Understanding Communications Systems Principles--A Tutorial Approach.

This book introduces the field by addressing its fundamental principles, proceeding from its very beginnings, up to today's emerging technologies related to the fifth-generation wireless systems (5G), Multi-Input Multiple Output (MIMO) connectivity, and Aerospace/Electronic Warfare Radar. The t...

Full description

Saved in:
Bibliographic Details
:
Place / Publishing House:Milton : : River Publishers,, 2021.
{copy}2021.
Year of Publication:2021
Edition:1st ed.
Language:English
Online Access:
Physical Description:1 online resource (311 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Cover
  • Half Title
  • Series
  • Title
  • Copyright
  • Contents
  • Preface
  • Acknowledgements
  • List of Figures
  • List of Tables
  • List of Abbreviations
  • 1 Introduction to Wireless Communications and Sensing Systems
  • 1.1 Scientific Beginnings: Electromagnetic Waves
  • 1.1.1 Generation and Detection of EM Waves
  • 1.1.1.1 Ruhmkorff Coil and Spark Gap
  • 1.1.1.2 Hertz's Transmitter
  • 1.1.1.3 Hertz's Receiver
  • 1.1.1.4 Hertz's Experiment
  • 1.1.1.5 Hertz's Analysis of the Interference Pattern
  • 1.2 Engineering Beginnings: Communications and RADAR
  • 1.2.1 Communications
  • 1.2.1.1 Communications Systems
  • 1.2.1.1.1 Simplified Transmitter Building Block
  • 1.2.1.1.2 Simplified Receiver Building Block
  • 1.2.2 RADAR
  • 1.2.2.1 RADAR Systems
  • 1.2.2.2 Simplified RADAR System Building Block
  • 1.3 Fundamentals of Signal Processing
  • 1.3.1 Mathematical Description of Carrier Modulation
  • 1.3.1.1 Amplitude Modulation
  • 1.3.1.2 Frequency Modulation
  • 1.3.1.3 Phase Modulation
  • 1.3.2 Spectral Properties of Basic Modulation Approaches
  • 1.3.2.1 AM Spectrum
  • 1.3.2.2 FM Spectrum
  • 1.3.2.3 Comparing AM and FM Spectra
  • 1.3.2.4 Wideband FM
  • 1.3.3 Phase Modulation Spectrum
  • 1.4 Fundamentals of Information Theory
  • 1.5 Summary
  • 1.6 Problems
  • 2 Wireless Systems Building Blocks
  • 2.1 System Components and Their Performance Parameters
  • 2.1.1 Transmission Lines
  • 2.1.2 Amplifiers
  • 2.1.2.1 Gain Compression and Desensitization
  • 2.1.2.2 Cross-Modulation
  • 2.1.2.3 Intermodulation
  • 2.1.2.4 Memoryless Bandpass Nonlinearities
  • 2.1.3 Mixers
  • 2.1.4 Filters
  • 2.1.5 Oscillators
  • 2.1.5.1 Phase Noise of a Local Oscillator
  • 2.1.5.2 Amplitude Noise
  • 2.1.6 Frequency Multipliers
  • 2.2 Antennas
  • 2.2.1 Description of Antennas and Their Parameters
  • 2.2.2 Antenna Arrays [23]
  • 2.2.2.1 Array Factor.
  • 2.2.2.2 Antenna Array Directivity
  • 2.2.2.3 Antenna Array Factor
  • 2.2.2.4 Prototypical Phased Array Antenna
  • 2.3 Free Space Propagation Model
  • 2.4 Summary
  • 2.5 Problems
  • 3 Communication Systems Performance Parameters
  • 3.1 Introduction
  • 3.2 Transmitter Performance Parameters
  • 3.2.1 Modulation Accuracy
  • 3.2.2 Adjacent and Alternate Channel Power
  • 3.3 Receiver
  • 3.3.1 Sensitivity
  • 3.3.2 Noise Figure
  • 3.3.3 Selectivity
  • 3.3.4 Receiver Image Rejection
  • 3.3.5 Receiver Dynamic Range
  • 3.3.6 Receiver Spurious-Free Dynamic Range
  • 3.4 Sensitivity and Dynamic Range Parameters
  • 3.4.1 Definition of Receiver Sensitivity
  • 3.4.2 Definition of Minimum Detectable Signal
  • 3.4.3 Illustration of Signal-to-Noise Ratio
  • 3.4.4 Definition of 1-dB Compression Point
  • 3.4.5 Definition of Intermodulation Distortion
  • 3.4.6 IP3 for Cascade of Networks
  • 3.5 Definition of Dynamic Range
  • 3.5.1 Noise Figure of Blocks in Cascade
  • 3.5.2 Spur-Free Dynamic Range
  • 3.6 Circuit Signal-to-Noise Ratio
  • 3.6.1 Definition of Available Noise Power
  • 3.6.2 Network Noise Figure
  • 3.6.3 Single-Frequency (Spot) Noise Figure
  • 3.6.4 Equivalent Noise Temperature
  • 3.6.5 Effective Noise Temperature of a Network
  • 3.6.6 Computing the Overall NF of Cascaded Circuits
  • 3.6.7 Noise Figure of a Mixer
  • 3.7 Summary
  • 3.8 Problems
  • 4 Circuit Topologies for Signal Modulation and Detection
  • 4.1 Introduction
  • 4.2 AM Modulation Approaches
  • 4.2.1 Generation of Single-Sideband AM Signals
  • 4.3 AM Demodulation Approaches
  • 4.3.1 Envelope Detector
  • 4.4 FM Approaches
  • 4.4.1 Direct FM Modulator
  • 4.5 FM Demodulation Approaches
  • 4.5.1 FM Demodulation by Phase-Locked Loop
  • 4.6 The Digital Modulation Technique
  • 4.6.1 Amplitude-Shift Keying Modulation
  • 4.6.2 Frequency-Shift Keying Modulation
  • 4.6.3 Phase-Shift Keying Modulation.
  • 4.7 Modulation Signal Representation by Complex Envelope Form
  • 4.7.1 M-ary Modulation-MPSK
  • 4.7.2 Binary Phase Shift Keying Modulation-BPSK
  • 4.7.3 Quadrature Phase Shift Keying Modulation-QPSK
  • 4.7.3.1 Modulator Circuit for QPSK
  • 4.7.3.2 Circuit for QPSK Demodulation
  • 4.7.4 Binary Frequency-Shift Keying Modulation Circuit
  • 4.7.4.1 Circuit for BFSK Modulation
  • 4.7.4.2 BFSK Demodulation via a Coherent Detector
  • 4.7.4.3 BFSK Demodulation via a Noncoherent Detector
  • 4.7.5 M-ary Quadrature Amplitude Modulation Approach
  • 4.7.6 Orthogonal Frequency Division Multiplexing
  • 4.7.7 Direct Sequence Spread Spectrum Modulation Approach
  • 4.7.7.1 Modulation and Demodulation Circuits for Direct Sequence Spread Spectrum (DS/SS)
  • 4.7.8 Frequency Hopping Spread Spectrum Modulation/Demodulation
  • 4.8 Summary
  • 4.9 Problems
  • 5 Transmitter and Receiver Architectures
  • 5.1 Introduction
  • 5.2 The Transmitter
  • 5.2.1 Heterodyne Transmitter Architecture
  • 5.2.2 The Homodyne Transmitter Architecture
  • 5.2.2.1 Drawbacks of Homodyne transmitter architecture
  • 5.2.2.1.1 LO disturbance and its corrections
  • 5.3 The Heterodyne Receiver Architecture
  • 5.4 The Homodyne (Zero IF/Direct-Conversion) Receiver
  • 5.5 Receiver Architectures in Light of 5G [37]
  • 5.5.1 Super-Heterodyne Receiver
  • 5.5.2 Homodyne Receiver
  • 5.5.3 The Low-IF Receiver
  • 5.5.4 The Software-Defined Receiver
  • 5.6 Summary
  • 5.7 Problems
  • 6 5G
  • 6.1 Introduction
  • 6.2 5G Systems Technologies
  • 6.2.1 5G Systems: mm Waves [44]
  • 6.2.1.1 Propagation issues
  • 6.2.1.2 Blocking
  • 6.2.1.3 Atmospheric and rain absorption
  • 6.2.1.4 Large arrays, narrow beams
  • 6.2.1.5 Link acquisition
  • 6.3 5G: Internet of Things [46, 47]
  • 6.3.1 Device-to-Device Communications
  • 6.3.2 Simultaneous Transmission/Reception (STR)
  • 6.4 Non-Orthogonal Multiple Access [45, 49].
  • 6.4.1 NOMA Approaches
  • 6.5 5G Evolution
  • 6.6 Summary
  • 6.7 Problems
  • 7 MIMO
  • 7.1 Introduction
  • 7.2 The SISO Channel
  • 7.2.1 The SISO Channel Model
  • 7.2.2 The SISO Channel Capacity
  • 7.3 The MIMO Channel Model
  • 7.3.1 MIMO Channel Propagation Models [13, 60, 61]
  • 7.3.1.1 The rayleigh distribution model
  • 7.3.1.2 The Ricean distribution model
  • 7.3.1.3 The Nakagami-m distribution model
  • 7.3.2 The Singular Value Decomposition Approach [62, 63]
  • 7.3.2.1 The mechanics of the SVD approach
  • 7.3.2.2 MIMO interpretation of SVD example
  • 7.4 MIMO Transmit Antenna Input Power Optimization
  • 7.5 MIMO Receive Antenna Signal Processing
  • 7.5.1 MIMO Array Gain
  • 7.5.2 MIMO Diversity Gain
  • 7.6 Massive MIMO Detection and Transmission
  • 7.6.1 Massive MIMO Detection: MRC, ZFBF, and MMSE
  • 7.6.2 Massive MIMO Transmission: Precoding
  • 7.7 Massive MIMO Systems Architectures
  • 7.8 Massive MIMO Limiting Factors
  • 7.8.1 Pilot Contamination
  • 7.8.2 Radio Propagation
  • 7.9 Summary
  • 7.10 Problems
  • 8 Aerospace/Electronic Warfare RADAR
  • 8.1 Introduction
  • 8.2 Principles of RADARs [92-95]
  • 8.2.1 Types of RADAR
  • 8.2.2 Radio Detection and Ranging [93]
  • 8.2.3 RADAR-Target Geometry/Coordinate System
  • 8.2.4 RADAR Pulses
  • 8.2.5 Range Ambiguities
  • 8.2.6 Range Resolution
  • 8.2.7 Range Gates
  • 8.2.8 RADAR Sensitivity
  • 8.2.9 Doppler Shift
  • 8.2.10 Track Versus Search
  • 8.2.11 RADAR Cross Section
  • 8.3 RADAR Architectures
  • 8.3.1 CW Doppler RADAR Architecture
  • 8.3.2 FM-CW RADAR Architecture
  • 8.3.3 Pulse Doppler RADAR Architecture
  • 8.4 ECM Capabilities of an EW RADAR
  • 8.4.1 Searching for Signal Sources
  • 8.4.2 ECM Techniques: Jamming
  • 8.4.2.1 Noise jamming
  • 8.4.2.2 Deception jamming
  • 8.4.3 ECCM Techniques
  • 8.4.3.1 Pulse compression
  • 8.4.3.2 Frequency hopping
  • 8.4.3.3 Side lobe blanking.
  • 8.4.3.4 Polarization
  • 8.4.3.5 Artificial-Intelligence-Based Jammer-Nulling
  • 8.5 Summary
  • 8.6 Problems
  • 9 Tutorials
  • 9.1 Introduction
  • 9.2 Tutorial 1: Introduction to SystemVue
  • 9.2.1 Preliminaries
  • 9.2.2 Getting Started and Schematic Window
  • 9.2.2.1 Implementation of Basic Phased Array (Beamforming) Antenna Model
  • 9.2.2.2 Running the Workspace file 5G_MIMO_Beamforming_ULA_1 x 4.wsv
  • 9.2.2.3 Effect of Number of Elements on ULA Directivity
  • 9.2.2.4 Element Antenna Radiation Pattern
  • 9.3 Tutorial 2: Codebook Design for 28GHz 5G/MIMO Antenna Array Transmission
  • 9.3.1 Preliminaries
  • 9.3.2 Determination of Codebook for 12 x 12 MIMO URA
  • 9.4 Tutorial 3: Electronic/Warfare RADAR Performance
  • 9.4.1 Preliminaries: Transmitter-Receiver Simulation
  • 9.4.2 FM-CW RADAR Model and Simulations
  • 9.4.3 Exercises
  • Bibliography
  • Index
  • About the Author.