Water and Earthquakes.

Saved in:
Bibliographic Details
Superior document:Lecture Notes in Earth System Sciences Series
:
TeilnehmendeR:
Place / Publishing House:Cham : : Springer International Publishing AG,, 2021.
©2021.
Year of Publication:2021
Edition:1st ed.
Language:English
Series:Lecture Notes in Earth System Sciences Series
Online Access:
Physical Description:1 online resource (396 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Intro
  • Preface
  • Acknowledgements
  • Contents
  • 1 Introduction
  • References
  • 2 Groundwater Flow and Transport
  • 2.1 Introduction
  • 2.2 Pressure, Hydraulic Head and Darcy's Law
  • 2.3 Permeability of Layered Media
  • 2.4 Specific Storage and Specific Yield
  • 2.5 Saturated Flow
  • 2.5.1 Isothermal Flow
  • 2.5.2 Flow Through Variable Temperatures
  • 2.6 Unsaturated Flow
  • 2.7 Heat Transport
  • 2.8 Solute Transport
  • References
  • 3 Hydro-Mechanical Coupling
  • 3.1 Introduction
  • 3.2 Linear Poroelasticity and Groundwater Flow
  • 3.2.1 Constitutive Relations for Isotropic Stress: Biot (1941)
  • 3.2.2 Effective Stress
  • 3.2.3 Related Poroelastic Constants
  • 3.2.4 Constitutive Relationship for Anisotropic Stress: Biot (1955)
  • 3.2.5 Poroelastic Constants
  • 3.2.6 Governing Equations for Flow in Poroelastic Media
  • 3.2.7 Uncoupling Stress or Strain from Fluid Flow
  • 3.3 Consolidation
  • 3.3.1 Consolidation of Sediments in Sedimentary Basin
  • 3.3.2 Terzaghi Theory of Consolidation
  • 3.4 Liquefaction
  • 3.5 Rock Friction and Instability
  • 3.5.1 Friction and Frictional Instability
  • 3.5.2 The Rate-and-State Equation
  • References
  • 4 Earthquakes Influenced by Water
  • 4.1 Introduction
  • 4.2 Fluids and Rock Failure
  • 4.3 Earthquakes Induced by Fluid Injection
  • 4.4 Earthquakes Induced by Fluid Extraction
  • 4.5 Reservoir-Induced Seismicity
  • 4.6 Natural Hydrological Triggering of Earthquakes
  • 4.7 Earthquake Triggering of Earthquakes via Hydrological Processes
  • 4.8 Concluding Remarks and Outlook
  • References
  • 5 Response to Tides, Barometric Pressure and Seismic Waves
  • 5.1 Introduction
  • 5.2 Tidal Potential
  • 5.3 Earth Tides
  • 5.4 Groundwater Response to Earth Tides
  • 5.4.1 Tidal Response of a Confined Aquifer
  • 5.4.2 Tidal Response of an Unconfined Aquifer with Flow to the Water Table.
  • 5.4.3 An Example of Seasonal Change of Tidal Response
  • 5.4.4 Tidal Response of a Leaky Aquifer
  • 5.4.5 Numerical Simulation for the Tidal Response of a Leaky Aquifer
  • 5.4.6 Tidal Response of an Unconfined Aquifer with the Capillary Effect
  • 5.5 Groundwater Response to Barometric Changes
  • 5.5.1 Barometric Response of Aquifers and Barometric Efficency
  • 5.5.2 Analytical Solution with a Half-Space Aquitard
  • 5.5.3 Analytical Solution with a Finite Aquitard
  • 5.5.4 Numerical Solution
  • 5.5.5 Applications
  • 5.6 Estimating Hydraulic Property with Tidal and Barometric Methods
  • 5.7 Groundwater Oscillations in Response to Seismic Waves
  • 5.8 Concluding Remarks
  • Appendices. Derivation of Equations
  • Appendix 5.1 Solution for a Confined Aquifer
  • Appendix 5.2 Solution for a Leaky Aquifer
  • Appendix 5.3 Barometric Response with Finite Aquitard
  • Appendix 5.4 Effect of Fractures on Groundwater Response
  • References
  • 6 Groundwater Level
  • 6.1 Introduction
  • 6.2 Observations
  • 6.2.1 Coseismic Step-like Changes of Groundwater Level
  • 6.2.2 Sustained Changes
  • 6.2.3 Breached Confinement
  • 6.3 Models and Constraints
  • 6.3.1 Coseismic Static Strain
  • 6.3.2 Undrained Consolidation and Liquefaction
  • 6.3.3 Enhanced Permeability
  • 6.3.4 Shaking Water Out of Unsaturated Soil
  • 6.4 Constraints
  • 6.4.1 Constraints from Laboratory Experiments
  • 6.4.2 Constraints from Field Observations
  • 6.4.3 Constraint from Tidal Analysis
  • 6.4.4 Constraints from Threshold Seismic Energy
  • 6.4.5 Post-seismic Recession of Groundwater Level
  • 6.5 Pore Pressure and Permeability of Continental Faults
  • 6.6 Pore Pressure and Permeability on the Ocean Floor
  • 6.6.1 Pore Pressure and Permeability in an Accretionary Prism
  • 6.6.2 Pore  Pressure Changes Near an Ocean Ridge
  • 6.7 Concluding Remarks
  • Appendix: Derivation of Eq. 6.13
  • References.
  • 7 Stream Flow
  • 7.1 Introduction
  • 7.2 Observations
  • 7.2.1 Measurement with Flow Meter and Tape
  • 7.2.2 Measurement with Stream Gauges
  • 7.3 Proposed Mechanisms
  • 7.3.1 Static Elastic Strain
  • 7.3.2 Consolidation and Liquefaction
  • 7.3.3 Water Released from Mountains
  • 7.3.4 Water Released from Unsaturated Soils
  • 7.3.5 Enhanced Permeability
  • 7.3.6 Enhanced Vertical Permeability
  • 7.4 Model Constraints
  • 7.4.1 Constraints from Earthquake Mechanism
  • 7.4.2 Constraints from Recession Analysis
  • 7.4.3 Constraints From Multiple Stream Gauges
  • 7.4.4 Constraints From the Threshold Seismic Energy
  • 7.4.5 Constraints from Laboratory Experiment
  • 7.4.6 Constraints from Chemical Composition of the Excess Flow
  • 7.5 Streamflow Changes in Hydrothermal Areas
  • 7.6 Concluding Remarks
  • References
  • 8 Groundwater Temperature
  • 8.1 Introduction
  • 8.2 Land Measurements
  • 8.2.1 China
  • 8.2.2 Japan
  • 8.2.3 Korea
  • 8.3 Basin-Wide Changes
  • 8.4 Springs
  • 8.4.1 Cold Springs
  • 8.4.2 Hot Springs
  • 8.5 Seafloor Measurements
  • 8.5.1 Subduction Zones
  • 8.5.2 Near Oceanic Ridge
  • 8.6 Turbulent Mixing of Well Water
  • 8.7 Concluding Remarks
  • References
  • 9 Groundwater and Stream Composition
  • 9.1 Introduction
  • 9.2 Groundwater Composition
  • 9.2.1 Major Elements
  • 9.2.2 Trace Elements
  • 9.2.3 Stable Isotopes
  • 9.3 Stream Water Composition
  • 9.4 Need of Integrated Data to Interpret Composition Change
  • 9.5 Concluding Remarks
  • References
  • 10 Geysers
  • 10.1 Introduction
  • 10.1.1 Response of Geysers to Earthquakes
  • 10.1.2 Response of Geysers to Other Sources of Stress
  • 10.2 Mechanisms
  • 10.2.1 How Do Geysers Work?
  • 10.2.2 Mechanisms for Altering Eruptions
  • 10.3 Conclusions About Geysers
  • References
  • 11 Liquefaction
  • 11.1 Introduction
  • 11.2 Sediment Consolidation and Liquefaction in Cyclic Loading.
  • 11.3 Liquefaction Beyond the Near Field
  • 11.4 Experiment at Wildlife Liquefaction Array, California
  • 11.5 Dependence of Liquefaction on Seismic Frequency
  • 11.6 Concluding Remarks
  • References
  • 12 Mud Volcanoes
  • 12.1 Introduction
  • 12.2 Response of Mud Volcanoes to Earthquakes
  • 12.3 Insights from Triggered Eruptions of Magmatic Volcanoes
  • 12.4 Mechanisms
  • 12.4.1 Static or Dynamic Stresses?
  • 12.4.2 Mechanisms for Initiating Eruptions
  • 12.5 The Sidoarjo (Lusi) Mud Flow
  • 12.6 Effect of Earthquakes on Already-Erupting Mud Volcanoes
  • 12.7 Concluding Remarks About Mud Volcanoes
  • References
  • 13 Hydrologic Precursors
  • 13.1 Introduction
  • 13.2 What is a Precursor?
  • 13.3 Identifying Precursors
  • 13.4 Examples
  • 13.4.1 China: Haicheng, 1975 and Tangshan, 1976
  • 13.4.2 Kobe, Japan, 1995
  • 13.4.3 Nankaido, Japan, 1946
  • 13.4.4 Oxygen Isotope Precursors to the 2016 Tottori Earthquake, Japan
  • 13.4.5 Kettleman Hills, California, 1985
  • 13.4.6 Chi-Chi, Taiwan, 1999
  • 13.4.7 Kamchatka
  • 13.4.8 Pyrenees, France, 1996
  • 13.4.9 Reservoir Induced Seismicity, Koyna, India
  • 13.4.10 Calistoga Geyser, California
  • 13.4.11 Iceland, 2012-2013
  • 13.4.12 Central Italy Seismic Sequence, 2016
  • 13.4.13 Precursory Changes in Spring Temperature
  • 13.5 Outlook
  • References
  • 14 Epilogue
  • 14.1 General Framework
  • 14.2 Future Research
  • References
  • Index.