Advances in Assessment and Modeling of Earthquake Loss.

Saved in:
Bibliographic Details
Superior document:Springer Tracts in Civil Engineering Series
:
TeilnehmendeR:
Place / Publishing House:Cham : : Springer International Publishing AG,, 2021.
©2021.
Year of Publication:2021
Edition:1st ed.
Language:English
Series:Springer Tracts in Civil Engineering Series
Online Access:
Physical Description:1 online resource (315 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 5006636687
ctrlnum (MiAaPQ)5006636687
(Au-PeEL)EBL6636687
(OCoLC)1256238213
collection bib_alma
record_format marc
spelling Akkar, Sinan.
Advances in Assessment and Modeling of Earthquake Loss.
1st ed.
Cham : Springer International Publishing AG, 2021.
©2021.
1 online resource (315 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Springer Tracts in Civil Engineering Series
Intro -- Foreword -- Preface -- Contents -- Contributors -- Part I Post-Earthquake Damage Assessment -- 1 Simplified Analytical/Mechanical Procedure for Post-earthquake Safety Evaluation and Loss Assessment of Buildings -- 1.1 Introduction -- 1.2 Seismic Risk Reduction Policies -- 1.2.1 The New Zealand Passive Approach-"Before" -- 1.2.2 The New National Plan for Seismic Risk Reduction in New Zealand -- 1.2.3 The New Italian Guidelines 2017 Seismic Risk Classification and Financial Incentives -- 1.3 The SLaMA Analytical-Mechanical Assessment Procedure -- 1.3.1 Selection of Retrofit Strategies and Techniques -- 1.3.2 Quantifications of Impairment-Loss Estimation -- 1.4 Post-Earthquake Residual Capacity of Damaged Buildings -- 1.4.1 Effects of Damage on Future Building Performance -- 1.5 Concluding Remarks -- References -- 2 Damage Assessment in Japan and Potential Use of New Technologies in Damage Assessment -- 2.1 Introduction -- 2.2 Rapid Inspection Method in Japan -- 2.3 Damage Classification -- 2.4 Loss Estimation for Earthquake Insurance -- 2.5 The Structural Health Monitoring System -- 2.5.1 Outline of the System -- 2.5.2 Capacity Curve from the Measured Acceleration -- 2.6 Target Building -- 2.7 Response During the 2011 Tohoku Earthquake -- 2.8 Conclusions -- References -- 3 Post-earthquake Demolition in Christchurch, New Zealand: A Case-Study Towards Incorporating Environmental Impacts in Demolition Decisions -- 3.1 Introduction -- 3.2 Factors that Influenced Demolition Decisions in Christchurch -- 3.2.1 Quantitative Factors -- 3.2.2 Qualitative Factors -- 3.2.3 Conceptual Demolish/Repair Framework -- 3.3 Quantification of Environmental Impacts of Demolitions -- 3.4 Summary and Conclusions -- References -- 4 Damage Assessment in Italy, and Experiences After Recent Earthquakes on Reparability and Repair Costs -- 4.1 Introduction.
4.2 The 2009 L'Aquila Earthquake Experience -- 4.3 The Reconstruction of Residential Building Outside Historical Centers (OHC) -- 4.3.1 Damage and Repair Costs -- 4.3.2 Strengthening Intervention, Structural/Geotechnical Tests and Energy Efficiency Costs -- 4.3.3 Population Assistance: Accommodation Costs -- 4.4 Reconstruction of Residential Buildings Inside Historical Centers (IHC) -- 4.5 Seismic Risk Classification of Constructions in Italy -- 4.6 Conclusions -- References -- 5 The Modified Post-earthquake Damage Assessment Methodology for TCIP (TCIP-DAM-2020) -- 5.1 Introduction -- 5.2 The Revised Version of TCIP Damage Assessment System -- 5.2.1 Building Damage Categories -- 5.2.2 Damage Categories for RC Members -- 5.2.3 Damage Assessment Algorithm -- 5.3 Case Study: Assessment of a Structure Damaged After 1999 Kocaeli Earthquake -- 5.4 Concluding Remarks -- References -- Part II Loss Modelling and Insurance Pricing -- 6 Earthquake Risk Assessment from Insurance Perspective -- 6.1 Introduction -- 6.2 Probabilistic Earthquake Risk -- 6.2.1 Fragility Functions -- 6.3 Ground Motion Intensity Measures (IM) -- 6.3.1 Ground Motion Prediction Models -- 6.3.2 Spatial Correlation of Ground Motion -- 6.3.3 Correlation Between IMs at the Same Site -- 6.4 Probabilistic Seismic Hazard Assessment (PSHA) -- 6.4.1 Monte Carlo Simulation -- 6.4.2 Ground Motion Distribution Maps -- 6.4.3 Risk-Based Earthquake Hazard: Risk-Targeted Hazard Maps for Earthquake Resistant Design -- 6.5 Assets Exposed to Earthquake Hazard, Building Inventories -- 6.6 Fragility, Consequence and Vulnerability Relationships -- 6.7 Metrics Used in Risk Assessment and CAT Modeling -- 6.8 Earthquake Risk Assessment Models and Example Applications -- 6.8.1 Deterministic Earthquake Risk/Loss Calculation -- 6.8.2 Probabilistic Earthquake Risk Calculation.
6.8.3 Classical PSHA-Based Earthquake Risk Calculation -- 6.8.4 Effect of the Spatial Correlation of Ground Motion on Earthquake Loss Assessments -- 6.9 Uncertainties in Risk Assessments -- 6.10 Conclusions -- References -- 7 European Exposure and Vulnerability Models: State-of-The-Practice, Challenges and Future Directions -- 7.1 Introduction -- 7.2 Exposure Modelling -- 7.2.1 Summary of European Exposure Model -- 7.2.2 Challenges and Future Directions in Exposure Modelling -- 7.3 Vulnerability Modelling -- 7.3.1 Summary of European Vulnerability Model -- 7.3.2 Challenges and Future Directions in Vulnerability Modelling -- 7.4 Concluding Remarks -- References -- 8 Risk Oriented Earthquake Hazard Assessment: Influence of Spatial Discretisation and Non-ergodic Ground-Motion Models -- 8.1 Introduction -- 8.2 Correlations Among Intensity Measures -- 8.2.1 Point-Wise Correlations -- 8.2.2 Effects of Spatial Discretization -- 8.3 Impact of the Ergodic Assumption upon Correlation Models -- 8.4 Correlations Between Spectral Ordinates at a Point -- 8.4.1 Spatial Correlations Between Spectral Ordinates -- 8.5 Non-ergodic Risk Analyses for Seismic Sequences -- 8.6 Conclusions -- References -- 9 Seismic Fragility Relationships for Structures -- 9.1 Definition and Importance -- 9.2 Types of Fragility Functions -- 9.3 Framework for Analytical Fragility Derivation -- 9.4 Analytical Fragility Derivation -- 9.4.1 Capacity and Demand Uncertainties -- 9.4.2 Dynamic Analysis Methods -- 9.4.3 Solution Methods -- 9.5 Performance Parameters, Intensity Measures and Applications -- 9.6 Aftershock Fragility Analysis of a Steel Frame (CS#1) -- 9.6.1 Description -- 9.6.2 Methodology -- 9.6.3 Results and Discussion -- 9.7 Seismic Fragility of a RC Building with Corrosion (CS#2) -- 9.7.1 Description -- 9.7.2 Methodology -- 9.7.3 Results and Discussion -- 9.8 Conclusions.
9.9 Future Challenges -- References -- 10 Earthquake Physical Risk/Loss Assessment Models and Applications: A Case Study on Content Loss Modeling Conditioned on Building Damage -- 10.1 Introduction -- 10.2 Development of Content Fragilities Conditioned on Building Damage -- 10.2.1 Review of Some Benchmark Documents -- 10.2.2 Theoretical Background -- 10.2.3 Case Studies on Developed Content Fragilities -- 10.3 Content Consequence Model -- 10.4 Vulnerability Model and Country-Wide Content AALR -- 10.5 Summary and Conclusions -- References -- 11 Earthquake Catastrophe Risk Modeling, Application to the Insurance Industry: Unknowns and Possible Sources of Bias in Pricing -- 11.1 Introduction -- 11.2 Should Earthquake Sequences be Removed from Seismic Hazard and Risk Assessment Models? -- 11.2.1 Fewer Earthquakes Modeled -- 11.2.2 Damage Accumulation -- 11.2.3 Arbitrariness in Declustering and Its Unintended Consequences -- 11.2.4 Including Earthquake Sequences in Seismic Risk Assessment -- 11.3 Why Identical Buildings at Different Locations have Different Vulnerability? -- 11.3.1 Vulnerability Functions based on the Analytical Method -- 11.3.2 Vulnerability Functions for Single Buildings and for Building Portfolios: The Present -- 11.3.3 Vulnerability Functions for Building Portfolios: The Future -- 11.3.4 Final Remarks -- 11.4 Beyond Ergodic Seismic Hazard Estimates and Impact on Risk -- 11.4.1 Partially Non-ergodic GMPEs -- 11.4.2 Effects of Partially Non-ergodic GMPEs on Risk Estimates -- 11.5 Sources of Bias in Pricing of Earthquake Insurance Policies -- 11.6 Conclusions and Recommandations -- References -- Part III Earthquake Insurance for Resilience -- 12 The Role of Earthquake Insurance in Earthquake Risk Reduction and Resilience Building -- 12.1 Resilience and System Theory -- 12.2 Insurance and Resilience -- 12.3 How Does Cat Insurance Work?.
12.4 Why Does Insurance Matter in Building Resilience? -- 12.5 The New Dynamic in Cat Risk Financing -- 12.6 TCIP as an Early Experiment -- 12.7 More Innovation in the Market -- 12.7.1 Indonesia: Pooling Fund Untuk Bencana-PFB -- 12.7.2 Philippine: The Philippine City Disaster Insurance Pool (PCDIP) -- 12.8 Conclusions -- References -- 13 Fire Following Earthquake-The Potential in Istanbul -- 13.1 Introduction -- 13.2 Analysis of Fire Following Earthquake -- 13.2.1 Assets at Risk and Ignitions -- 13.2.2 Communications/Water Supply -- 13.2.3 Fire Spread -- 13.3 FFE Risk for Several Cities -- 13.4 FFE Mitigation -- 13.4.1 Fire Station Vulnerability -- 13.4.2 Firefighting Water Capacity -- 13.5 Concluding Remarks -- References -- Index.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic books.
Ilki, Alper.
Goksu, Caglar.
Erdik, Mustafa.
Print version: Akkar, Sinan Advances in Assessment and Modeling of Earthquake Loss Cham : Springer International Publishing AG,c2021 9783030688127
ProQuest (Firm)
https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6636687 Click to View
language English
format eBook
author Akkar, Sinan.
spellingShingle Akkar, Sinan.
Advances in Assessment and Modeling of Earthquake Loss.
Springer Tracts in Civil Engineering Series
Intro -- Foreword -- Preface -- Contents -- Contributors -- Part I Post-Earthquake Damage Assessment -- 1 Simplified Analytical/Mechanical Procedure for Post-earthquake Safety Evaluation and Loss Assessment of Buildings -- 1.1 Introduction -- 1.2 Seismic Risk Reduction Policies -- 1.2.1 The New Zealand Passive Approach-"Before" -- 1.2.2 The New National Plan for Seismic Risk Reduction in New Zealand -- 1.2.3 The New Italian Guidelines 2017 Seismic Risk Classification and Financial Incentives -- 1.3 The SLaMA Analytical-Mechanical Assessment Procedure -- 1.3.1 Selection of Retrofit Strategies and Techniques -- 1.3.2 Quantifications of Impairment-Loss Estimation -- 1.4 Post-Earthquake Residual Capacity of Damaged Buildings -- 1.4.1 Effects of Damage on Future Building Performance -- 1.5 Concluding Remarks -- References -- 2 Damage Assessment in Japan and Potential Use of New Technologies in Damage Assessment -- 2.1 Introduction -- 2.2 Rapid Inspection Method in Japan -- 2.3 Damage Classification -- 2.4 Loss Estimation for Earthquake Insurance -- 2.5 The Structural Health Monitoring System -- 2.5.1 Outline of the System -- 2.5.2 Capacity Curve from the Measured Acceleration -- 2.6 Target Building -- 2.7 Response During the 2011 Tohoku Earthquake -- 2.8 Conclusions -- References -- 3 Post-earthquake Demolition in Christchurch, New Zealand: A Case-Study Towards Incorporating Environmental Impacts in Demolition Decisions -- 3.1 Introduction -- 3.2 Factors that Influenced Demolition Decisions in Christchurch -- 3.2.1 Quantitative Factors -- 3.2.2 Qualitative Factors -- 3.2.3 Conceptual Demolish/Repair Framework -- 3.3 Quantification of Environmental Impacts of Demolitions -- 3.4 Summary and Conclusions -- References -- 4 Damage Assessment in Italy, and Experiences After Recent Earthquakes on Reparability and Repair Costs -- 4.1 Introduction.
4.2 The 2009 L'Aquila Earthquake Experience -- 4.3 The Reconstruction of Residential Building Outside Historical Centers (OHC) -- 4.3.1 Damage and Repair Costs -- 4.3.2 Strengthening Intervention, Structural/Geotechnical Tests and Energy Efficiency Costs -- 4.3.3 Population Assistance: Accommodation Costs -- 4.4 Reconstruction of Residential Buildings Inside Historical Centers (IHC) -- 4.5 Seismic Risk Classification of Constructions in Italy -- 4.6 Conclusions -- References -- 5 The Modified Post-earthquake Damage Assessment Methodology for TCIP (TCIP-DAM-2020) -- 5.1 Introduction -- 5.2 The Revised Version of TCIP Damage Assessment System -- 5.2.1 Building Damage Categories -- 5.2.2 Damage Categories for RC Members -- 5.2.3 Damage Assessment Algorithm -- 5.3 Case Study: Assessment of a Structure Damaged After 1999 Kocaeli Earthquake -- 5.4 Concluding Remarks -- References -- Part II Loss Modelling and Insurance Pricing -- 6 Earthquake Risk Assessment from Insurance Perspective -- 6.1 Introduction -- 6.2 Probabilistic Earthquake Risk -- 6.2.1 Fragility Functions -- 6.3 Ground Motion Intensity Measures (IM) -- 6.3.1 Ground Motion Prediction Models -- 6.3.2 Spatial Correlation of Ground Motion -- 6.3.3 Correlation Between IMs at the Same Site -- 6.4 Probabilistic Seismic Hazard Assessment (PSHA) -- 6.4.1 Monte Carlo Simulation -- 6.4.2 Ground Motion Distribution Maps -- 6.4.3 Risk-Based Earthquake Hazard: Risk-Targeted Hazard Maps for Earthquake Resistant Design -- 6.5 Assets Exposed to Earthquake Hazard, Building Inventories -- 6.6 Fragility, Consequence and Vulnerability Relationships -- 6.7 Metrics Used in Risk Assessment and CAT Modeling -- 6.8 Earthquake Risk Assessment Models and Example Applications -- 6.8.1 Deterministic Earthquake Risk/Loss Calculation -- 6.8.2 Probabilistic Earthquake Risk Calculation.
6.8.3 Classical PSHA-Based Earthquake Risk Calculation -- 6.8.4 Effect of the Spatial Correlation of Ground Motion on Earthquake Loss Assessments -- 6.9 Uncertainties in Risk Assessments -- 6.10 Conclusions -- References -- 7 European Exposure and Vulnerability Models: State-of-The-Practice, Challenges and Future Directions -- 7.1 Introduction -- 7.2 Exposure Modelling -- 7.2.1 Summary of European Exposure Model -- 7.2.2 Challenges and Future Directions in Exposure Modelling -- 7.3 Vulnerability Modelling -- 7.3.1 Summary of European Vulnerability Model -- 7.3.2 Challenges and Future Directions in Vulnerability Modelling -- 7.4 Concluding Remarks -- References -- 8 Risk Oriented Earthquake Hazard Assessment: Influence of Spatial Discretisation and Non-ergodic Ground-Motion Models -- 8.1 Introduction -- 8.2 Correlations Among Intensity Measures -- 8.2.1 Point-Wise Correlations -- 8.2.2 Effects of Spatial Discretization -- 8.3 Impact of the Ergodic Assumption upon Correlation Models -- 8.4 Correlations Between Spectral Ordinates at a Point -- 8.4.1 Spatial Correlations Between Spectral Ordinates -- 8.5 Non-ergodic Risk Analyses for Seismic Sequences -- 8.6 Conclusions -- References -- 9 Seismic Fragility Relationships for Structures -- 9.1 Definition and Importance -- 9.2 Types of Fragility Functions -- 9.3 Framework for Analytical Fragility Derivation -- 9.4 Analytical Fragility Derivation -- 9.4.1 Capacity and Demand Uncertainties -- 9.4.2 Dynamic Analysis Methods -- 9.4.3 Solution Methods -- 9.5 Performance Parameters, Intensity Measures and Applications -- 9.6 Aftershock Fragility Analysis of a Steel Frame (CS#1) -- 9.6.1 Description -- 9.6.2 Methodology -- 9.6.3 Results and Discussion -- 9.7 Seismic Fragility of a RC Building with Corrosion (CS#2) -- 9.7.1 Description -- 9.7.2 Methodology -- 9.7.3 Results and Discussion -- 9.8 Conclusions.
9.9 Future Challenges -- References -- 10 Earthquake Physical Risk/Loss Assessment Models and Applications: A Case Study on Content Loss Modeling Conditioned on Building Damage -- 10.1 Introduction -- 10.2 Development of Content Fragilities Conditioned on Building Damage -- 10.2.1 Review of Some Benchmark Documents -- 10.2.2 Theoretical Background -- 10.2.3 Case Studies on Developed Content Fragilities -- 10.3 Content Consequence Model -- 10.4 Vulnerability Model and Country-Wide Content AALR -- 10.5 Summary and Conclusions -- References -- 11 Earthquake Catastrophe Risk Modeling, Application to the Insurance Industry: Unknowns and Possible Sources of Bias in Pricing -- 11.1 Introduction -- 11.2 Should Earthquake Sequences be Removed from Seismic Hazard and Risk Assessment Models? -- 11.2.1 Fewer Earthquakes Modeled -- 11.2.2 Damage Accumulation -- 11.2.3 Arbitrariness in Declustering and Its Unintended Consequences -- 11.2.4 Including Earthquake Sequences in Seismic Risk Assessment -- 11.3 Why Identical Buildings at Different Locations have Different Vulnerability? -- 11.3.1 Vulnerability Functions based on the Analytical Method -- 11.3.2 Vulnerability Functions for Single Buildings and for Building Portfolios: The Present -- 11.3.3 Vulnerability Functions for Building Portfolios: The Future -- 11.3.4 Final Remarks -- 11.4 Beyond Ergodic Seismic Hazard Estimates and Impact on Risk -- 11.4.1 Partially Non-ergodic GMPEs -- 11.4.2 Effects of Partially Non-ergodic GMPEs on Risk Estimates -- 11.5 Sources of Bias in Pricing of Earthquake Insurance Policies -- 11.6 Conclusions and Recommandations -- References -- Part III Earthquake Insurance for Resilience -- 12 The Role of Earthquake Insurance in Earthquake Risk Reduction and Resilience Building -- 12.1 Resilience and System Theory -- 12.2 Insurance and Resilience -- 12.3 How Does Cat Insurance Work?.
12.4 Why Does Insurance Matter in Building Resilience? -- 12.5 The New Dynamic in Cat Risk Financing -- 12.6 TCIP as an Early Experiment -- 12.7 More Innovation in the Market -- 12.7.1 Indonesia: Pooling Fund Untuk Bencana-PFB -- 12.7.2 Philippine: The Philippine City Disaster Insurance Pool (PCDIP) -- 12.8 Conclusions -- References -- 13 Fire Following Earthquake-The Potential in Istanbul -- 13.1 Introduction -- 13.2 Analysis of Fire Following Earthquake -- 13.2.1 Assets at Risk and Ignitions -- 13.2.2 Communications/Water Supply -- 13.2.3 Fire Spread -- 13.3 FFE Risk for Several Cities -- 13.4 FFE Mitigation -- 13.4.1 Fire Station Vulnerability -- 13.4.2 Firefighting Water Capacity -- 13.5 Concluding Remarks -- References -- Index.
author_facet Akkar, Sinan.
Ilki, Alper.
Goksu, Caglar.
Erdik, Mustafa.
author_variant s a sa
author2 Ilki, Alper.
Goksu, Caglar.
Erdik, Mustafa.
author2_variant a i ai
c g cg
m e me
author2_role TeilnehmendeR
TeilnehmendeR
TeilnehmendeR
author_sort Akkar, Sinan.
title Advances in Assessment and Modeling of Earthquake Loss.
title_full Advances in Assessment and Modeling of Earthquake Loss.
title_fullStr Advances in Assessment and Modeling of Earthquake Loss.
title_full_unstemmed Advances in Assessment and Modeling of Earthquake Loss.
title_auth Advances in Assessment and Modeling of Earthquake Loss.
title_new Advances in Assessment and Modeling of Earthquake Loss.
title_sort advances in assessment and modeling of earthquake loss.
series Springer Tracts in Civil Engineering Series
series2 Springer Tracts in Civil Engineering Series
publisher Springer International Publishing AG,
publishDate 2021
physical 1 online resource (315 pages)
edition 1st ed.
contents Intro -- Foreword -- Preface -- Contents -- Contributors -- Part I Post-Earthquake Damage Assessment -- 1 Simplified Analytical/Mechanical Procedure for Post-earthquake Safety Evaluation and Loss Assessment of Buildings -- 1.1 Introduction -- 1.2 Seismic Risk Reduction Policies -- 1.2.1 The New Zealand Passive Approach-"Before" -- 1.2.2 The New National Plan for Seismic Risk Reduction in New Zealand -- 1.2.3 The New Italian Guidelines 2017 Seismic Risk Classification and Financial Incentives -- 1.3 The SLaMA Analytical-Mechanical Assessment Procedure -- 1.3.1 Selection of Retrofit Strategies and Techniques -- 1.3.2 Quantifications of Impairment-Loss Estimation -- 1.4 Post-Earthquake Residual Capacity of Damaged Buildings -- 1.4.1 Effects of Damage on Future Building Performance -- 1.5 Concluding Remarks -- References -- 2 Damage Assessment in Japan and Potential Use of New Technologies in Damage Assessment -- 2.1 Introduction -- 2.2 Rapid Inspection Method in Japan -- 2.3 Damage Classification -- 2.4 Loss Estimation for Earthquake Insurance -- 2.5 The Structural Health Monitoring System -- 2.5.1 Outline of the System -- 2.5.2 Capacity Curve from the Measured Acceleration -- 2.6 Target Building -- 2.7 Response During the 2011 Tohoku Earthquake -- 2.8 Conclusions -- References -- 3 Post-earthquake Demolition in Christchurch, New Zealand: A Case-Study Towards Incorporating Environmental Impacts in Demolition Decisions -- 3.1 Introduction -- 3.2 Factors that Influenced Demolition Decisions in Christchurch -- 3.2.1 Quantitative Factors -- 3.2.2 Qualitative Factors -- 3.2.3 Conceptual Demolish/Repair Framework -- 3.3 Quantification of Environmental Impacts of Demolitions -- 3.4 Summary and Conclusions -- References -- 4 Damage Assessment in Italy, and Experiences After Recent Earthquakes on Reparability and Repair Costs -- 4.1 Introduction.
4.2 The 2009 L'Aquila Earthquake Experience -- 4.3 The Reconstruction of Residential Building Outside Historical Centers (OHC) -- 4.3.1 Damage and Repair Costs -- 4.3.2 Strengthening Intervention, Structural/Geotechnical Tests and Energy Efficiency Costs -- 4.3.3 Population Assistance: Accommodation Costs -- 4.4 Reconstruction of Residential Buildings Inside Historical Centers (IHC) -- 4.5 Seismic Risk Classification of Constructions in Italy -- 4.6 Conclusions -- References -- 5 The Modified Post-earthquake Damage Assessment Methodology for TCIP (TCIP-DAM-2020) -- 5.1 Introduction -- 5.2 The Revised Version of TCIP Damage Assessment System -- 5.2.1 Building Damage Categories -- 5.2.2 Damage Categories for RC Members -- 5.2.3 Damage Assessment Algorithm -- 5.3 Case Study: Assessment of a Structure Damaged After 1999 Kocaeli Earthquake -- 5.4 Concluding Remarks -- References -- Part II Loss Modelling and Insurance Pricing -- 6 Earthquake Risk Assessment from Insurance Perspective -- 6.1 Introduction -- 6.2 Probabilistic Earthquake Risk -- 6.2.1 Fragility Functions -- 6.3 Ground Motion Intensity Measures (IM) -- 6.3.1 Ground Motion Prediction Models -- 6.3.2 Spatial Correlation of Ground Motion -- 6.3.3 Correlation Between IMs at the Same Site -- 6.4 Probabilistic Seismic Hazard Assessment (PSHA) -- 6.4.1 Monte Carlo Simulation -- 6.4.2 Ground Motion Distribution Maps -- 6.4.3 Risk-Based Earthquake Hazard: Risk-Targeted Hazard Maps for Earthquake Resistant Design -- 6.5 Assets Exposed to Earthquake Hazard, Building Inventories -- 6.6 Fragility, Consequence and Vulnerability Relationships -- 6.7 Metrics Used in Risk Assessment and CAT Modeling -- 6.8 Earthquake Risk Assessment Models and Example Applications -- 6.8.1 Deterministic Earthquake Risk/Loss Calculation -- 6.8.2 Probabilistic Earthquake Risk Calculation.
6.8.3 Classical PSHA-Based Earthquake Risk Calculation -- 6.8.4 Effect of the Spatial Correlation of Ground Motion on Earthquake Loss Assessments -- 6.9 Uncertainties in Risk Assessments -- 6.10 Conclusions -- References -- 7 European Exposure and Vulnerability Models: State-of-The-Practice, Challenges and Future Directions -- 7.1 Introduction -- 7.2 Exposure Modelling -- 7.2.1 Summary of European Exposure Model -- 7.2.2 Challenges and Future Directions in Exposure Modelling -- 7.3 Vulnerability Modelling -- 7.3.1 Summary of European Vulnerability Model -- 7.3.2 Challenges and Future Directions in Vulnerability Modelling -- 7.4 Concluding Remarks -- References -- 8 Risk Oriented Earthquake Hazard Assessment: Influence of Spatial Discretisation and Non-ergodic Ground-Motion Models -- 8.1 Introduction -- 8.2 Correlations Among Intensity Measures -- 8.2.1 Point-Wise Correlations -- 8.2.2 Effects of Spatial Discretization -- 8.3 Impact of the Ergodic Assumption upon Correlation Models -- 8.4 Correlations Between Spectral Ordinates at a Point -- 8.4.1 Spatial Correlations Between Spectral Ordinates -- 8.5 Non-ergodic Risk Analyses for Seismic Sequences -- 8.6 Conclusions -- References -- 9 Seismic Fragility Relationships for Structures -- 9.1 Definition and Importance -- 9.2 Types of Fragility Functions -- 9.3 Framework for Analytical Fragility Derivation -- 9.4 Analytical Fragility Derivation -- 9.4.1 Capacity and Demand Uncertainties -- 9.4.2 Dynamic Analysis Methods -- 9.4.3 Solution Methods -- 9.5 Performance Parameters, Intensity Measures and Applications -- 9.6 Aftershock Fragility Analysis of a Steel Frame (CS#1) -- 9.6.1 Description -- 9.6.2 Methodology -- 9.6.3 Results and Discussion -- 9.7 Seismic Fragility of a RC Building with Corrosion (CS#2) -- 9.7.1 Description -- 9.7.2 Methodology -- 9.7.3 Results and Discussion -- 9.8 Conclusions.
9.9 Future Challenges -- References -- 10 Earthquake Physical Risk/Loss Assessment Models and Applications: A Case Study on Content Loss Modeling Conditioned on Building Damage -- 10.1 Introduction -- 10.2 Development of Content Fragilities Conditioned on Building Damage -- 10.2.1 Review of Some Benchmark Documents -- 10.2.2 Theoretical Background -- 10.2.3 Case Studies on Developed Content Fragilities -- 10.3 Content Consequence Model -- 10.4 Vulnerability Model and Country-Wide Content AALR -- 10.5 Summary and Conclusions -- References -- 11 Earthquake Catastrophe Risk Modeling, Application to the Insurance Industry: Unknowns and Possible Sources of Bias in Pricing -- 11.1 Introduction -- 11.2 Should Earthquake Sequences be Removed from Seismic Hazard and Risk Assessment Models? -- 11.2.1 Fewer Earthquakes Modeled -- 11.2.2 Damage Accumulation -- 11.2.3 Arbitrariness in Declustering and Its Unintended Consequences -- 11.2.4 Including Earthquake Sequences in Seismic Risk Assessment -- 11.3 Why Identical Buildings at Different Locations have Different Vulnerability? -- 11.3.1 Vulnerability Functions based on the Analytical Method -- 11.3.2 Vulnerability Functions for Single Buildings and for Building Portfolios: The Present -- 11.3.3 Vulnerability Functions for Building Portfolios: The Future -- 11.3.4 Final Remarks -- 11.4 Beyond Ergodic Seismic Hazard Estimates and Impact on Risk -- 11.4.1 Partially Non-ergodic GMPEs -- 11.4.2 Effects of Partially Non-ergodic GMPEs on Risk Estimates -- 11.5 Sources of Bias in Pricing of Earthquake Insurance Policies -- 11.6 Conclusions and Recommandations -- References -- Part III Earthquake Insurance for Resilience -- 12 The Role of Earthquake Insurance in Earthquake Risk Reduction and Resilience Building -- 12.1 Resilience and System Theory -- 12.2 Insurance and Resilience -- 12.3 How Does Cat Insurance Work?.
12.4 Why Does Insurance Matter in Building Resilience? -- 12.5 The New Dynamic in Cat Risk Financing -- 12.6 TCIP as an Early Experiment -- 12.7 More Innovation in the Market -- 12.7.1 Indonesia: Pooling Fund Untuk Bencana-PFB -- 12.7.2 Philippine: The Philippine City Disaster Insurance Pool (PCDIP) -- 12.8 Conclusions -- References -- 13 Fire Following Earthquake-The Potential in Istanbul -- 13.1 Introduction -- 13.2 Analysis of Fire Following Earthquake -- 13.2.1 Assets at Risk and Ignitions -- 13.2.2 Communications/Water Supply -- 13.2.3 Fire Spread -- 13.3 FFE Risk for Several Cities -- 13.4 FFE Mitigation -- 13.4.1 Fire Station Vulnerability -- 13.4.2 Firefighting Water Capacity -- 13.5 Concluding Remarks -- References -- Index.
isbn 9783030688134
9783030688127
callnumber-first T - Technology
callnumber-subject TA - General and Civil Engineering
callnumber-label TA703-705
callnumber-sort TA 3703 3705.4
genre Electronic books.
genre_facet Electronic books.
url https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6636687
illustrated Not Illustrated
oclc_num 1256238213
work_keys_str_mv AT akkarsinan advancesinassessmentandmodelingofearthquakeloss
AT ilkialper advancesinassessmentandmodelingofearthquakeloss
AT goksucaglar advancesinassessmentandmodelingofearthquakeloss
AT erdikmustafa advancesinassessmentandmodelingofearthquakeloss
status_str n
ids_txt_mv (MiAaPQ)5006636687
(Au-PeEL)EBL6636687
(OCoLC)1256238213
carrierType_str_mv cr
hierarchy_parent_title Springer Tracts in Civil Engineering Series
is_hierarchy_title Advances in Assessment and Modeling of Earthquake Loss.
container_title Springer Tracts in Civil Engineering Series
author2_original_writing_str_mv noLinkedField
noLinkedField
noLinkedField
marc_error Info : MARC8 translation shorter than ISO-8859-1, choosing MARC8. --- [ 856 : z ]
_version_ 1792331058764578816
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>10696nam a22004813i 4500</leader><controlfield tag="001">5006636687</controlfield><controlfield tag="003">MiAaPQ</controlfield><controlfield tag="005">20240229073841.0</controlfield><controlfield tag="006">m o d | </controlfield><controlfield tag="007">cr cnu||||||||</controlfield><controlfield tag="008">240229s2021 xx o ||||0 eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783030688134</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783030688127</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(MiAaPQ)5006636687</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(Au-PeEL)EBL6636687</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1256238213</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">MiAaPQ</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">MiAaPQ</subfield><subfield code="d">MiAaPQ</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">TA703-705.4</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Akkar, Sinan.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Advances in Assessment and Modeling of Earthquake Loss.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham :</subfield><subfield code="b">Springer International Publishing AG,</subfield><subfield code="c">2021.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2021.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (315 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Springer Tracts in Civil Engineering Series</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Intro -- Foreword -- Preface -- Contents -- Contributors -- Part I Post-Earthquake Damage Assessment -- 1 Simplified Analytical/Mechanical Procedure for Post-earthquake Safety Evaluation and Loss Assessment of Buildings -- 1.1 Introduction -- 1.2 Seismic Risk Reduction Policies -- 1.2.1 The New Zealand Passive Approach-"Before" -- 1.2.2 The New National Plan for Seismic Risk Reduction in New Zealand -- 1.2.3 The New Italian Guidelines 2017 Seismic Risk Classification and Financial Incentives -- 1.3 The SLaMA Analytical-Mechanical Assessment Procedure -- 1.3.1 Selection of Retrofit Strategies and Techniques -- 1.3.2 Quantifications of Impairment-Loss Estimation -- 1.4 Post-Earthquake Residual Capacity of Damaged Buildings -- 1.4.1 Effects of Damage on Future Building Performance -- 1.5 Concluding Remarks -- References -- 2 Damage Assessment in Japan and Potential Use of New Technologies in Damage Assessment -- 2.1 Introduction -- 2.2 Rapid Inspection Method in Japan -- 2.3 Damage Classification -- 2.4 Loss Estimation for Earthquake Insurance -- 2.5 The Structural Health Monitoring System -- 2.5.1 Outline of the System -- 2.5.2 Capacity Curve from the Measured Acceleration -- 2.6 Target Building -- 2.7 Response During the 2011 Tohoku Earthquake -- 2.8 Conclusions -- References -- 3 Post-earthquake Demolition in Christchurch, New Zealand: A Case-Study Towards Incorporating Environmental Impacts in Demolition Decisions -- 3.1 Introduction -- 3.2 Factors that Influenced Demolition Decisions in Christchurch -- 3.2.1 Quantitative Factors -- 3.2.2 Qualitative Factors -- 3.2.3 Conceptual Demolish/Repair Framework -- 3.3 Quantification of Environmental Impacts of Demolitions -- 3.4 Summary and Conclusions -- References -- 4 Damage Assessment in Italy, and Experiences After Recent Earthquakes on Reparability and Repair Costs -- 4.1 Introduction.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.2 The 2009 L'Aquila Earthquake Experience -- 4.3 The Reconstruction of Residential Building Outside Historical Centers (OHC) -- 4.3.1 Damage and Repair Costs -- 4.3.2 Strengthening Intervention, Structural/Geotechnical Tests and Energy Efficiency Costs -- 4.3.3 Population Assistance: Accommodation Costs -- 4.4 Reconstruction of Residential Buildings Inside Historical Centers (IHC) -- 4.5 Seismic Risk Classification of Constructions in Italy -- 4.6 Conclusions -- References -- 5 The Modified Post-earthquake Damage Assessment Methodology for TCIP (TCIP-DAM-2020) -- 5.1 Introduction -- 5.2 The Revised Version of TCIP Damage Assessment System -- 5.2.1 Building Damage Categories -- 5.2.2 Damage Categories for RC Members -- 5.2.3 Damage Assessment Algorithm -- 5.3 Case Study: Assessment of a Structure Damaged After 1999 Kocaeli Earthquake -- 5.4 Concluding Remarks -- References -- Part II Loss Modelling and Insurance Pricing -- 6 Earthquake Risk Assessment from Insurance Perspective -- 6.1 Introduction -- 6.2 Probabilistic Earthquake Risk -- 6.2.1 Fragility Functions -- 6.3 Ground Motion Intensity Measures (IM) -- 6.3.1 Ground Motion Prediction Models -- 6.3.2 Spatial Correlation of Ground Motion -- 6.3.3 Correlation Between IMs at the Same Site -- 6.4 Probabilistic Seismic Hazard Assessment (PSHA) -- 6.4.1 Monte Carlo Simulation -- 6.4.2 Ground Motion Distribution Maps -- 6.4.3 Risk-Based Earthquake Hazard: Risk-Targeted Hazard Maps for Earthquake Resistant Design -- 6.5 Assets Exposed to Earthquake Hazard, Building Inventories -- 6.6 Fragility, Consequence and Vulnerability Relationships -- 6.7 Metrics Used in Risk Assessment and CAT Modeling -- 6.8 Earthquake Risk Assessment Models and Example Applications -- 6.8.1 Deterministic Earthquake Risk/Loss Calculation -- 6.8.2 Probabilistic Earthquake Risk Calculation.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.8.3 Classical PSHA-Based Earthquake Risk Calculation -- 6.8.4 Effect of the Spatial Correlation of Ground Motion on Earthquake Loss Assessments -- 6.9 Uncertainties in Risk Assessments -- 6.10 Conclusions -- References -- 7 European Exposure and Vulnerability Models: State-of-The-Practice, Challenges and Future Directions -- 7.1 Introduction -- 7.2 Exposure Modelling -- 7.2.1 Summary of European Exposure Model -- 7.2.2 Challenges and Future Directions in Exposure Modelling -- 7.3 Vulnerability Modelling -- 7.3.1 Summary of European Vulnerability Model -- 7.3.2 Challenges and Future Directions in Vulnerability Modelling -- 7.4 Concluding Remarks -- References -- 8 Risk Oriented Earthquake Hazard Assessment: Influence of Spatial Discretisation and Non-ergodic Ground-Motion Models -- 8.1 Introduction -- 8.2 Correlations Among Intensity Measures -- 8.2.1 Point-Wise Correlations -- 8.2.2 Effects of Spatial Discretization -- 8.3 Impact of the Ergodic Assumption upon Correlation Models -- 8.4 Correlations Between Spectral Ordinates at a Point -- 8.4.1 Spatial Correlations Between Spectral Ordinates -- 8.5 Non-ergodic Risk Analyses for Seismic Sequences -- 8.6 Conclusions -- References -- 9 Seismic Fragility Relationships for Structures -- 9.1 Definition and Importance -- 9.2 Types of Fragility Functions -- 9.3 Framework for Analytical Fragility Derivation -- 9.4 Analytical Fragility Derivation -- 9.4.1 Capacity and Demand Uncertainties -- 9.4.2 Dynamic Analysis Methods -- 9.4.3 Solution Methods -- 9.5 Performance Parameters, Intensity Measures and Applications -- 9.6 Aftershock Fragility Analysis of a Steel Frame (CS#1) -- 9.6.1 Description -- 9.6.2 Methodology -- 9.6.3 Results and Discussion -- 9.7 Seismic Fragility of a RC Building with Corrosion (CS#2) -- 9.7.1 Description -- 9.7.2 Methodology -- 9.7.3 Results and Discussion -- 9.8 Conclusions.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">9.9 Future Challenges -- References -- 10 Earthquake Physical Risk/Loss Assessment Models and Applications: A Case Study on Content Loss Modeling Conditioned on Building Damage -- 10.1 Introduction -- 10.2 Development of Content Fragilities Conditioned on Building Damage -- 10.2.1 Review of Some Benchmark Documents -- 10.2.2 Theoretical Background -- 10.2.3 Case Studies on Developed Content Fragilities -- 10.3 Content Consequence Model -- 10.4 Vulnerability Model and Country-Wide Content AALR -- 10.5 Summary and Conclusions -- References -- 11 Earthquake Catastrophe Risk Modeling, Application to the Insurance Industry: Unknowns and Possible Sources of Bias in Pricing -- 11.1 Introduction -- 11.2 Should Earthquake Sequences be Removed from Seismic Hazard and Risk Assessment Models? -- 11.2.1 Fewer Earthquakes Modeled -- 11.2.2 Damage Accumulation -- 11.2.3 Arbitrariness in Declustering and Its Unintended Consequences -- 11.2.4 Including Earthquake Sequences in Seismic Risk Assessment -- 11.3 Why Identical Buildings at Different Locations have Different Vulnerability? -- 11.3.1 Vulnerability Functions based on the Analytical Method -- 11.3.2 Vulnerability Functions for Single Buildings and for Building Portfolios: The Present -- 11.3.3 Vulnerability Functions for Building Portfolios: The Future -- 11.3.4 Final Remarks -- 11.4 Beyond Ergodic Seismic Hazard Estimates and Impact on Risk -- 11.4.1 Partially Non-ergodic GMPEs -- 11.4.2 Effects of Partially Non-ergodic GMPEs on Risk Estimates -- 11.5 Sources of Bias in Pricing of Earthquake Insurance Policies -- 11.6 Conclusions and Recommandations -- References -- Part III Earthquake Insurance for Resilience -- 12 The Role of Earthquake Insurance in Earthquake Risk Reduction and Resilience Building -- 12.1 Resilience and System Theory -- 12.2 Insurance and Resilience -- 12.3 How Does Cat Insurance Work?.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">12.4 Why Does Insurance Matter in Building Resilience? -- 12.5 The New Dynamic in Cat Risk Financing -- 12.6 TCIP as an Early Experiment -- 12.7 More Innovation in the Market -- 12.7.1 Indonesia: Pooling Fund Untuk Bencana-PFB -- 12.7.2 Philippine: The Philippine City Disaster Insurance Pool (PCDIP) -- 12.8 Conclusions -- References -- 13 Fire Following Earthquake-The Potential in Istanbul -- 13.1 Introduction -- 13.2 Analysis of Fire Following Earthquake -- 13.2.1 Assets at Risk and Ignitions -- 13.2.2 Communications/Water Supply -- 13.2.3 Fire Spread -- 13.3 FFE Risk for Several Cities -- 13.4 FFE Mitigation -- 13.4.1 Fire Station Vulnerability -- 13.4.2 Firefighting Water Capacity -- 13.5 Concluding Remarks -- References -- Index.</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources.</subfield></datafield><datafield tag="590" ind1=" " ind2=" "><subfield code="a">Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. </subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ilki, Alper.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Goksu, Caglar.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Erdik, Mustafa.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Akkar, Sinan</subfield><subfield code="t">Advances in Assessment and Modeling of Earthquake Loss</subfield><subfield code="d">Cham : Springer International Publishing AG,c2021</subfield><subfield code="z">9783030688127</subfield></datafield><datafield tag="797" ind1="2" ind2=" "><subfield code="a">ProQuest (Firm)</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Springer Tracts in Civil Engineering Series</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6636687</subfield><subfield code="z">Click to View</subfield></datafield></record></collection>