioeconomy Sectors -- 3.3 Examples from DataBio -- 3.3.1 Gaiatrons -- 3.3.2 AgroNode -- 3.3.3 SensLog and Data Connectors -- 3.3.4 Mobile/Machinery Sensors -- References -- 4 Remote Sensing -- 4.1 Introduction -- 4.2 Earth Observation Relation to Big Data -- 4.3 Data Formats, Storage and Access -- 4.3.1 Formats and Standards -- 4.3.2 Data Sources -- 4.4 Selected Technologies -- 4.4.1 Metadata Catalogue -- 4.4.2 Object Storage and Data Access -- 4.5 Usage of Earth Observation Data in DataBio's Pilots -- References -- 5 Crowdsourced Data.
5.1 Introduction -- 5.2 SensLog VGI Profile -- 5.3 Maps as Citizens Science Objects -- References -- 6 Genomics Data -- 6.1 Introduction -- 6.2 Genomic and Other Omics Data in DataBio -- 6.3 Genomic Data Management Systems -- References -- Part III Data Integration and Modelling -- 7 Linked Data and Metadata -- 7.1 Introduction -- 7.2 Metadata -- 7.3 Linked Data -- 7.4 Linked Data Best Practices -- 7.5 The Linked Open Data (LOD) Cloud -- 7.6 Enterprise Linked Data (LED) -- References -- 8 Linked Data Usages in DataBio -- 8.1 Introduction -- 8.2 Linked Data Pipeline Instantiations in DataBio -- 8.2.1 Linked Data in Agriculture Related to Cereals and Biomass Crops -- 8.2.2 Linked Sensor Data from Machinery Management -- 8.2.3 Linked Open EU-Datasets Related to Agriculture and Other Bio Sectors -- 8.2.4 Linked (Meta) Data of Geospatial Datasets -- 8.2.5 Linked Fishery Data -- 8.3 Experiences from DataBio with Linked Data -- 8.3.1 Usage and Exploitation of Linked Data -- 8.3.2 Experiences in the Agricultural Domain -- 8.3.3 Experiences with DBpedia -- References -- 9 Data Pipelines: Modeling and Evaluation of Models -- 9.1 Introduction -- 9.2 Modelling Data Pipelines -- 9.2.1 Modelling Software Components -- 9.2.2 Integrating Components into Data Pipelines -- 9.3 Models Quality Metrics -- 9.3.1 Metrics for the Quality of the Modelling with Modelio -- 9.3.2 ArchiMate Comprehensibility Metrics -- 9.3.3 Metrics for Model's Size -- 9.4 Conclusion and Future Vision -- References -- Part IV Analytics and Visualization -- 10 Data Analytics and Machine Learning -- 10.1 Introduction -- 10.2 Market -- 10.3 Technology -- 10.3.1 Data Analysis Process -- 10.3.2 Statistical Methods -- 10.3.3 Data mining -- 10.3.4 Machine Learning -- 10.4 Experiences in DataBio -- 10.4.1 Data Analytics in Agriculture -- 10.4.2 Data Analytics in Fishery -- References.
11 Real-Time Data Processing -- 11.1 Introduction and Motivation -- 11.2 Market -- 11.3 Technical Characteristics -- 11.4 Event Processing Tools -- 11.5 Experiences in DataBio -- 11.6 Conclusions -- References -- 12 Privacy-Preserving Analytics, Processing and Data Management -- 12.1 Privacy-Preserving Analytics, Processing and Data Management -- 12.2 Technology -- 12.2.1 Secure Multi-Party Computation -- 12.2.2 Trusted Execution Environments -- 12.2.3 Homomorphic Encryption -- 12.2.4 On-The-Fly MPC by Multi-Key Homomorphic Encryption -- 12.2.5 Comparison of Methods -- 12.3 Secure Machine Learning of Best Catch Locations -- 12.4 Pipeline -- 12.5 Model Development -- 12.6 User Interface -- 12.7 Conclusions and Business Impact -- References -- 13 Big Data Visualisation -- 13.1 Advanced Big Data Visualisation -- 13.2 Techniques for Visualising Very Large Amounts of Geospatial Data -- 13.2.1 Map Generalisation -- 13.2.2 Rendered Images Versus the "Real" Data -- 13.2.3 Use of Graphics Processing Units (GPUs) -- 13.3 Examples from DataBio Project -- 13.3.1 Linked Data Visualisation -- 13.3.2 Complex Integrated Data Visualisation -- 13.3.3 Web-Based Visualisation of Big Geospatial Vector Data -- 13.3.4 Visualisation of Historical Earth Observation -- 13.3.5 Dashboard for Machinery Maintenance -- References -- Part V Applications in Agriculture -- 14 Introduction of Smart Agriculture -- 14.1 Situation -- 14.2 Precision Agriculture -- 14.3 Smart Agriculture -- References -- 15 Smart Farming for Sustainable Agricultural Production -- 15.1 Introduction, Motivation and Goals -- 15.2 Pilot Set-Up -- 15.3 Technology Used -- 15.3.1 Technology Pipeline -- 15.3.2 Data Used in the Pilot -- 15.3.3 Reflection on Technology Use -- 15.4 Business Value and Impact -- 15.4.1 Business Impact of the Pilot -- 15.4.2 Business Impact of the Technology on General Level.
15.5 How to Guideline for Practice When and How to Use the Technology -- 15.6 Summary and Conclusions -- 16 Genomic Prediction and Selection in Support of Sorghum Value Chains -- 16.1 Introduction, Motivation and Goals -- 16.2 Pilot Set-Up -- 16.3 Technology Used -- 16.3.1 Phenomics -- 16.3.2 DNA Isolation, Next-Generation Sequencing/Genotyping, and Bioinformatics -- 16.3.3 Genomic Predictive and Selection Analytics -- 16.4 Business Value and Impact -- 16.5 How to Guideline for Practice When and How to Use the Technology -- 16.6 Summary and Conclusions -- References -- 17 Yield Prediction in Sorghum (Sorghum bicolor (L.) Moench) and Cultivated Potato (Solanum tuberosum L.) -- 17.1 Introduction, Motivation, and Goals -- 17.2 Pilot Set-Up -- 17.3 Technology Used and Yield Prediction -- 17.3.1 Reflection on the Availability and Quality of Data -- 17.4 Business Value and Impact -- 17.5 How to Guideline for Practice When and How to Use the Technology -- 17.6 Summary and Conclusions -- References -- 18 Delineation of Management Zones Using Satellite Imageries -- 18.1 Introduction, Motivation and Goals -- 18.1.1 Nitrogen Plant Nutrition Strategies in Site-Specific Crop Management -- 18.2 Pilot Set-Up -- 18.3 Technology Used -- 18.4 Exploitation of Results -- References -- 19 Farm Weather Insurance Assessment -- 19.1 Introduction, Motivation and Goals -- 19.2 Pilot Set-Up -- 19.3 Technology Used -- 19.3.1 Technology Pipeline -- 19.3.2 Reflection on Technology Use -- 19.4 Business Value and Impact -- 19.4.1 Business Impact of the Pilot -- 19.4.2 Business Impact of the Technology on General Level -- 19.5 How-to-Guideline for Practice When and How to Use the Technology -- 19.6 Summary and Conclusion -- References -- 20 Copernicus Data and CAP Subsidies Control -- 20.1 Introduction, Motivation, and Goals -- 20.2 Pilot Set-Up -- 20.3 Technology Used.
20.3.1 Technology Pipeline -- 20.3.2 Data Used in the Pilots -- 20.3.3 Reflections on Technology Use -- 20.4 Business Value and Impact -- 20.4.1 Business Impact of the Pilot -- 20.4.2 Business Impact of the Technology on General Level -- 20.5 How-to-Guideline for Practice When and How to Use the Technology -- 20.6 Summary and Conclusion -- References -- 21 Future Vision, Summary and Outlook -- 21.1 Summary of the Agriculture Pilots Outcomes -- 21.2 Evaluation of the Implemented Technologies and Future Vision -- 21.3 Outlook on Further Work in Smart Agriculture -- References -- Part VI Applications in Forestry -- 22 Introduction-State of the Art of Technology and Market Potential for Big Data in Forestry -- 22.1 Evolving Technologies and Growing Data Volumes -- 22.2 Expanding Market -- 22.3 DataBio Forestry Pilots -- References -- 23 Finnish Forest Data-Based Metsään.fi-services -- 23.1 Introduction -- 23.2 Background and Objectives -- 23.3 Services -- 23.4 Technology Pipeline -- 23.5 Components and Data Sets -- 23.6 Results -- 23.7 Perspective -- 23.8 Benefits and Business Impact -- 23.9 Future Vision -- 23.10 More Information -- Literature -- 24 Forest Variable Estimation and Change Monitoring Solutions Based on Remote Sensing Big Data -- 24.1 Introduction, Motivation, and Goals -- 24.2 Pilot Set-Up -- 24.3 Technology Used -- 24.3.1 Technology Pipeline -- 24.3.2 Data Used in the Pilot -- 24.3.3 Reflection on Technology Use -- 24.4 Business Value and Impact -- 24.5 How-to-Guideline for Practice When and How to Use the Technology -- 24.6 Summary and Conclusion -- References -- 25 Monitoring Forest Health: Big Data Applied to Diseases and Plagues Control -- 25.1 Introduction, Motivation, and Goals -- 25.2 Pilot Setup -- 25.3 Technology Used -- 25.3.1 Technology Pipeline -- 25.3.2 Data Used in the Pilot -- 25.3.3 Reflection on Technology Use.
25.4 Business Value and Impact.
author_facet Södergård, Caj.
Mildorf, Tomas.
Habyarimana, Ephrem.
Berre, Arne J.
Fernandes, Jose A.
Zinke-Wehlmann, Christian.
author_variant c s cs
author2 Mildorf, Tomas.
Habyarimana, Ephrem.
Berre, Arne J.
Fernandes, Jose A.
Zinke-Wehlmann, Christian.
author2_variant t m tm
e h eh
a j b aj ajb
j a f ja jaf
c z w czw
author2_role TeilnehmendeR
TeilnehmendeR
TeilnehmendeR
TeilnehmendeR
TeilnehmendeR
author_sort Södergård, Caj.
title Big Data in Bioeconomy : Results from the European DataBio Project.
title_sub Results from the European DataBio Project.
title_full Big Data in Bioeconomy : Results from the European DataBio Project.
title_fullStr Big Data in Bioeconomy : Results from the European DataBio Project.
title_full_unstemmed Big Data in Bioeconomy : Results from the European DataBio Project.
title_auth Big Data in Bioeconomy : Results from the European DataBio Project.
title_new Big Data in Bioeconomy :
title_sort big data in bioeconomy : results from the european databio project.
publisher Springer International Publishing AG,
publishDate 2021
physical 1 online resource (416 pages)
edition 1st ed.
contents Intro -- Foreword -- Introduction -- Glossary -- Contents -- Part I Technological Foundation: Big Data Technologies for BioIndustries -- 1 Big Data Technologies in DataBio -- 1.1 Basic Concepts of Big Data -- 1.2 Pipelines and the BDV Reference Model -- 1.3 Open, Closed and FAIR Data -- 1.4 The DataBio Platform -- 1.5 Introduction to the Technology Chapters -- Literature -- 2 Standards and EO Data Platforms -- 2.1 Introduction -- 2.2 Standardization Organizations and Initiatives -- 2.2.1 The Role of Location in Bioeconomy -- 2.2.2 The Role of Semantics in Bioeconomy -- 2.3 Architecture Building Blocks for Cloud Based Services -- 2.4 Principles of an Earth Observation Cloud Architecture for Bioeconomy -- 2.4.1 Paradigm Shift: From SOA to Web API -- 2.4.2 Data and Processing Platform -- 2.4.3 Exploitation Platform -- 2.5 Standards for an Earth Observation Cloud Architecture -- 2.5.1 Applications and Application Packages -- 2.5.2 Application Deployment and Execution Service (ADES) -- 2.5.3 Execution Management Service (EMS) -- 2.5.4 AP, ADES, and EMS Interaction -- 2.6 Standards for Billing and Quoting -- 2.7 Standards for Security -- 2.8 Standards for Discovery, Cataloging, and Metadata -- 2.9 Summary -- References -- Part II Data Types -- 3 Sensor Data -- 3.1 Introduction -- 3.2 Internet of Things in Bioeconomy Sectors -- 3.3 Examples from DataBio -- 3.3.1 Gaiatrons -- 3.3.2 AgroNode -- 3.3.3 SensLog and Data Connectors -- 3.3.4 Mobile/Machinery Sensors -- References -- 4 Remote Sensing -- 4.1 Introduction -- 4.2 Earth Observation Relation to Big Data -- 4.3 Data Formats, Storage and Access -- 4.3.1 Formats and Standards -- 4.3.2 Data Sources -- 4.4 Selected Technologies -- 4.4.1 Metadata Catalogue -- 4.4.2 Object Storage and Data Access -- 4.5 Usage of Earth Observation Data in DataBio's Pilots -- References -- 5 Crowdsourced Data.
5.1 Introduction -- 5.2 SensLog VGI Profile -- 5.3 Maps as Citizens Science Objects -- References -- 6 Genomics Data -- 6.1 Introduction -- 6.2 Genomic and Other Omics Data in DataBio -- 6.3 Genomic Data Management Systems -- References -- Part III Data Integration and Modelling -- 7 Linked Data and Metadata -- 7.1 Introduction -- 7.2 Metadata -- 7.3 Linked Data -- 7.4 Linked Data Best Practices -- 7.5 The Linked Open Data (LOD) Cloud -- 7.6 Enterprise Linked Data (LED) -- References -- 8 Linked Data Usages in DataBio -- 8.1 Introduction -- 8.2 Linked Data Pipeline Instantiations in DataBio -- 8.2.1 Linked Data in Agriculture Related to Cereals and Biomass Crops -- 8.2.2 Linked Sensor Data from Machinery Management -- 8.2.3 Linked Open EU-Datasets Related to Agriculture and Other Bio Sectors -- 8.2.4 Linked (Meta) Data of Geospatial Datasets -- 8.2.5 Linked Fishery Data -- 8.3 Experiences from DataBio with Linked Data -- 8.3.1 Usage and Exploitation of Linked Data -- 8.3.2 Experiences in the Agricultural Domain -- 8.3.3 Experiences with DBpedia -- References -- 9 Data Pipelines: Modeling and Evaluation of Models -- 9.1 Introduction -- 9.2 Modelling Data Pipelines -- 9.2.1 Modelling Software Components -- 9.2.2 Integrating Components into Data Pipelines -- 9.3 Models Quality Metrics -- 9.3.1 Metrics for the Quality of the Modelling with Modelio -- 9.3.2 ArchiMate Comprehensibility Metrics -- 9.3.3 Metrics for Model's Size -- 9.4 Conclusion and Future Vision -- References -- Part IV Analytics and Visualization -- 10 Data Analytics and Machine Learning -- 10.1 Introduction -- 10.2 Market -- 10.3 Technology -- 10.3.1 Data Analysis Process -- 10.3.2 Statistical Methods -- 10.3.3 Data mining -- 10.3.4 Machine Learning -- 10.4 Experiences in DataBio -- 10.4.1 Data Analytics in Agriculture -- 10.4.2 Data Analytics in Fishery -- References.
11 Real-Time Data Processing -- 11.1 Introduction and Motivation -- 11.2 Market -- 11.3 Technical Characteristics -- 11.4 Event Processing Tools -- 11.5 Experiences in DataBio -- 11.6 Conclusions -- References -- 12 Privacy-Preserving Analytics, Processing and Data Management -- 12.1 Privacy-Preserving Analytics, Processing and Data Management -- 12.2 Technology -- 12.2.1 Secure Multi-Party Computation -- 12.2.2 Trusted Execution Environments -- 12.2.3 Homomorphic Encryption -- 12.2.4 On-The-Fly MPC by Multi-Key Homomorphic Encryption -- 12.2.5 Comparison of Methods -- 12.3 Secure Machine Learning of Best Catch Locations -- 12.4 Pipeline -- 12.5 Model Development -- 12.6 User Interface -- 12.7 Conclusions and Business Impact -- References -- 13 Big Data Visualisation -- 13.1 Advanced Big Data Visualisation -- 13.2 Techniques for Visualising Very Large Amounts of Geospatial Data -- 13.2.1 Map Generalisation -- 13.2.2 Rendered Images Versus the "Real" Data -- 13.2.3 Use of Graphics Processing Units (GPUs) -- 13.3 Examples from DataBio Project -- 13.3.1 Linked Data Visualisation -- 13.3.2 Complex Integrated Data Visualisation -- 13.3.3 Web-Based Visualisation of Big Geospatial Vector Data -- 13.3.4 Visualisation of Historical Earth Observation -- 13.3.5 Dashboard for Machinery Maintenance -- References -- Part V Applications in Agriculture -- 14 Introduction of Smart Agriculture -- 14.1 Situation -- 14.2 Precision Agriculture -- 14.3 Smart Agriculture -- References -- 15 Smart Farming for Sustainable Agricultural Production -- 15.1 Introduction, Motivation and Goals -- 15.2 Pilot Set-Up -- 15.3 Technology Used -- 15.3.1 Technology Pipeline -- 15.3.2 Data Used in the Pilot -- 15.3.3 Reflection on Technology Use -- 15.4 Business Value and Impact -- 15.4.1 Business Impact of the Pilot -- 15.4.2 Business Impact of the Technology on General Level.
15.5 How to Guideline for Practice When and How to Use the Technology -- 15.6 Summary and Conclusions -- 16 Genomic Prediction and Selection in Support of Sorghum Value Chains -- 16.1 Introduction, Motivation and Goals -- 16.2 Pilot Set-Up -- 16.3 Technology Used -- 16.3.1 Phenomics -- 16.3.2 DNA Isolation, Next-Generation Sequencing/Genotyping, and Bioinformatics -- 16.3.3 Genomic Predictive and Selection Analytics -- 16.4 Business Value and Impact -- 16.5 How to Guideline for Practice When and How to Use the Technology -- 16.6 Summary and Conclusions -- References -- 17 Yield Prediction in Sorghum (Sorghum bicolor (L.) Moench) and Cultivated Potato (Solanum tuberosum L.) -- 17.1 Introduction, Motivation, and Goals -- 17.2 Pilot Set-Up -- 17.3 Technology Used and Yield Prediction -- 17.3.1 Reflection on the Availability and Quality of Data -- 17.4 Business Value and Impact -- 17.5 How to Guideline for Practice When and How to Use the Technology -- 17.6 Summary and Conclusions -- References -- 18 Delineation of Management Zones Using Satellite Imageries -- 18.1 Introduction, Motivation and Goals -- 18.1.1 Nitrogen Plant Nutrition Strategies in Site-Specific Crop Management -- 18.2 Pilot Set-Up -- 18.3 Technology Used -- 18.4 Exploitation of Results -- References -- 19 Farm Weather Insurance Assessment -- 19.1 Introduction, Motivation and Goals -- 19.2 Pilot Set-Up -- 19.3 Technology Used -- 19.3.1 Technology Pipeline -- 19.3.2 Reflection on Technology Use -- 19.4 Business Value and Impact -- 19.4.1 Business Impact of the Pilot -- 19.4.2 Business Impact of the Technology on General Level -- 19.5 How-to-Guideline for Practice When and How to Use the Technology -- 19.6 Summary and Conclusion -- References -- 20 Copernicus Data and CAP Subsidies Control -- 20.1 Introduction, Motivation, and Goals -- 20.2 Pilot Set-Up -- 20.3 Technology Used.
20.3.1 Technology Pipeline -- 20.3.2 Data Used in the Pilots -- 20.3.3 Reflections on Technology Use -- 20.4 Business Value and Impact -- 20.4.1 Business Impact of the Pilot -- 20.4.2 Business Impact of the Technology on General Level -- 20.5 How-to-Guideline for Practice When and How to Use the Technology -- 20.6 Summary and Conclusion -- References -- 21 Future Vision, Summary and Outlook -- 21.1 Summary of the Agriculture Pilots Outcomes -- 21.2 Evaluation of the Implemented Technologies and Future Vision -- 21.3 Outlook on Further Work in Smart Agriculture -- References -- Part VI Applications in Forestry -- 22 Introduction-State of the Art of Technology and Market Potential for Big Data in Forestry -- 22.1 Evolving Technologies and Growing Data Volumes -- 22.2 Expanding Market -- 22.3 DataBio Forestry Pilots -- References -- 23 Finnish Forest Data-Based Metsään.fi-services -- 23.1 Introduction -- 23.2 Background and Objectives -- 23.3 Services -- 23.4 Technology Pipeline -- 23.5 Components and Data Sets -- 23.6 Results -- 23.7 Perspective -- 23.8 Benefits and Business Impact -- 23.9 Future Vision -- 23.10 More Information -- Literature -- 24 Forest Variable Estimation and Change Monitoring Solutions Based on Remote Sensing Big Data -- 24.1 Introduction, Motivation, and Goals -- 24.2 Pilot Set-Up -- 24.3 Technology Used -- 24.3.1 Technology Pipeline -- 24.3.2 Data Used in the Pilot -- 24.3.3 Reflection on Technology Use -- 24.4 Business Value and Impact -- 24.5 How-to-Guideline for Practice When and How to Use the Technology -- 24.6 Summary and Conclusion -- References -- 25 Monitoring Forest Health: Big Data Applied to Diseases and Plagues Control -- 25.1 Introduction, Motivation, and Goals -- 25.2 Pilot Setup -- 25.3 Technology Used -- 25.3.1 Technology Pipeline -- 25.3.2 Data Used in the Pilot -- 25.3.3 Reflection on Technology Use.
25.4 Business Value and Impact.
isbn 9783030710699
9783030710682
callnumber-first S - Agriculture
callnumber-subject SD - Forestry
callnumber-label SD1-668
callnumber-sort SD 11 3668
genre Electronic books.
genre_facet Electronic books.
url https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6700223
illustrated Not Illustrated
oclc_num 1264407940
work_keys_str_mv AT sodergardcaj bigdatainbioeconomyresultsfromtheeuropeandatabioproject
AT mildorftomas bigdatainbioeconomyresultsfromtheeuropeandatabioproject
AT habyarimanaephrem bigdatainbioeconomyresultsfromtheeuropeandatabioproject
AT berrearnej bigdatainbioeconomyresultsfromtheeuropeandatabioproject
AT fernandesjosea bigdatainbioeconomyresultsfromtheeuropeandatabioproject
AT zinkewehlmannchristian bigdatainbioeconomyresultsfromtheeuropeandatabioproject
status_str n
ids_txt_mv (MiAaPQ)5006700223
(Au-PeEL)EBL6700223
(OCoLC)1264407940
carrierType_str_mv cr
is_hierarchy_title Big Data in Bioeconomy : Results from the European DataBio Project.
author2_original_writing_str_mv noLinkedField
noLinkedField
noLinkedField
noLinkedField
noLinkedField
marc_error Info : MARC8 translation shorter than ISO-8859-1, choosing MARC8. --- [ 856 : z ]
_version_ 1792331059393724416
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>12165nam a22004933i 4500</leader><controlfield tag="001">5006700223</controlfield><controlfield tag="003">MiAaPQ</controlfield><controlfield tag="005">20240229073843.0</controlfield><controlfield tag="006">m o d | </controlfield><controlfield tag="007">cr cnu||||||||</controlfield><controlfield tag="008">240229s2021 xx o ||||0 eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783030710699</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783030710682</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(MiAaPQ)5006700223</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(Au-PeEL)EBL6700223</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1264407940</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">MiAaPQ</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">MiAaPQ</subfield><subfield code="d">MiAaPQ</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">SD1-668</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Södergård, Caj.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Big Data in Bioeconomy :</subfield><subfield code="b">Results from the European DataBio Project.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham :</subfield><subfield code="b">Springer International Publishing AG,</subfield><subfield code="c">2021.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">{copy}2021.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (416 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Intro -- Foreword -- Introduction -- Glossary -- Contents -- Part I Technological Foundation: Big Data Technologies for BioIndustries -- 1 Big Data Technologies in DataBio -- 1.1 Basic Concepts of Big Data -- 1.2 Pipelines and the BDV Reference Model -- 1.3 Open, Closed and FAIR Data -- 1.4 The DataBio Platform -- 1.5 Introduction to the Technology Chapters -- Literature -- 2 Standards and EO Data Platforms -- 2.1 Introduction -- 2.2 Standardization Organizations and Initiatives -- 2.2.1 The Role of Location in Bioeconomy -- 2.2.2 The Role of Semantics in Bioeconomy -- 2.3 Architecture Building Blocks for Cloud Based Services -- 2.4 Principles of an Earth Observation Cloud Architecture for Bioeconomy -- 2.4.1 Paradigm Shift: From SOA to Web API -- 2.4.2 Data and Processing Platform -- 2.4.3 Exploitation Platform -- 2.5 Standards for an Earth Observation Cloud Architecture -- 2.5.1 Applications and Application Packages -- 2.5.2 Application Deployment and Execution Service (ADES) -- 2.5.3 Execution Management Service (EMS) -- 2.5.4 AP, ADES, and EMS Interaction -- 2.6 Standards for Billing and Quoting -- 2.7 Standards for Security -- 2.8 Standards for Discovery, Cataloging, and Metadata -- 2.9 Summary -- References -- Part II Data Types -- 3 Sensor Data -- 3.1 Introduction -- 3.2 Internet of Things in Bioeconomy Sectors -- 3.3 Examples from DataBio -- 3.3.1 Gaiatrons -- 3.3.2 AgroNode -- 3.3.3 SensLog and Data Connectors -- 3.3.4 Mobile/Machinery Sensors -- References -- 4 Remote Sensing -- 4.1 Introduction -- 4.2 Earth Observation Relation to Big Data -- 4.3 Data Formats, Storage and Access -- 4.3.1 Formats and Standards -- 4.3.2 Data Sources -- 4.4 Selected Technologies -- 4.4.1 Metadata Catalogue -- 4.4.2 Object Storage and Data Access -- 4.5 Usage of Earth Observation Data in DataBio's Pilots -- References -- 5 Crowdsourced Data.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.1 Introduction -- 5.2 SensLog VGI Profile -- 5.3 Maps as Citizens Science Objects -- References -- 6 Genomics Data -- 6.1 Introduction -- 6.2 Genomic and Other Omics Data in DataBio -- 6.3 Genomic Data Management Systems -- References -- Part III Data Integration and Modelling -- 7 Linked Data and Metadata -- 7.1 Introduction -- 7.2 Metadata -- 7.3 Linked Data -- 7.4 Linked Data Best Practices -- 7.5 The Linked Open Data (LOD) Cloud -- 7.6 Enterprise Linked Data (LED) -- References -- 8 Linked Data Usages in DataBio -- 8.1 Introduction -- 8.2 Linked Data Pipeline Instantiations in DataBio -- 8.2.1 Linked Data in Agriculture Related to Cereals and Biomass Crops -- 8.2.2 Linked Sensor Data from Machinery Management -- 8.2.3 Linked Open EU-Datasets Related to Agriculture and Other Bio Sectors -- 8.2.4 Linked (Meta) Data of Geospatial Datasets -- 8.2.5 Linked Fishery Data -- 8.3 Experiences from DataBio with Linked Data -- 8.3.1 Usage and Exploitation of Linked Data -- 8.3.2 Experiences in the Agricultural Domain -- 8.3.3 Experiences with DBpedia -- References -- 9 Data Pipelines: Modeling and Evaluation of Models -- 9.1 Introduction -- 9.2 Modelling Data Pipelines -- 9.2.1 Modelling Software Components -- 9.2.2 Integrating Components into Data Pipelines -- 9.3 Models Quality Metrics -- 9.3.1 Metrics for the Quality of the Modelling with Modelio -- 9.3.2 ArchiMate Comprehensibility Metrics -- 9.3.3 Metrics for Model's Size -- 9.4 Conclusion and Future Vision -- References -- Part IV Analytics and Visualization -- 10 Data Analytics and Machine Learning -- 10.1 Introduction -- 10.2 Market -- 10.3 Technology -- 10.3.1 Data Analysis Process -- 10.3.2 Statistical Methods -- 10.3.3 Data mining -- 10.3.4 Machine Learning -- 10.4 Experiences in DataBio -- 10.4.1 Data Analytics in Agriculture -- 10.4.2 Data Analytics in Fishery -- References.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">11 Real-Time Data Processing -- 11.1 Introduction and Motivation -- 11.2 Market -- 11.3 Technical Characteristics -- 11.4 Event Processing Tools -- 11.5 Experiences in DataBio -- 11.6 Conclusions -- References -- 12 Privacy-Preserving Analytics, Processing and Data Management -- 12.1 Privacy-Preserving Analytics, Processing and Data Management -- 12.2 Technology -- 12.2.1 Secure Multi-Party Computation -- 12.2.2 Trusted Execution Environments -- 12.2.3 Homomorphic Encryption -- 12.2.4 On-The-Fly MPC by Multi-Key Homomorphic Encryption -- 12.2.5 Comparison of Methods -- 12.3 Secure Machine Learning of Best Catch Locations -- 12.4 Pipeline -- 12.5 Model Development -- 12.6 User Interface -- 12.7 Conclusions and Business Impact -- References -- 13 Big Data Visualisation -- 13.1 Advanced Big Data Visualisation -- 13.2 Techniques for Visualising Very Large Amounts of Geospatial Data -- 13.2.1 Map Generalisation -- 13.2.2 Rendered Images Versus the "Real" Data -- 13.2.3 Use of Graphics Processing Units (GPUs) -- 13.3 Examples from DataBio Project -- 13.3.1 Linked Data Visualisation -- 13.3.2 Complex Integrated Data Visualisation -- 13.3.3 Web-Based Visualisation of Big Geospatial Vector Data -- 13.3.4 Visualisation of Historical Earth Observation -- 13.3.5 Dashboard for Machinery Maintenance -- References -- Part V Applications in Agriculture -- 14 Introduction of Smart Agriculture -- 14.1 Situation -- 14.2 Precision Agriculture -- 14.3 Smart Agriculture -- References -- 15 Smart Farming for Sustainable Agricultural Production -- 15.1 Introduction, Motivation and Goals -- 15.2 Pilot Set-Up -- 15.3 Technology Used -- 15.3.1 Technology Pipeline -- 15.3.2 Data Used in the Pilot -- 15.3.3 Reflection on Technology Use -- 15.4 Business Value and Impact -- 15.4.1 Business Impact of the Pilot -- 15.4.2 Business Impact of the Technology on General Level.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">15.5 How to Guideline for Practice When and How to Use the Technology -- 15.6 Summary and Conclusions -- 16 Genomic Prediction and Selection in Support of Sorghum Value Chains -- 16.1 Introduction, Motivation and Goals -- 16.2 Pilot Set-Up -- 16.3 Technology Used -- 16.3.1 Phenomics -- 16.3.2 DNA Isolation, Next-Generation Sequencing/Genotyping, and Bioinformatics -- 16.3.3 Genomic Predictive and Selection Analytics -- 16.4 Business Value and Impact -- 16.5 How to Guideline for Practice When and How to Use the Technology -- 16.6 Summary and Conclusions -- References -- 17 Yield Prediction in Sorghum (Sorghum bicolor (L.) Moench) and Cultivated Potato (Solanum tuberosum L.) -- 17.1 Introduction, Motivation, and Goals -- 17.2 Pilot Set-Up -- 17.3 Technology Used and Yield Prediction -- 17.3.1 Reflection on the Availability and Quality of Data -- 17.4 Business Value and Impact -- 17.5 How to Guideline for Practice When and How to Use the Technology -- 17.6 Summary and Conclusions -- References -- 18 Delineation of Management Zones Using Satellite Imageries -- 18.1 Introduction, Motivation and Goals -- 18.1.1 Nitrogen Plant Nutrition Strategies in Site-Specific Crop Management -- 18.2 Pilot Set-Up -- 18.3 Technology Used -- 18.4 Exploitation of Results -- References -- 19 Farm Weather Insurance Assessment -- 19.1 Introduction, Motivation and Goals -- 19.2 Pilot Set-Up -- 19.3 Technology Used -- 19.3.1 Technology Pipeline -- 19.3.2 Reflection on Technology Use -- 19.4 Business Value and Impact -- 19.4.1 Business Impact of the Pilot -- 19.4.2 Business Impact of the Technology on General Level -- 19.5 How-to-Guideline for Practice When and How to Use the Technology -- 19.6 Summary and Conclusion -- References -- 20 Copernicus Data and CAP Subsidies Control -- 20.1 Introduction, Motivation, and Goals -- 20.2 Pilot Set-Up -- 20.3 Technology Used.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">20.3.1 Technology Pipeline -- 20.3.2 Data Used in the Pilots -- 20.3.3 Reflections on Technology Use -- 20.4 Business Value and Impact -- 20.4.1 Business Impact of the Pilot -- 20.4.2 Business Impact of the Technology on General Level -- 20.5 How-to-Guideline for Practice When and How to Use the Technology -- 20.6 Summary and Conclusion -- References -- 21 Future Vision, Summary and Outlook -- 21.1 Summary of the Agriculture Pilots Outcomes -- 21.2 Evaluation of the Implemented Technologies and Future Vision -- 21.3 Outlook on Further Work in Smart Agriculture -- References -- Part VI Applications in Forestry -- 22 Introduction-State of the Art of Technology and Market Potential for Big Data in Forestry -- 22.1 Evolving Technologies and Growing Data Volumes -- 22.2 Expanding Market -- 22.3 DataBio Forestry Pilots -- References -- 23 Finnish Forest Data-Based Metsään.fi-services -- 23.1 Introduction -- 23.2 Background and Objectives -- 23.3 Services -- 23.4 Technology Pipeline -- 23.5 Components and Data Sets -- 23.6 Results -- 23.7 Perspective -- 23.8 Benefits and Business Impact -- 23.9 Future Vision -- 23.10 More Information -- Literature -- 24 Forest Variable Estimation and Change Monitoring Solutions Based on Remote Sensing Big Data -- 24.1 Introduction, Motivation, and Goals -- 24.2 Pilot Set-Up -- 24.3 Technology Used -- 24.3.1 Technology Pipeline -- 24.3.2 Data Used in the Pilot -- 24.3.3 Reflection on Technology Use -- 24.4 Business Value and Impact -- 24.5 How-to-Guideline for Practice When and How to Use the Technology -- 24.6 Summary and Conclusion -- References -- 25 Monitoring Forest Health: Big Data Applied to Diseases and Plagues Control -- 25.1 Introduction, Motivation, and Goals -- 25.2 Pilot Setup -- 25.3 Technology Used -- 25.3.1 Technology Pipeline -- 25.3.2 Data Used in the Pilot -- 25.3.3 Reflection on Technology Use.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">25.4 Business Value and Impact.</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources.</subfield></datafield><datafield tag="590" ind1=" " ind2=" "><subfield code="a">Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. </subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mildorf, Tomas.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Habyarimana, Ephrem.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Berre, Arne J.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fernandes, Jose A.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zinke-Wehlmann, Christian.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Södergård, Caj</subfield><subfield code="t">Big Data in Bioeconomy</subfield><subfield code="d">Cham : Springer International Publishing AG,c2021</subfield><subfield code="z">9783030710682</subfield></datafield><datafield tag="797" ind1="2" ind2=" "><subfield code="a">ProQuest (Firm)</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6700223</subfield><subfield code="z">Click to View</subfield></datafield></record></collection>