Rethinking Sustainability Towards a Regenerative Economy.

Saved in:
Bibliographic Details
Superior document:Future City Series ; v.15
:
TeilnehmendeR:
Place / Publishing House:Cham : : Springer International Publishing AG,, 2021.
©2021.
Year of Publication:2021
Edition:1st ed.
Language:English
Series:Future City Series
Online Access:
Physical Description:1 online resource (435 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 5006676591
ctrlnum (MiAaPQ)5006676591
(Au-PeEL)EBL6676591
(OCoLC)1258658208
collection bib_alma
record_format marc
spelling Andreucci, Maria Beatrice.
Rethinking Sustainability Towards a Regenerative Economy.
1st ed.
Cham : Springer International Publishing AG, 2021.
©2021.
1 online resource (435 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Future City Series ; v.15
Intro -- Foreword -- Health and Wellbeing -- Words -- Healing the Future -- Preface -- Acknowledgments -- Contents -- Contributors -- List of Figures -- List of Tables -- Part I: Processes, Methods and Tools for Regenerative Design -- 1.1 Foreword by Emanuele Naboni and Lisanne Havinga -- 1.1.1 Regenerative Design in Practice: Digital Design Tools to Enhance the Well-Being of the Inhabitants of the Natural and Built Environment -- Chapter 1: Axiomatic Design in Regenerative Urban Climate Adaptation -- 1.1 Problem Definition -- 1.2 Current Trends in Urban Climate Adaptation -- 1.3 Methodology -- 1.4 High-Level Requirements and Their Tolerances -- 1.5 Application: A Case Study in a City -- 1.6 Discussion and Conclusion -- References -- Chapter 2: Regenerative Design Tools for the Existing City: HBIM Potentials -- 2.1 Introduction -- 2.2 Knowledge Versus Modelling -- 2.3 Geometry and Semantics in HBIM Models -- 2.4 Level of Development, Level of Detail and Level of Reliability -- 2.5 Conclusions -- References -- Chapter 3: The Application of Urban Building Energy Modeling in Urban Planning -- 3.1 Introduction -- 3.2 The Role of Energy Modeling in Urban Planning -- 3.2.1 New Requirements of Urban Planning from the Energy Perspective -- 3.2.2 Introduction to Urban Building Energy Modeling (UBEM) -- 3.2.3 Application of UBEM in the Urban Planning Processes -- 3.2.3.1 Phase I: Preparatory Planning -- 3.2.3.2 Phase II: Master Planning -- 3.2.3.3 Phase III: Zoning and Urban Design -- 3.2.3.4 Phase IV: Implementation -- 3.2.3.5 Phase V: Operation and Management -- 3.3 Challenges and Opportunities of Energy-Modeling-Assistance Urban Development -- 3.3.1 Challenges -- 3.3.1.1 Complexity of Urban Energy Systems -- 3.3.1.2 Multi-objective Decision Making -- 3.3.1.3 Limitations of the Modeling Approaches -- 3.3.2 Opportunities.
3.3.2.1 District-Level Energy Technologies -- 3.3.2.2 Economies of Scale -- 3.3.2.3 Computational Technology and Big Data -- 3.4 Concluding Remarks -- References -- Chapter 4: Adaptation to Climate Change as a Key Dimension of Urban Regeneration in Europe: The Cases of Copenhagen, Vienna, and Madrid -- 4.1 Introduction -- 4.2 Conceptual Framework -- 4.2.1 Urban Regeneration -- 4.2.2 Adaptation to Climate Change in the Framework of Urban Regeneration -- 4.3 Methodology -- 4.4 Adaptation to Climate Change in Urban Regeneration: The Cases of Copenhagen, Madrid, and Vienna -- 4.4.1 The Case of Copenhagen -- 4.4.1.1 Contextualization of the City's Urban Regeneration Policy -- 4.4.1.2 Understanding if Adaptation to Climate Change Has Been Integrated (or Not) Into the Urban Regeneration Plan and How -- 4.4.2 The Case of Vienna -- 4.4.2.1 Contextualization of the City's Urban Regeneration Policy -- 4.4.2.2 Understanding if Adaptation to Climate Change Has Been Integrated (or Not) Into the Urban Regeneration Plan and How -- 4.4.3 The Case of Madrid -- 4.4.3.1 Contextualization of the City's Urban Regeneration Policy -- 4.4.3.2 Understanding if Adaptation to Climate Change Has Been Integrated (or Not) Into the Urban Regeneration Plan and How -- 4.5 Conclusions -- References -- Chapter 5: Water Runoff and Catchment Improvement by Nature-Based Solution (NBS) Promotion in Private Household Gardens: An Agent-Based Model -- 5.1 Introduction -- 5.2 Methodology -- 5.2.1 Model Setup: Change in Garden Type -- 5.2.1.1 Simulation of Garden Change Behavior -- 5.2.1.2 Transformation to Probability of Change per Segment -- 5.2.2 Model Setup: Water Balance Model -- 5.3 Model Results -- 5.3.1 Szeged Case Study -- 5.3.2 Alcalá de Henares Case Study -- 5.3.3 Metropolitan City of Milan Case Study -- 5.3.4 Çankaya Municipality Case Study -- 5.4 Limitations of the Model.
5.5 Conclusions and Recommendations for Future NBS Agent-Based Modeling Assessments -- References -- Chapter 6: Carbon Accounting for Regenerative Cities -- 6.1 Introduction -- 6.2 Theoretical Context -- 6.2.1 The 1.5° Warming Target and Carbon Budgets -- 6.2.2 Carbon Accounting for Cities -- 6.2.3 Regenerative Impacts in Carbon Accounting -- 6.3 Proposed Model -- 6.3.1 Incorporating Regenerative Impacts into the Carbon Accounting of Cities -- 6.3.2 Consumer Carbon Footprint and Handprint -- 6.4 Discussion and Conclusions -- References -- Chapter 7: How Rating Systems Support Regenerative Change in the Built Environment -- 7.1 Introduction -- 7.2 Rating Systems -- 7.3 Methodology -- 7.4 Results -- 7.4.1 Determination of Regenerative Goals -- 7.4.2 Results of the Quantitative Assessment -- 7.5 Discussion -- 7.6 Conclusions -- References -- Part II: Innovative Approaches in Professional Design Practice -- 1.1 Foreword by Giulia Peretti and Carsten Druhmann -- 1.1.1 Bridging the Gap Between Design and Construction Following a Life Cycle Approach Consisting of Practical Solutions for Procurement, Construction, Use &amp -- Operation and Future Life -- Chapter 8: Covering the Gap for an Effective Energy and Environmental Design of Green Roofs: Contributions from Experimental and Modelling Researches -- 8.1 Introduction -- 8.2 An Insight into the Energy Modelling of Green Roofs and on some of Its Currents Gaps -- 8.2.1 Radiative Inter-Canopies Heat Exchanges: The Lack of a Proper Database of Pertinent Physical Parameters -- 8.2.2 An Experimental-Side Contribution Towards More Reliable Energy Performance Simulations of Buildings with Green Roofs -- 8.3 The Environmental Impact of a Green Roof -- 8.3.1 The Life Cycle of the Substrate: A Lack of LCA Studies on Green Roofs.
8.3.2 An LCA Contribution Towards More Complete and Proper Analyses of the Whole Environmental Impact Exerted by a Green Roof During Its Whole Life Cycle -- 8.4 The Economic Impact of a Green Roof -- 8.4.1 The Life Cycle of the Substrate: A Lack of LCA Studies on Green Roofs -- 8.4.1.1 An LCC Contribution Towards More Complete Analyses of All Life Cycle Cost of a Green Roof -- 8.4.1.2 A Contribution Towards a Simplified Economic Appraisal of the Feasibility of Green Roofs -- 8.5 Conclusions -- References -- Chapter 9: Gender Matters! Thermal Comfort and Individual Perception of Indoor Environmental Quality: A Literature Review -- 9.1 Introduction -- 9.1.1 Comfort Standards and Gender -- 9.1.2 Indoor Environmental Quality and Its Importance for Well-being, Health, and Productivity -- 9.1.3 Objectives -- 9.2 Method -- 9.3 Literature Review: Findings and Discussion -- 9.3.1 Individual Sensitivity and Comfort Criteria -- 9.3.1.1 Thermal Comfort -- 9.3.1.2 Light Sensitivity -- 9.3.1.3 Other Comfort Criteria, Corresponding Aspects, and Health -- 9.3.2 Behavioral Aspects, Information, Knowledge, and Participation -- 9.3.3 Productivity, Indoor Environmental Quality, and Gender -- 9.4 Conclusion -- References -- Chapter 10: Climatic, Cultural, Behavioural and Technical Influences on the Indoor Environment Quality and Their Relevance for a Regenerative Future -- 10.1 Introduction -- 10.2 Relationship Between Climate, Technology, and Cultural Aspects and the Comfort Criteria -- 10.2.1 Comfort Criteria in the Light of Sustainability Goals -- 10.2.2 Indoor Environmental Quality in a Climatic and Cultural Context -- 10.2.3 Influence of Technology on Comfort Criteria and Regenerative Sustainability -- 10.2.4 The Role of Culture and Local Context, in Understanding Technology and Comfort.
10.3 Discussion and Conclusion: Criteria for Regenerative Indoor Environment Quality -- References -- Chapter 11: Textile as Material in Human Built Environment Interaction -- 11.1 Introduction -- 11.2 Methodology -- 11.3 Textiles: Production, Recycling, and Reuse -- 11.4 Textile as a Building Material -- 11.5 Human-Built Environment Interaction -- 11.6 Concluding Remarks -- References -- Chapter 12: Restorative Design for Heritage Requalification: Selected Roman Works -- 12.1 Introduction -- 12.1.1 Project as Layering -- 12.1.2 Architectural and Urban Regeneration -- 12.2 Case Studies and Design Experimentation -- 12.2.1 Environmental Technological Requalification -- 12.2.2 The Case of Gioacchino Ersoch's Slaughterhouse -- 12.2.3 The Case of the Street of the Seven Churches -- 12.2.4 The Case of the Laurentino 38 Neighbourhood -- 12.3 Discussion -- 12.3.1 Similarities and Specificities -- 12.4 Conclusions -- References -- Chapter 13: 3D Printing Technology Within a Regenerative Construction Framework -- 13.1 Introduction -- 13.2 Literature Review -- 13.3 Research Method -- 13.4 Experimental Results -- 13.4.1 Design Optimization -- 13.4.2 3DP Cost Analysis -- 13.4.3 Environmental Impact Analysis -- 13.5 Discussion -- 13.6 Conclusions -- References -- Chapter 14: From Resilient and Regenerative Materials to a Resilient and Regenerative Built Environment -- 14.1 Introduction -- 14.2 Methods -- 14.2.1 Comparative Case Studies -- 14.2.2 Living Systems in Resilient and Regenerative Architecture and Design at All Scales -- 14.3 Results -- 14.4 Discussion -- 14.5 Conclusions -- References -- Part III: Rethinking Technology Towards a Regenerative Economy -- 1.1 Foreword by Wilmer Pasut and Roberto Lollini -- 1.1.1 Rethinking Technology: Low Impact Technology for Regenerative Indoor Environment.
Chapter 15: The Blue Growth Smart Specialization Challenges Towards the Restorative Economy.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic books.
Marvuglia, Antonino.
Baltov, Milen.
Hansen, Preben.
Print version: Andreucci, Maria Beatrice Rethinking Sustainability Towards a Regenerative Economy Cham : Springer International Publishing AG,c2021 9783030718183
ProQuest (Firm)
Future City Series
https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6676591 Click to View
language English
format eBook
author Andreucci, Maria Beatrice.
spellingShingle Andreucci, Maria Beatrice.
Rethinking Sustainability Towards a Regenerative Economy.
Future City Series ;
Intro -- Foreword -- Health and Wellbeing -- Words -- Healing the Future -- Preface -- Acknowledgments -- Contents -- Contributors -- List of Figures -- List of Tables -- Part I: Processes, Methods and Tools for Regenerative Design -- 1.1 Foreword by Emanuele Naboni and Lisanne Havinga -- 1.1.1 Regenerative Design in Practice: Digital Design Tools to Enhance the Well-Being of the Inhabitants of the Natural and Built Environment -- Chapter 1: Axiomatic Design in Regenerative Urban Climate Adaptation -- 1.1 Problem Definition -- 1.2 Current Trends in Urban Climate Adaptation -- 1.3 Methodology -- 1.4 High-Level Requirements and Their Tolerances -- 1.5 Application: A Case Study in a City -- 1.6 Discussion and Conclusion -- References -- Chapter 2: Regenerative Design Tools for the Existing City: HBIM Potentials -- 2.1 Introduction -- 2.2 Knowledge Versus Modelling -- 2.3 Geometry and Semantics in HBIM Models -- 2.4 Level of Development, Level of Detail and Level of Reliability -- 2.5 Conclusions -- References -- Chapter 3: The Application of Urban Building Energy Modeling in Urban Planning -- 3.1 Introduction -- 3.2 The Role of Energy Modeling in Urban Planning -- 3.2.1 New Requirements of Urban Planning from the Energy Perspective -- 3.2.2 Introduction to Urban Building Energy Modeling (UBEM) -- 3.2.3 Application of UBEM in the Urban Planning Processes -- 3.2.3.1 Phase I: Preparatory Planning -- 3.2.3.2 Phase II: Master Planning -- 3.2.3.3 Phase III: Zoning and Urban Design -- 3.2.3.4 Phase IV: Implementation -- 3.2.3.5 Phase V: Operation and Management -- 3.3 Challenges and Opportunities of Energy-Modeling-Assistance Urban Development -- 3.3.1 Challenges -- 3.3.1.1 Complexity of Urban Energy Systems -- 3.3.1.2 Multi-objective Decision Making -- 3.3.1.3 Limitations of the Modeling Approaches -- 3.3.2 Opportunities.
3.3.2.1 District-Level Energy Technologies -- 3.3.2.2 Economies of Scale -- 3.3.2.3 Computational Technology and Big Data -- 3.4 Concluding Remarks -- References -- Chapter 4: Adaptation to Climate Change as a Key Dimension of Urban Regeneration in Europe: The Cases of Copenhagen, Vienna, and Madrid -- 4.1 Introduction -- 4.2 Conceptual Framework -- 4.2.1 Urban Regeneration -- 4.2.2 Adaptation to Climate Change in the Framework of Urban Regeneration -- 4.3 Methodology -- 4.4 Adaptation to Climate Change in Urban Regeneration: The Cases of Copenhagen, Madrid, and Vienna -- 4.4.1 The Case of Copenhagen -- 4.4.1.1 Contextualization of the City's Urban Regeneration Policy -- 4.4.1.2 Understanding if Adaptation to Climate Change Has Been Integrated (or Not) Into the Urban Regeneration Plan and How -- 4.4.2 The Case of Vienna -- 4.4.2.1 Contextualization of the City's Urban Regeneration Policy -- 4.4.2.2 Understanding if Adaptation to Climate Change Has Been Integrated (or Not) Into the Urban Regeneration Plan and How -- 4.4.3 The Case of Madrid -- 4.4.3.1 Contextualization of the City's Urban Regeneration Policy -- 4.4.3.2 Understanding if Adaptation to Climate Change Has Been Integrated (or Not) Into the Urban Regeneration Plan and How -- 4.5 Conclusions -- References -- Chapter 5: Water Runoff and Catchment Improvement by Nature-Based Solution (NBS) Promotion in Private Household Gardens: An Agent-Based Model -- 5.1 Introduction -- 5.2 Methodology -- 5.2.1 Model Setup: Change in Garden Type -- 5.2.1.1 Simulation of Garden Change Behavior -- 5.2.1.2 Transformation to Probability of Change per Segment -- 5.2.2 Model Setup: Water Balance Model -- 5.3 Model Results -- 5.3.1 Szeged Case Study -- 5.3.2 Alcalá de Henares Case Study -- 5.3.3 Metropolitan City of Milan Case Study -- 5.3.4 Çankaya Municipality Case Study -- 5.4 Limitations of the Model.
5.5 Conclusions and Recommendations for Future NBS Agent-Based Modeling Assessments -- References -- Chapter 6: Carbon Accounting for Regenerative Cities -- 6.1 Introduction -- 6.2 Theoretical Context -- 6.2.1 The 1.5° Warming Target and Carbon Budgets -- 6.2.2 Carbon Accounting for Cities -- 6.2.3 Regenerative Impacts in Carbon Accounting -- 6.3 Proposed Model -- 6.3.1 Incorporating Regenerative Impacts into the Carbon Accounting of Cities -- 6.3.2 Consumer Carbon Footprint and Handprint -- 6.4 Discussion and Conclusions -- References -- Chapter 7: How Rating Systems Support Regenerative Change in the Built Environment -- 7.1 Introduction -- 7.2 Rating Systems -- 7.3 Methodology -- 7.4 Results -- 7.4.1 Determination of Regenerative Goals -- 7.4.2 Results of the Quantitative Assessment -- 7.5 Discussion -- 7.6 Conclusions -- References -- Part II: Innovative Approaches in Professional Design Practice -- 1.1 Foreword by Giulia Peretti and Carsten Druhmann -- 1.1.1 Bridging the Gap Between Design and Construction Following a Life Cycle Approach Consisting of Practical Solutions for Procurement, Construction, Use &amp -- Operation and Future Life -- Chapter 8: Covering the Gap for an Effective Energy and Environmental Design of Green Roofs: Contributions from Experimental and Modelling Researches -- 8.1 Introduction -- 8.2 An Insight into the Energy Modelling of Green Roofs and on some of Its Currents Gaps -- 8.2.1 Radiative Inter-Canopies Heat Exchanges: The Lack of a Proper Database of Pertinent Physical Parameters -- 8.2.2 An Experimental-Side Contribution Towards More Reliable Energy Performance Simulations of Buildings with Green Roofs -- 8.3 The Environmental Impact of a Green Roof -- 8.3.1 The Life Cycle of the Substrate: A Lack of LCA Studies on Green Roofs.
8.3.2 An LCA Contribution Towards More Complete and Proper Analyses of the Whole Environmental Impact Exerted by a Green Roof During Its Whole Life Cycle -- 8.4 The Economic Impact of a Green Roof -- 8.4.1 The Life Cycle of the Substrate: A Lack of LCA Studies on Green Roofs -- 8.4.1.1 An LCC Contribution Towards More Complete Analyses of All Life Cycle Cost of a Green Roof -- 8.4.1.2 A Contribution Towards a Simplified Economic Appraisal of the Feasibility of Green Roofs -- 8.5 Conclusions -- References -- Chapter 9: Gender Matters! Thermal Comfort and Individual Perception of Indoor Environmental Quality: A Literature Review -- 9.1 Introduction -- 9.1.1 Comfort Standards and Gender -- 9.1.2 Indoor Environmental Quality and Its Importance for Well-being, Health, and Productivity -- 9.1.3 Objectives -- 9.2 Method -- 9.3 Literature Review: Findings and Discussion -- 9.3.1 Individual Sensitivity and Comfort Criteria -- 9.3.1.1 Thermal Comfort -- 9.3.1.2 Light Sensitivity -- 9.3.1.3 Other Comfort Criteria, Corresponding Aspects, and Health -- 9.3.2 Behavioral Aspects, Information, Knowledge, and Participation -- 9.3.3 Productivity, Indoor Environmental Quality, and Gender -- 9.4 Conclusion -- References -- Chapter 10: Climatic, Cultural, Behavioural and Technical Influences on the Indoor Environment Quality and Their Relevance for a Regenerative Future -- 10.1 Introduction -- 10.2 Relationship Between Climate, Technology, and Cultural Aspects and the Comfort Criteria -- 10.2.1 Comfort Criteria in the Light of Sustainability Goals -- 10.2.2 Indoor Environmental Quality in a Climatic and Cultural Context -- 10.2.3 Influence of Technology on Comfort Criteria and Regenerative Sustainability -- 10.2.4 The Role of Culture and Local Context, in Understanding Technology and Comfort.
10.3 Discussion and Conclusion: Criteria for Regenerative Indoor Environment Quality -- References -- Chapter 11: Textile as Material in Human Built Environment Interaction -- 11.1 Introduction -- 11.2 Methodology -- 11.3 Textiles: Production, Recycling, and Reuse -- 11.4 Textile as a Building Material -- 11.5 Human-Built Environment Interaction -- 11.6 Concluding Remarks -- References -- Chapter 12: Restorative Design for Heritage Requalification: Selected Roman Works -- 12.1 Introduction -- 12.1.1 Project as Layering -- 12.1.2 Architectural and Urban Regeneration -- 12.2 Case Studies and Design Experimentation -- 12.2.1 Environmental Technological Requalification -- 12.2.2 The Case of Gioacchino Ersoch's Slaughterhouse -- 12.2.3 The Case of the Street of the Seven Churches -- 12.2.4 The Case of the Laurentino 38 Neighbourhood -- 12.3 Discussion -- 12.3.1 Similarities and Specificities -- 12.4 Conclusions -- References -- Chapter 13: 3D Printing Technology Within a Regenerative Construction Framework -- 13.1 Introduction -- 13.2 Literature Review -- 13.3 Research Method -- 13.4 Experimental Results -- 13.4.1 Design Optimization -- 13.4.2 3DP Cost Analysis -- 13.4.3 Environmental Impact Analysis -- 13.5 Discussion -- 13.6 Conclusions -- References -- Chapter 14: From Resilient and Regenerative Materials to a Resilient and Regenerative Built Environment -- 14.1 Introduction -- 14.2 Methods -- 14.2.1 Comparative Case Studies -- 14.2.2 Living Systems in Resilient and Regenerative Architecture and Design at All Scales -- 14.3 Results -- 14.4 Discussion -- 14.5 Conclusions -- References -- Part III: Rethinking Technology Towards a Regenerative Economy -- 1.1 Foreword by Wilmer Pasut and Roberto Lollini -- 1.1.1 Rethinking Technology: Low Impact Technology for Regenerative Indoor Environment.
Chapter 15: The Blue Growth Smart Specialization Challenges Towards the Restorative Economy.
author_facet Andreucci, Maria Beatrice.
Marvuglia, Antonino.
Baltov, Milen.
Hansen, Preben.
author_variant m b a mb mba
author2 Marvuglia, Antonino.
Baltov, Milen.
Hansen, Preben.
author2_variant a m am
m b mb
p h ph
author2_role TeilnehmendeR
TeilnehmendeR
TeilnehmendeR
author_sort Andreucci, Maria Beatrice.
title Rethinking Sustainability Towards a Regenerative Economy.
title_full Rethinking Sustainability Towards a Regenerative Economy.
title_fullStr Rethinking Sustainability Towards a Regenerative Economy.
title_full_unstemmed Rethinking Sustainability Towards a Regenerative Economy.
title_auth Rethinking Sustainability Towards a Regenerative Economy.
title_new Rethinking Sustainability Towards a Regenerative Economy.
title_sort rethinking sustainability towards a regenerative economy.
series Future City Series ;
series2 Future City Series ;
publisher Springer International Publishing AG,
publishDate 2021
physical 1 online resource (435 pages)
edition 1st ed.
contents Intro -- Foreword -- Health and Wellbeing -- Words -- Healing the Future -- Preface -- Acknowledgments -- Contents -- Contributors -- List of Figures -- List of Tables -- Part I: Processes, Methods and Tools for Regenerative Design -- 1.1 Foreword by Emanuele Naboni and Lisanne Havinga -- 1.1.1 Regenerative Design in Practice: Digital Design Tools to Enhance the Well-Being of the Inhabitants of the Natural and Built Environment -- Chapter 1: Axiomatic Design in Regenerative Urban Climate Adaptation -- 1.1 Problem Definition -- 1.2 Current Trends in Urban Climate Adaptation -- 1.3 Methodology -- 1.4 High-Level Requirements and Their Tolerances -- 1.5 Application: A Case Study in a City -- 1.6 Discussion and Conclusion -- References -- Chapter 2: Regenerative Design Tools for the Existing City: HBIM Potentials -- 2.1 Introduction -- 2.2 Knowledge Versus Modelling -- 2.3 Geometry and Semantics in HBIM Models -- 2.4 Level of Development, Level of Detail and Level of Reliability -- 2.5 Conclusions -- References -- Chapter 3: The Application of Urban Building Energy Modeling in Urban Planning -- 3.1 Introduction -- 3.2 The Role of Energy Modeling in Urban Planning -- 3.2.1 New Requirements of Urban Planning from the Energy Perspective -- 3.2.2 Introduction to Urban Building Energy Modeling (UBEM) -- 3.2.3 Application of UBEM in the Urban Planning Processes -- 3.2.3.1 Phase I: Preparatory Planning -- 3.2.3.2 Phase II: Master Planning -- 3.2.3.3 Phase III: Zoning and Urban Design -- 3.2.3.4 Phase IV: Implementation -- 3.2.3.5 Phase V: Operation and Management -- 3.3 Challenges and Opportunities of Energy-Modeling-Assistance Urban Development -- 3.3.1 Challenges -- 3.3.1.1 Complexity of Urban Energy Systems -- 3.3.1.2 Multi-objective Decision Making -- 3.3.1.3 Limitations of the Modeling Approaches -- 3.3.2 Opportunities.
3.3.2.1 District-Level Energy Technologies -- 3.3.2.2 Economies of Scale -- 3.3.2.3 Computational Technology and Big Data -- 3.4 Concluding Remarks -- References -- Chapter 4: Adaptation to Climate Change as a Key Dimension of Urban Regeneration in Europe: The Cases of Copenhagen, Vienna, and Madrid -- 4.1 Introduction -- 4.2 Conceptual Framework -- 4.2.1 Urban Regeneration -- 4.2.2 Adaptation to Climate Change in the Framework of Urban Regeneration -- 4.3 Methodology -- 4.4 Adaptation to Climate Change in Urban Regeneration: The Cases of Copenhagen, Madrid, and Vienna -- 4.4.1 The Case of Copenhagen -- 4.4.1.1 Contextualization of the City's Urban Regeneration Policy -- 4.4.1.2 Understanding if Adaptation to Climate Change Has Been Integrated (or Not) Into the Urban Regeneration Plan and How -- 4.4.2 The Case of Vienna -- 4.4.2.1 Contextualization of the City's Urban Regeneration Policy -- 4.4.2.2 Understanding if Adaptation to Climate Change Has Been Integrated (or Not) Into the Urban Regeneration Plan and How -- 4.4.3 The Case of Madrid -- 4.4.3.1 Contextualization of the City's Urban Regeneration Policy -- 4.4.3.2 Understanding if Adaptation to Climate Change Has Been Integrated (or Not) Into the Urban Regeneration Plan and How -- 4.5 Conclusions -- References -- Chapter 5: Water Runoff and Catchment Improvement by Nature-Based Solution (NBS) Promotion in Private Household Gardens: An Agent-Based Model -- 5.1 Introduction -- 5.2 Methodology -- 5.2.1 Model Setup: Change in Garden Type -- 5.2.1.1 Simulation of Garden Change Behavior -- 5.2.1.2 Transformation to Probability of Change per Segment -- 5.2.2 Model Setup: Water Balance Model -- 5.3 Model Results -- 5.3.1 Szeged Case Study -- 5.3.2 Alcalá de Henares Case Study -- 5.3.3 Metropolitan City of Milan Case Study -- 5.3.4 Çankaya Municipality Case Study -- 5.4 Limitations of the Model.
5.5 Conclusions and Recommendations for Future NBS Agent-Based Modeling Assessments -- References -- Chapter 6: Carbon Accounting for Regenerative Cities -- 6.1 Introduction -- 6.2 Theoretical Context -- 6.2.1 The 1.5° Warming Target and Carbon Budgets -- 6.2.2 Carbon Accounting for Cities -- 6.2.3 Regenerative Impacts in Carbon Accounting -- 6.3 Proposed Model -- 6.3.1 Incorporating Regenerative Impacts into the Carbon Accounting of Cities -- 6.3.2 Consumer Carbon Footprint and Handprint -- 6.4 Discussion and Conclusions -- References -- Chapter 7: How Rating Systems Support Regenerative Change in the Built Environment -- 7.1 Introduction -- 7.2 Rating Systems -- 7.3 Methodology -- 7.4 Results -- 7.4.1 Determination of Regenerative Goals -- 7.4.2 Results of the Quantitative Assessment -- 7.5 Discussion -- 7.6 Conclusions -- References -- Part II: Innovative Approaches in Professional Design Practice -- 1.1 Foreword by Giulia Peretti and Carsten Druhmann -- 1.1.1 Bridging the Gap Between Design and Construction Following a Life Cycle Approach Consisting of Practical Solutions for Procurement, Construction, Use &amp -- Operation and Future Life -- Chapter 8: Covering the Gap for an Effective Energy and Environmental Design of Green Roofs: Contributions from Experimental and Modelling Researches -- 8.1 Introduction -- 8.2 An Insight into the Energy Modelling of Green Roofs and on some of Its Currents Gaps -- 8.2.1 Radiative Inter-Canopies Heat Exchanges: The Lack of a Proper Database of Pertinent Physical Parameters -- 8.2.2 An Experimental-Side Contribution Towards More Reliable Energy Performance Simulations of Buildings with Green Roofs -- 8.3 The Environmental Impact of a Green Roof -- 8.3.1 The Life Cycle of the Substrate: A Lack of LCA Studies on Green Roofs.
8.3.2 An LCA Contribution Towards More Complete and Proper Analyses of the Whole Environmental Impact Exerted by a Green Roof During Its Whole Life Cycle -- 8.4 The Economic Impact of a Green Roof -- 8.4.1 The Life Cycle of the Substrate: A Lack of LCA Studies on Green Roofs -- 8.4.1.1 An LCC Contribution Towards More Complete Analyses of All Life Cycle Cost of a Green Roof -- 8.4.1.2 A Contribution Towards a Simplified Economic Appraisal of the Feasibility of Green Roofs -- 8.5 Conclusions -- References -- Chapter 9: Gender Matters! Thermal Comfort and Individual Perception of Indoor Environmental Quality: A Literature Review -- 9.1 Introduction -- 9.1.1 Comfort Standards and Gender -- 9.1.2 Indoor Environmental Quality and Its Importance for Well-being, Health, and Productivity -- 9.1.3 Objectives -- 9.2 Method -- 9.3 Literature Review: Findings and Discussion -- 9.3.1 Individual Sensitivity and Comfort Criteria -- 9.3.1.1 Thermal Comfort -- 9.3.1.2 Light Sensitivity -- 9.3.1.3 Other Comfort Criteria, Corresponding Aspects, and Health -- 9.3.2 Behavioral Aspects, Information, Knowledge, and Participation -- 9.3.3 Productivity, Indoor Environmental Quality, and Gender -- 9.4 Conclusion -- References -- Chapter 10: Climatic, Cultural, Behavioural and Technical Influences on the Indoor Environment Quality and Their Relevance for a Regenerative Future -- 10.1 Introduction -- 10.2 Relationship Between Climate, Technology, and Cultural Aspects and the Comfort Criteria -- 10.2.1 Comfort Criteria in the Light of Sustainability Goals -- 10.2.2 Indoor Environmental Quality in a Climatic and Cultural Context -- 10.2.3 Influence of Technology on Comfort Criteria and Regenerative Sustainability -- 10.2.4 The Role of Culture and Local Context, in Understanding Technology and Comfort.
10.3 Discussion and Conclusion: Criteria for Regenerative Indoor Environment Quality -- References -- Chapter 11: Textile as Material in Human Built Environment Interaction -- 11.1 Introduction -- 11.2 Methodology -- 11.3 Textiles: Production, Recycling, and Reuse -- 11.4 Textile as a Building Material -- 11.5 Human-Built Environment Interaction -- 11.6 Concluding Remarks -- References -- Chapter 12: Restorative Design for Heritage Requalification: Selected Roman Works -- 12.1 Introduction -- 12.1.1 Project as Layering -- 12.1.2 Architectural and Urban Regeneration -- 12.2 Case Studies and Design Experimentation -- 12.2.1 Environmental Technological Requalification -- 12.2.2 The Case of Gioacchino Ersoch's Slaughterhouse -- 12.2.3 The Case of the Street of the Seven Churches -- 12.2.4 The Case of the Laurentino 38 Neighbourhood -- 12.3 Discussion -- 12.3.1 Similarities and Specificities -- 12.4 Conclusions -- References -- Chapter 13: 3D Printing Technology Within a Regenerative Construction Framework -- 13.1 Introduction -- 13.2 Literature Review -- 13.3 Research Method -- 13.4 Experimental Results -- 13.4.1 Design Optimization -- 13.4.2 3DP Cost Analysis -- 13.4.3 Environmental Impact Analysis -- 13.5 Discussion -- 13.6 Conclusions -- References -- Chapter 14: From Resilient and Regenerative Materials to a Resilient and Regenerative Built Environment -- 14.1 Introduction -- 14.2 Methods -- 14.2.1 Comparative Case Studies -- 14.2.2 Living Systems in Resilient and Regenerative Architecture and Design at All Scales -- 14.3 Results -- 14.4 Discussion -- 14.5 Conclusions -- References -- Part III: Rethinking Technology Towards a Regenerative Economy -- 1.1 Foreword by Wilmer Pasut and Roberto Lollini -- 1.1.1 Rethinking Technology: Low Impact Technology for Regenerative Indoor Environment.
Chapter 15: The Blue Growth Smart Specialization Challenges Towards the Restorative Economy.
isbn 9783030718190
9783030718183
callnumber-first Q - Science
callnumber-subject QH - Natural History and Biology
callnumber-label QH541
callnumber-sort QH 3541.5 C6
genre Electronic books.
genre_facet Electronic books.
url https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6676591
illustrated Not Illustrated
oclc_num 1258658208
work_keys_str_mv AT andreuccimariabeatrice rethinkingsustainabilitytowardsaregenerativeeconomy
AT marvugliaantonino rethinkingsustainabilitytowardsaregenerativeeconomy
AT baltovmilen rethinkingsustainabilitytowardsaregenerativeeconomy
AT hansenpreben rethinkingsustainabilitytowardsaregenerativeeconomy
status_str n
ids_txt_mv (MiAaPQ)5006676591
(Au-PeEL)EBL6676591
(OCoLC)1258658208
carrierType_str_mv cr
hierarchy_parent_title Future City Series ; v.15
is_hierarchy_title Rethinking Sustainability Towards a Regenerative Economy.
container_title Future City Series ; v.15
author2_original_writing_str_mv noLinkedField
noLinkedField
noLinkedField
marc_error Info : MARC8 translation shorter than ISO-8859-1, choosing MARC8. --- [ 856 : z ]
_version_ 1792331059737657345
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>12111nam a22004933i 4500</leader><controlfield tag="001">5006676591</controlfield><controlfield tag="003">MiAaPQ</controlfield><controlfield tag="005">20240229073842.0</controlfield><controlfield tag="006">m o d | </controlfield><controlfield tag="007">cr cnu||||||||</controlfield><controlfield tag="008">240229s2021 xx o ||||0 eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783030718190</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783030718183</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(MiAaPQ)5006676591</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(Au-PeEL)EBL6676591</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1258658208</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">MiAaPQ</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">MiAaPQ</subfield><subfield code="d">MiAaPQ</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QH541.5.C6</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Andreucci, Maria Beatrice.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Rethinking Sustainability Towards a Regenerative Economy.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham :</subfield><subfield code="b">Springer International Publishing AG,</subfield><subfield code="c">2021.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2021.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (435 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Future City Series ;</subfield><subfield code="v">v.15</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Intro -- Foreword -- Health and Wellbeing -- Words -- Healing the Future -- Preface -- Acknowledgments -- Contents -- Contributors -- List of Figures -- List of Tables -- Part I: Processes, Methods and Tools for Regenerative Design -- 1.1 Foreword by Emanuele Naboni and Lisanne Havinga -- 1.1.1 Regenerative Design in Practice: Digital Design Tools to Enhance the Well-Being of the Inhabitants of the Natural and Built Environment -- Chapter 1: Axiomatic Design in Regenerative Urban Climate Adaptation -- 1.1 Problem Definition -- 1.2 Current Trends in Urban Climate Adaptation -- 1.3 Methodology -- 1.4 High-Level Requirements and Their Tolerances -- 1.5 Application: A Case Study in a City -- 1.6 Discussion and Conclusion -- References -- Chapter 2: Regenerative Design Tools for the Existing City: HBIM Potentials -- 2.1 Introduction -- 2.2 Knowledge Versus Modelling -- 2.3 Geometry and Semantics in HBIM Models -- 2.4 Level of Development, Level of Detail and Level of Reliability -- 2.5 Conclusions -- References -- Chapter 3: The Application of Urban Building Energy Modeling in Urban Planning -- 3.1 Introduction -- 3.2 The Role of Energy Modeling in Urban Planning -- 3.2.1 New Requirements of Urban Planning from the Energy Perspective -- 3.2.2 Introduction to Urban Building Energy Modeling (UBEM) -- 3.2.3 Application of UBEM in the Urban Planning Processes -- 3.2.3.1 Phase I: Preparatory Planning -- 3.2.3.2 Phase II: Master Planning -- 3.2.3.3 Phase III: Zoning and Urban Design -- 3.2.3.4 Phase IV: Implementation -- 3.2.3.5 Phase V: Operation and Management -- 3.3 Challenges and Opportunities of Energy-Modeling-Assistance Urban Development -- 3.3.1 Challenges -- 3.3.1.1 Complexity of Urban Energy Systems -- 3.3.1.2 Multi-objective Decision Making -- 3.3.1.3 Limitations of the Modeling Approaches -- 3.3.2 Opportunities.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.3.2.1 District-Level Energy Technologies -- 3.3.2.2 Economies of Scale -- 3.3.2.3 Computational Technology and Big Data -- 3.4 Concluding Remarks -- References -- Chapter 4: Adaptation to Climate Change as a Key Dimension of Urban Regeneration in Europe: The Cases of Copenhagen, Vienna, and Madrid -- 4.1 Introduction -- 4.2 Conceptual Framework -- 4.2.1 Urban Regeneration -- 4.2.2 Adaptation to Climate Change in the Framework of Urban Regeneration -- 4.3 Methodology -- 4.4 Adaptation to Climate Change in Urban Regeneration: The Cases of Copenhagen, Madrid, and Vienna -- 4.4.1 The Case of Copenhagen -- 4.4.1.1 Contextualization of the City's Urban Regeneration Policy -- 4.4.1.2 Understanding if Adaptation to Climate Change Has Been Integrated (or Not) Into the Urban Regeneration Plan and How -- 4.4.2 The Case of Vienna -- 4.4.2.1 Contextualization of the City's Urban Regeneration Policy -- 4.4.2.2 Understanding if Adaptation to Climate Change Has Been Integrated (or Not) Into the Urban Regeneration Plan and How -- 4.4.3 The Case of Madrid -- 4.4.3.1 Contextualization of the City's Urban Regeneration Policy -- 4.4.3.2 Understanding if Adaptation to Climate Change Has Been Integrated (or Not) Into the Urban Regeneration Plan and How -- 4.5 Conclusions -- References -- Chapter 5: Water Runoff and Catchment Improvement by Nature-Based Solution (NBS) Promotion in Private Household Gardens: An Agent-Based Model -- 5.1 Introduction -- 5.2 Methodology -- 5.2.1 Model Setup: Change in Garden Type -- 5.2.1.1 Simulation of Garden Change Behavior -- 5.2.1.2 Transformation to Probability of Change per Segment -- 5.2.2 Model Setup: Water Balance Model -- 5.3 Model Results -- 5.3.1 Szeged Case Study -- 5.3.2 Alcalá de Henares Case Study -- 5.3.3 Metropolitan City of Milan Case Study -- 5.3.4 Çankaya Municipality Case Study -- 5.4 Limitations of the Model.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.5 Conclusions and Recommendations for Future NBS Agent-Based Modeling Assessments -- References -- Chapter 6: Carbon Accounting for Regenerative Cities -- 6.1 Introduction -- 6.2 Theoretical Context -- 6.2.1 The 1.5° Warming Target and Carbon Budgets -- 6.2.2 Carbon Accounting for Cities -- 6.2.3 Regenerative Impacts in Carbon Accounting -- 6.3 Proposed Model -- 6.3.1 Incorporating Regenerative Impacts into the Carbon Accounting of Cities -- 6.3.2 Consumer Carbon Footprint and Handprint -- 6.4 Discussion and Conclusions -- References -- Chapter 7: How Rating Systems Support Regenerative Change in the Built Environment -- 7.1 Introduction -- 7.2 Rating Systems -- 7.3 Methodology -- 7.4 Results -- 7.4.1 Determination of Regenerative Goals -- 7.4.2 Results of the Quantitative Assessment -- 7.5 Discussion -- 7.6 Conclusions -- References -- Part II: Innovative Approaches in Professional Design Practice -- 1.1 Foreword by Giulia Peretti and Carsten Druhmann -- 1.1.1 Bridging the Gap Between Design and Construction Following a Life Cycle Approach Consisting of Practical Solutions for Procurement, Construction, Use &amp;amp -- Operation and Future Life -- Chapter 8: Covering the Gap for an Effective Energy and Environmental Design of Green Roofs: Contributions from Experimental and Modelling Researches -- 8.1 Introduction -- 8.2 An Insight into the Energy Modelling of Green Roofs and on some of Its Currents Gaps -- 8.2.1 Radiative Inter-Canopies Heat Exchanges: The Lack of a Proper Database of Pertinent Physical Parameters -- 8.2.2 An Experimental-Side Contribution Towards More Reliable Energy Performance Simulations of Buildings with Green Roofs -- 8.3 The Environmental Impact of a Green Roof -- 8.3.1 The Life Cycle of the Substrate: A Lack of LCA Studies on Green Roofs.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">8.3.2 An LCA Contribution Towards More Complete and Proper Analyses of the Whole Environmental Impact Exerted by a Green Roof During Its Whole Life Cycle -- 8.4 The Economic Impact of a Green Roof -- 8.4.1 The Life Cycle of the Substrate: A Lack of LCA Studies on Green Roofs -- 8.4.1.1 An LCC Contribution Towards More Complete Analyses of All Life Cycle Cost of a Green Roof -- 8.4.1.2 A Contribution Towards a Simplified Economic Appraisal of the Feasibility of Green Roofs -- 8.5 Conclusions -- References -- Chapter 9: Gender Matters! Thermal Comfort and Individual Perception of Indoor Environmental Quality: A Literature Review -- 9.1 Introduction -- 9.1.1 Comfort Standards and Gender -- 9.1.2 Indoor Environmental Quality and Its Importance for Well-being, Health, and Productivity -- 9.1.3 Objectives -- 9.2 Method -- 9.3 Literature Review: Findings and Discussion -- 9.3.1 Individual Sensitivity and Comfort Criteria -- 9.3.1.1 Thermal Comfort -- 9.3.1.2 Light Sensitivity -- 9.3.1.3 Other Comfort Criteria, Corresponding Aspects, and Health -- 9.3.2 Behavioral Aspects, Information, Knowledge, and Participation -- 9.3.3 Productivity, Indoor Environmental Quality, and Gender -- 9.4 Conclusion -- References -- Chapter 10: Climatic, Cultural, Behavioural and Technical Influences on the Indoor Environment Quality and Their Relevance for a Regenerative Future -- 10.1 Introduction -- 10.2 Relationship Between Climate, Technology, and Cultural Aspects and the Comfort Criteria -- 10.2.1 Comfort Criteria in the Light of Sustainability Goals -- 10.2.2 Indoor Environmental Quality in a Climatic and Cultural Context -- 10.2.3 Influence of Technology on Comfort Criteria and Regenerative Sustainability -- 10.2.4 The Role of Culture and Local Context, in Understanding Technology and Comfort.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">10.3 Discussion and Conclusion: Criteria for Regenerative Indoor Environment Quality -- References -- Chapter 11: Textile as Material in Human Built Environment Interaction -- 11.1 Introduction -- 11.2 Methodology -- 11.3 Textiles: Production, Recycling, and Reuse -- 11.4 Textile as a Building Material -- 11.5 Human-Built Environment Interaction -- 11.6 Concluding Remarks -- References -- Chapter 12: Restorative Design for Heritage Requalification: Selected Roman Works -- 12.1 Introduction -- 12.1.1 Project as Layering -- 12.1.2 Architectural and Urban Regeneration -- 12.2 Case Studies and Design Experimentation -- 12.2.1 Environmental Technological Requalification -- 12.2.2 The Case of Gioacchino Ersoch's Slaughterhouse -- 12.2.3 The Case of the Street of the Seven Churches -- 12.2.4 The Case of the Laurentino 38 Neighbourhood -- 12.3 Discussion -- 12.3.1 Similarities and Specificities -- 12.4 Conclusions -- References -- Chapter 13: 3D Printing Technology Within a Regenerative Construction Framework -- 13.1 Introduction -- 13.2 Literature Review -- 13.3 Research Method -- 13.4 Experimental Results -- 13.4.1 Design Optimization -- 13.4.2 3DP Cost Analysis -- 13.4.3 Environmental Impact Analysis -- 13.5 Discussion -- 13.6 Conclusions -- References -- Chapter 14: From Resilient and Regenerative Materials to a Resilient and Regenerative Built Environment -- 14.1 Introduction -- 14.2 Methods -- 14.2.1 Comparative Case Studies -- 14.2.2 Living Systems in Resilient and Regenerative Architecture and Design at All Scales -- 14.3 Results -- 14.4 Discussion -- 14.5 Conclusions -- References -- Part III: Rethinking Technology Towards a Regenerative Economy -- 1.1 Foreword by Wilmer Pasut and Roberto Lollini -- 1.1.1 Rethinking Technology: Low Impact Technology for Regenerative Indoor Environment.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 15: The Blue Growth Smart Specialization Challenges Towards the Restorative Economy.</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources.</subfield></datafield><datafield tag="590" ind1=" " ind2=" "><subfield code="a">Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. </subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Marvuglia, Antonino.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Baltov, Milen.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hansen, Preben.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Andreucci, Maria Beatrice</subfield><subfield code="t">Rethinking Sustainability Towards a Regenerative Economy</subfield><subfield code="d">Cham : Springer International Publishing AG,c2021</subfield><subfield code="z">9783030718183</subfield></datafield><datafield tag="797" ind1="2" ind2=" "><subfield code="a">ProQuest (Firm)</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Future City Series</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6676591</subfield><subfield code="z">Click to View</subfield></datafield></record></collection>