Advances in Assessment and Modeling of Earthquake Loss.

Saved in:
Bibliographic Details
Superior document:Springer Tracts in Civil Engineering Series
:
TeilnehmendeR:
Place / Publishing House:Cham : : Springer International Publishing AG,, 2021.
©2021.
Year of Publication:2021
Edition:1st ed.
Language:English
Series:Springer Tracts in Civil Engineering Series
Online Access:
Physical Description:1 online resource (315 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Intro
  • Foreword
  • Preface
  • Contents
  • Contributors
  • Part I Post-Earthquake Damage Assessment
  • 1 Simplified Analytical/Mechanical Procedure for Post-earthquake Safety Evaluation and Loss Assessment of Buildings
  • 1.1 Introduction
  • 1.2 Seismic Risk Reduction Policies
  • 1.2.1 The New Zealand Passive Approach-"Before"
  • 1.2.2 The New National Plan for Seismic Risk Reduction in New Zealand
  • 1.2.3 The New Italian Guidelines 2017 Seismic Risk Classification and Financial Incentives
  • 1.3 The SLaMA Analytical-Mechanical Assessment Procedure
  • 1.3.1 Selection of Retrofit Strategies and Techniques
  • 1.3.2 Quantifications of Impairment-Loss Estimation
  • 1.4 Post-Earthquake Residual Capacity of Damaged Buildings
  • 1.4.1 Effects of Damage on Future Building Performance
  • 1.5 Concluding Remarks
  • References
  • 2 Damage Assessment in Japan and Potential Use of New Technologies in Damage Assessment
  • 2.1 Introduction
  • 2.2 Rapid Inspection Method in Japan
  • 2.3 Damage Classification
  • 2.4 Loss Estimation for Earthquake Insurance
  • 2.5 The Structural Health Monitoring System
  • 2.5.1 Outline of the System
  • 2.5.2 Capacity Curve from the Measured Acceleration
  • 2.6 Target Building
  • 2.7 Response During the 2011 Tohoku Earthquake
  • 2.8 Conclusions
  • References
  • 3 Post-earthquake Demolition in Christchurch, New Zealand: A Case-Study Towards Incorporating Environmental Impacts in Demolition Decisions
  • 3.1 Introduction
  • 3.2 Factors that Influenced Demolition Decisions in Christchurch
  • 3.2.1 Quantitative Factors
  • 3.2.2 Qualitative Factors
  • 3.2.3 Conceptual Demolish/Repair Framework
  • 3.3 Quantification of Environmental Impacts of Demolitions
  • 3.4 Summary and Conclusions
  • References
  • 4 Damage Assessment in Italy, and Experiences After Recent Earthquakes on Reparability and Repair Costs
  • 4.1 Introduction.
  • 4.2 The 2009 L'Aquila Earthquake Experience
  • 4.3 The Reconstruction of Residential Building Outside Historical Centers (OHC)
  • 4.3.1 Damage and Repair Costs
  • 4.3.2 Strengthening Intervention, Structural/Geotechnical Tests and Energy Efficiency Costs
  • 4.3.3 Population Assistance: Accommodation Costs
  • 4.4 Reconstruction of Residential Buildings Inside Historical Centers (IHC)
  • 4.5 Seismic Risk Classification of Constructions in Italy
  • 4.6 Conclusions
  • References
  • 5 The Modified Post-earthquake Damage Assessment Methodology for TCIP (TCIP-DAM-2020)
  • 5.1 Introduction
  • 5.2 The Revised Version of TCIP Damage Assessment System
  • 5.2.1 Building Damage Categories
  • 5.2.2 Damage Categories for RC Members
  • 5.2.3 Damage Assessment Algorithm
  • 5.3 Case Study: Assessment of a Structure Damaged After 1999 Kocaeli Earthquake
  • 5.4 Concluding Remarks
  • References
  • Part II Loss Modelling and Insurance Pricing
  • 6 Earthquake Risk Assessment from Insurance Perspective
  • 6.1 Introduction
  • 6.2 Probabilistic Earthquake Risk
  • 6.2.1 Fragility Functions
  • 6.3 Ground Motion Intensity Measures (IM)
  • 6.3.1 Ground Motion Prediction Models
  • 6.3.2 Spatial Correlation of Ground Motion
  • 6.3.3 Correlation Between IMs at the Same Site
  • 6.4 Probabilistic Seismic Hazard Assessment (PSHA)
  • 6.4.1 Monte Carlo Simulation
  • 6.4.2 Ground Motion Distribution Maps
  • 6.4.3 Risk-Based Earthquake Hazard: Risk-Targeted Hazard Maps for Earthquake Resistant Design
  • 6.5 Assets Exposed to Earthquake Hazard, Building Inventories
  • 6.6 Fragility, Consequence and Vulnerability Relationships
  • 6.7 Metrics Used in Risk Assessment and CAT Modeling
  • 6.8 Earthquake Risk Assessment Models and Example Applications
  • 6.8.1 Deterministic Earthquake Risk/Loss Calculation
  • 6.8.2 Probabilistic Earthquake Risk Calculation.
  • 6.8.3 Classical PSHA-Based Earthquake Risk Calculation
  • 6.8.4 Effect of the Spatial Correlation of Ground Motion on Earthquake Loss Assessments
  • 6.9 Uncertainties in Risk Assessments
  • 6.10 Conclusions
  • References
  • 7 European Exposure and Vulnerability Models: State-of-The-Practice, Challenges and Future Directions
  • 7.1 Introduction
  • 7.2 Exposure Modelling
  • 7.2.1 Summary of European Exposure Model
  • 7.2.2 Challenges and Future Directions in Exposure Modelling
  • 7.3 Vulnerability Modelling
  • 7.3.1 Summary of European Vulnerability Model
  • 7.3.2 Challenges and Future Directions in Vulnerability Modelling
  • 7.4 Concluding Remarks
  • References
  • 8 Risk Oriented Earthquake Hazard Assessment: Influence of Spatial Discretisation and Non-ergodic Ground-Motion Models
  • 8.1 Introduction
  • 8.2 Correlations Among Intensity Measures
  • 8.2.1 Point-Wise Correlations
  • 8.2.2 Effects of Spatial Discretization
  • 8.3 Impact of the Ergodic Assumption upon Correlation Models
  • 8.4 Correlations Between Spectral Ordinates at a Point
  • 8.4.1 Spatial Correlations Between Spectral Ordinates
  • 8.5 Non-ergodic Risk Analyses for Seismic Sequences
  • 8.6 Conclusions
  • References
  • 9 Seismic Fragility Relationships for Structures
  • 9.1 Definition and Importance
  • 9.2 Types of Fragility Functions
  • 9.3 Framework for Analytical Fragility Derivation
  • 9.4 Analytical Fragility Derivation
  • 9.4.1 Capacity and Demand Uncertainties
  • 9.4.2 Dynamic Analysis Methods
  • 9.4.3 Solution Methods
  • 9.5 Performance Parameters, Intensity Measures and Applications
  • 9.6 Aftershock Fragility Analysis of a Steel Frame (CS#1)
  • 9.6.1 Description
  • 9.6.2 Methodology
  • 9.6.3 Results and Discussion
  • 9.7 Seismic Fragility of a RC Building with Corrosion (CS#2)
  • 9.7.1 Description
  • 9.7.2 Methodology
  • 9.7.3 Results and Discussion
  • 9.8 Conclusions.
  • 9.9 Future Challenges
  • References
  • 10 Earthquake Physical Risk/Loss Assessment Models and Applications: A Case Study on Content Loss Modeling Conditioned on Building Damage
  • 10.1 Introduction
  • 10.2 Development of Content Fragilities Conditioned on Building Damage
  • 10.2.1 Review of Some Benchmark Documents
  • 10.2.2 Theoretical Background
  • 10.2.3 Case Studies on Developed Content Fragilities
  • 10.3 Content Consequence Model
  • 10.4 Vulnerability Model and Country-Wide Content AALR
  • 10.5 Summary and Conclusions
  • References
  • 11 Earthquake Catastrophe Risk Modeling, Application to the Insurance Industry: Unknowns and Possible Sources of Bias in Pricing
  • 11.1 Introduction
  • 11.2 Should Earthquake Sequences be Removed from Seismic Hazard and Risk Assessment Models?
  • 11.2.1 Fewer Earthquakes Modeled
  • 11.2.2 Damage Accumulation
  • 11.2.3 Arbitrariness in Declustering and Its Unintended Consequences
  • 11.2.4 Including Earthquake Sequences in Seismic Risk Assessment
  • 11.3 Why Identical Buildings at Different Locations have Different Vulnerability?
  • 11.3.1 Vulnerability Functions based on the Analytical Method
  • 11.3.2 Vulnerability Functions for Single Buildings and for Building Portfolios: The Present
  • 11.3.3 Vulnerability Functions for Building Portfolios: The Future
  • 11.3.4 Final Remarks
  • 11.4 Beyond Ergodic Seismic Hazard Estimates and Impact on Risk
  • 11.4.1 Partially Non-ergodic GMPEs
  • 11.4.2 Effects of Partially Non-ergodic GMPEs on Risk Estimates
  • 11.5 Sources of Bias in Pricing of Earthquake Insurance Policies
  • 11.6 Conclusions and Recommandations
  • References
  • Part III Earthquake Insurance for Resilience
  • 12 The Role of Earthquake Insurance in Earthquake Risk Reduction and Resilience Building
  • 12.1 Resilience and System Theory
  • 12.2 Insurance and Resilience
  • 12.3 How Does Cat Insurance Work?.
  • 12.4 Why Does Insurance Matter in Building Resilience?
  • 12.5 The New Dynamic in Cat Risk Financing
  • 12.6 TCIP as an Early Experiment
  • 12.7 More Innovation in the Market
  • 12.7.1 Indonesia: Pooling Fund Untuk Bencana-PFB
  • 12.7.2 Philippine: The Philippine City Disaster Insurance Pool (PCDIP)
  • 12.8 Conclusions
  • References
  • 13 Fire Following Earthquake-The Potential in Istanbul
  • 13.1 Introduction
  • 13.2 Analysis of Fire Following Earthquake
  • 13.2.1 Assets at Risk and Ignitions
  • 13.2.2 Communications/Water Supply
  • 13.2.3 Fire Spread
  • 13.3 FFE Risk for Several Cities
  • 13.4 FFE Mitigation
  • 13.4.1 Fire Station Vulnerability
  • 13.4.2 Firefighting Water Capacity
  • 13.5 Concluding Remarks
  • References
  • Index.