Rethinking Sustainability Towards a Regenerative Economy.

Saved in:
Bibliographic Details
Superior document:Future City Series ; v.15
:
TeilnehmendeR:
Place / Publishing House:Cham : : Springer International Publishing AG,, 2021.
©2021.
Year of Publication:2021
Edition:1st ed.
Language:English
Series:Future City Series
Online Access:
Physical Description:1 online resource (435 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Intro
  • Foreword
  • Health and Wellbeing
  • Words
  • Healing the Future
  • Preface
  • Acknowledgments
  • Contents
  • Contributors
  • List of Figures
  • List of Tables
  • Part I: Processes, Methods and Tools for Regenerative Design
  • 1.1 Foreword by Emanuele Naboni and Lisanne Havinga
  • 1.1.1 Regenerative Design in Practice: Digital Design Tools to Enhance the Well-Being of the Inhabitants of the Natural and Built Environment
  • Chapter 1: Axiomatic Design in Regenerative Urban Climate Adaptation
  • 1.1 Problem Definition
  • 1.2 Current Trends in Urban Climate Adaptation
  • 1.3 Methodology
  • 1.4 High-Level Requirements and Their Tolerances
  • 1.5 Application: A Case Study in a City
  • 1.6 Discussion and Conclusion
  • References
  • Chapter 2: Regenerative Design Tools for the Existing City: HBIM Potentials
  • 2.1 Introduction
  • 2.2 Knowledge Versus Modelling
  • 2.3 Geometry and Semantics in HBIM Models
  • 2.4 Level of Development, Level of Detail and Level of Reliability
  • 2.5 Conclusions
  • References
  • Chapter 3: The Application of Urban Building Energy Modeling in Urban Planning
  • 3.1 Introduction
  • 3.2 The Role of Energy Modeling in Urban Planning
  • 3.2.1 New Requirements of Urban Planning from the Energy Perspective
  • 3.2.2 Introduction to Urban Building Energy Modeling (UBEM)
  • 3.2.3 Application of UBEM in the Urban Planning Processes
  • 3.2.3.1 Phase I: Preparatory Planning
  • 3.2.3.2 Phase II: Master Planning
  • 3.2.3.3 Phase III: Zoning and Urban Design
  • 3.2.3.4 Phase IV: Implementation
  • 3.2.3.5 Phase V: Operation and Management
  • 3.3 Challenges and Opportunities of Energy-Modeling-Assistance Urban Development
  • 3.3.1 Challenges
  • 3.3.1.1 Complexity of Urban Energy Systems
  • 3.3.1.2 Multi-objective Decision Making
  • 3.3.1.3 Limitations of the Modeling Approaches
  • 3.3.2 Opportunities.
  • 3.3.2.1 District-Level Energy Technologies
  • 3.3.2.2 Economies of Scale
  • 3.3.2.3 Computational Technology and Big Data
  • 3.4 Concluding Remarks
  • References
  • Chapter 4: Adaptation to Climate Change as a Key Dimension of Urban Regeneration in Europe: The Cases of Copenhagen, Vienna, and Madrid
  • 4.1 Introduction
  • 4.2 Conceptual Framework
  • 4.2.1 Urban Regeneration
  • 4.2.2 Adaptation to Climate Change in the Framework of Urban Regeneration
  • 4.3 Methodology
  • 4.4 Adaptation to Climate Change in Urban Regeneration: The Cases of Copenhagen, Madrid, and Vienna
  • 4.4.1 The Case of Copenhagen
  • 4.4.1.1 Contextualization of the City's Urban Regeneration Policy
  • 4.4.1.2 Understanding if Adaptation to Climate Change Has Been Integrated (or Not) Into the Urban Regeneration Plan and How
  • 4.4.2 The Case of Vienna
  • 4.4.2.1 Contextualization of the City's Urban Regeneration Policy
  • 4.4.2.2 Understanding if Adaptation to Climate Change Has Been Integrated (or Not) Into the Urban Regeneration Plan and How
  • 4.4.3 The Case of Madrid
  • 4.4.3.1 Contextualization of the City's Urban Regeneration Policy
  • 4.4.3.2 Understanding if Adaptation to Climate Change Has Been Integrated (or Not) Into the Urban Regeneration Plan and How
  • 4.5 Conclusions
  • References
  • Chapter 5: Water Runoff and Catchment Improvement by Nature-Based Solution (NBS) Promotion in Private Household Gardens: An Agent-Based Model
  • 5.1 Introduction
  • 5.2 Methodology
  • 5.2.1 Model Setup: Change in Garden Type
  • 5.2.1.1 Simulation of Garden Change Behavior
  • 5.2.1.2 Transformation to Probability of Change per Segment
  • 5.2.2 Model Setup: Water Balance Model
  • 5.3 Model Results
  • 5.3.1 Szeged Case Study
  • 5.3.2 Alcalá de Henares Case Study
  • 5.3.3 Metropolitan City of Milan Case Study
  • 5.3.4 Çankaya Municipality Case Study
  • 5.4 Limitations of the Model.
  • 5.5 Conclusions and Recommendations for Future NBS Agent-Based Modeling Assessments
  • References
  • Chapter 6: Carbon Accounting for Regenerative Cities
  • 6.1 Introduction
  • 6.2 Theoretical Context
  • 6.2.1 The 1.5° Warming Target and Carbon Budgets
  • 6.2.2 Carbon Accounting for Cities
  • 6.2.3 Regenerative Impacts in Carbon Accounting
  • 6.3 Proposed Model
  • 6.3.1 Incorporating Regenerative Impacts into the Carbon Accounting of Cities
  • 6.3.2 Consumer Carbon Footprint and Handprint
  • 6.4 Discussion and Conclusions
  • References
  • Chapter 7: How Rating Systems Support Regenerative Change in the Built Environment
  • 7.1 Introduction
  • 7.2 Rating Systems
  • 7.3 Methodology
  • 7.4 Results
  • 7.4.1 Determination of Regenerative Goals
  • 7.4.2 Results of the Quantitative Assessment
  • 7.5 Discussion
  • 7.6 Conclusions
  • References
  • Part II: Innovative Approaches in Professional Design Practice
  • 1.1 Foreword by Giulia Peretti and Carsten Druhmann
  • 1.1.1 Bridging the Gap Between Design and Construction Following a Life Cycle Approach Consisting of Practical Solutions for Procurement, Construction, Use &amp
  • Operation and Future Life
  • Chapter 8: Covering the Gap for an Effective Energy and Environmental Design of Green Roofs: Contributions from Experimental and Modelling Researches
  • 8.1 Introduction
  • 8.2 An Insight into the Energy Modelling of Green Roofs and on some of Its Currents Gaps
  • 8.2.1 Radiative Inter-Canopies Heat Exchanges: The Lack of a Proper Database of Pertinent Physical Parameters
  • 8.2.2 An Experimental-Side Contribution Towards More Reliable Energy Performance Simulations of Buildings with Green Roofs
  • 8.3 The Environmental Impact of a Green Roof
  • 8.3.1 The Life Cycle of the Substrate: A Lack of LCA Studies on Green Roofs.
  • 8.3.2 An LCA Contribution Towards More Complete and Proper Analyses of the Whole Environmental Impact Exerted by a Green Roof During Its Whole Life Cycle
  • 8.4 The Economic Impact of a Green Roof
  • 8.4.1 The Life Cycle of the Substrate: A Lack of LCA Studies on Green Roofs
  • 8.4.1.1 An LCC Contribution Towards More Complete Analyses of All Life Cycle Cost of a Green Roof
  • 8.4.1.2 A Contribution Towards a Simplified Economic Appraisal of the Feasibility of Green Roofs
  • 8.5 Conclusions
  • References
  • Chapter 9: Gender Matters! Thermal Comfort and Individual Perception of Indoor Environmental Quality: A Literature Review
  • 9.1 Introduction
  • 9.1.1 Comfort Standards and Gender
  • 9.1.2 Indoor Environmental Quality and Its Importance for Well-being, Health, and Productivity
  • 9.1.3 Objectives
  • 9.2 Method
  • 9.3 Literature Review: Findings and Discussion
  • 9.3.1 Individual Sensitivity and Comfort Criteria
  • 9.3.1.1 Thermal Comfort
  • 9.3.1.2 Light Sensitivity
  • 9.3.1.3 Other Comfort Criteria, Corresponding Aspects, and Health
  • 9.3.2 Behavioral Aspects, Information, Knowledge, and Participation
  • 9.3.3 Productivity, Indoor Environmental Quality, and Gender
  • 9.4 Conclusion
  • References
  • Chapter 10: Climatic, Cultural, Behavioural and Technical Influences on the Indoor Environment Quality and Their Relevance for a Regenerative Future
  • 10.1 Introduction
  • 10.2 Relationship Between Climate, Technology, and Cultural Aspects and the Comfort Criteria
  • 10.2.1 Comfort Criteria in the Light of Sustainability Goals
  • 10.2.2 Indoor Environmental Quality in a Climatic and Cultural Context
  • 10.2.3 Influence of Technology on Comfort Criteria and Regenerative Sustainability
  • 10.2.4 The Role of Culture and Local Context, in Understanding Technology and Comfort.
  • 10.3 Discussion and Conclusion: Criteria for Regenerative Indoor Environment Quality
  • References
  • Chapter 11: Textile as Material in Human Built Environment Interaction
  • 11.1 Introduction
  • 11.2 Methodology
  • 11.3 Textiles: Production, Recycling, and Reuse
  • 11.4 Textile as a Building Material
  • 11.5 Human-Built Environment Interaction
  • 11.6 Concluding Remarks
  • References
  • Chapter 12: Restorative Design for Heritage Requalification: Selected Roman Works
  • 12.1 Introduction
  • 12.1.1 Project as Layering
  • 12.1.2 Architectural and Urban Regeneration
  • 12.2 Case Studies and Design Experimentation
  • 12.2.1 Environmental Technological Requalification
  • 12.2.2 The Case of Gioacchino Ersoch's Slaughterhouse
  • 12.2.3 The Case of the Street of the Seven Churches
  • 12.2.4 The Case of the Laurentino 38 Neighbourhood
  • 12.3 Discussion
  • 12.3.1 Similarities and Specificities
  • 12.4 Conclusions
  • References
  • Chapter 13: 3D Printing Technology Within a Regenerative Construction Framework
  • 13.1 Introduction
  • 13.2 Literature Review
  • 13.3 Research Method
  • 13.4 Experimental Results
  • 13.4.1 Design Optimization
  • 13.4.2 3DP Cost Analysis
  • 13.4.3 Environmental Impact Analysis
  • 13.5 Discussion
  • 13.6 Conclusions
  • References
  • Chapter 14: From Resilient and Regenerative Materials to a Resilient and Regenerative Built Environment
  • 14.1 Introduction
  • 14.2 Methods
  • 14.2.1 Comparative Case Studies
  • 14.2.2 Living Systems in Resilient and Regenerative Architecture and Design at All Scales
  • 14.3 Results
  • 14.4 Discussion
  • 14.5 Conclusions
  • References
  • Part III: Rethinking Technology Towards a Regenerative Economy
  • 1.1 Foreword by Wilmer Pasut and Roberto Lollini
  • 1.1.1 Rethinking Technology: Low Impact Technology for Regenerative Indoor Environment.
  • Chapter 15: The Blue Growth Smart Specialization Challenges Towards the Restorative Economy.