GeomInt-Mechanical Integrity of Host Rocks.

Saved in:
Bibliographic Details
Superior document:Terrestrial Environmental Sciences Series
:
TeilnehmendeR:
Place / Publishing House:Cham : : Springer International Publishing AG,, 2021.
©2021.
Year of Publication:2021
Edition:1st ed.
Language:English
Series:Terrestrial Environmental Sciences Series
Online Access:
Physical Description:1 online resource (287 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Intro
  • Acknowledgements
  • About this book
  • Hintergrund
  • Das GeomInt-Projekt
  • Der GeomInt-Ansatz: lab, in-situ, in-silico, virtual reality
  • Contents
  • Contributors
  • 1 Introduction to GeomInt
  • 1.1 Background
  • 1.2 The GeomInt Project
  • 1.3 GeomInt Approach: Lab, In-situ, In-silico, Virtual Reality
  • 1.4 GeomInt Team
  • 1.4.1 BGR
  • 1.4.2 CAU
  • 1.4.3 IfG
  • 1.4.4 TUBAF
  • 1.4.5 UFZ
  • 1.4.6 UoS
  • Reference
  • 2 Experimental Platform
  • 2.1 Rock Material Properties
  • 2.1.1 Opalinus Clay from Mont Terri, Switzerland
  • 2.1.2 Rock Salt Samples
  • 2.1.3 Crystalline Rock Samples
  • 2.2 Thermo-Hydro-Mechanical Laboratory Tests
  • 2.2.1 X-ray Micro Computed Tomography
  • 2.2.2 Fracture Toughness of the Opalinus Clay
  • 2.2.3 Brazilian Disk Test on Barrier Rocks
  • 2.2.4 True Triaxial Test on the Cubic Opalinus Clay Samples
  • 2.2.5 Triaxial Compression Strength Tests for Salt-Methodology and Equipment
  • 2.3 Shrinkage and Swelling Laboratory Tests (WP1)
  • 2.3.1 The Swelling and Permeability of T4 Salt Clay
  • 2.3.2 The Wetting and Drying Paths of the Opalinus Clay
  • 2.3.3 In-situ Condition Desiccation Process
  • 2.4 Pressure Driven Percolation Laboratory Tests (WP2)
  • 2.4.1 Pressure Driven Percolation
  • 2.4.2 Fluid Driven Percolation Tests on Cubic Opalinus Claystone Samples from Mont Terri
  • 2.5 Stress Redistribution Laboratory Tests (WP3)
  • 2.5.1 Direct Shear Test
  • 2.5.2 Cyclic Loading Pressure Diffusion
  • References
  • 3 Numerical Platform
  • 3.1 State-of-the-Art
  • 3.1.1 THM Simulations and Open Source Development
  • 3.1.2 Continuum Models (XFEM and Variational Phase Field)
  • 3.1.3 Discontinuum Models
  • 3.1.4 Smoothed Particle Hydrodynamics
  • 3.2 Numerical Methods
  • 3.2.1 FFS-Forces on Fracture Surfaces
  • 3.2.2 LEM-Lattice-Element-Method
  • 3.2.3 DEM-Distinct-Element-Method.
  • 3.2.4 SPH-Smoothed-Particle-Hydrodynamics
  • 3.2.5 PFM-Variational Phase-Field Method
  • 3.2.6 HDF-Hybrid-Dimensional-Formulation
  • References
  • 4 Model-Experiment-Exercises (MEX)
  • 4.1 Model-Experiment-Exercise MEX 0-1: Bending Fracture Test
  • 4.1.1 Experimental Set-Up
  • 4.1.2 Model Approach
  • 4.1.3 Results and Discussion
  • 4.2 Model-Experiments-Exercise MEX 0-1 (01): Bending Fracture Test (OPA)
  • 4.2.1 Experimental Set-Up and Results
  • 4.2.2 Model Approach
  • 4.3 Model-Experiment-Exercise MEX 0-2: Humidity Controlled Long-Term Bending Test
  • 4.3.1 Experimental Set-Up
  • 4.3.2 Model Approach
  • 4.4 Model-Experiment-Exercise MEX 1-1: Swelling of Red Salt Clay
  • 4.4.1 Experiment
  • 4.4.2 Model Approach
  • 4.4.3 Results and Discussion
  • 4.5 Model-Experiment-Exercise MEX 1-2: The Drying and Wetting Paths of Opalinus Clay
  • 4.5.1 Experimental Set-Up
  • 4.5.2 Model Approaches
  • 4.5.3 Results and Discussion
  • 4.6 Model Exercise 1-3: Desiccation Under In-Situ Conditions
  • 4.7 Model Exercise 1-4: CD/LP Experiment (Mont Terri)
  • 4.7.1 Motivation
  • 4.7.2 Problem Statement
  • 4.7.3 Unsaturated One-Phase Flow Using the Richards Approximation (``Richards Flow'', RF)
  • 4.7.4 Unsaturated Single-Phase Coupled with Linear Elasticity (``Richards Mechanics'', RM)
  • 4.7.5 Code Performance
  • 4.7.6 Conclusions
  • 4.8 Model-Experiment-Exercise MEX 2-1a: Fluid Driven Percolation in Salt
  • 4.8.1 Experimental Set-Up
  • 4.8.2 Model Approaches
  • 4.8.3 Results and Discussion
  • 4.9 Model-Experiment-Exercise MEX 2-1b: Fluid Driven Percolation in Clay
  • 4.9.1 Experimental Set-Up
  • 4.9.2 Model Approaches
  • 4.9.3 Results and Discussion
  • 4.10 Model-Experiment-Exercise MEX 2-2: Pressure Driven Percolation (Healing)
  • 4.10.1 Experimental Set-Up
  • 4.10.2 Model Approaches.
  • 4.11 Model-Experiment-Exercise 2-3: Effect of Compressibility on Pressure Driven Percolation
  • 4.11.1 Model Set-Up
  • 4.11.2 Model Approaches
  • 4.11.3 Discussion (Preliminary)
  • 4.12 Model-Experiment-Exercise 2-4: Large Wellbore Test (Springen)
  • 4.13 Model-Experiment-Exercise MEX 3-1: Constant Normal Load (CNL) Direct Shear Test
  • 4.13.1 Experimental Set-Up
  • 4.13.2 Model Approach
  • 4.13.3 Results and Discussion
  • 4.14 Model-Experiment-Exercise MEX 3-2: Constant Normal Stiffness (CNS) Direct Shear Test
  • 4.14.1 Experimental Set-Up
  • 4.14.2 Model Approach
  • 4.14.3 Results and Discussion
  • 4.15 Model-Experiment-Exercise MEX 3-3: Cycling Loading Pressure Diffusion
  • 4.15.1 Experimental Set-Up
  • 4.15.2 Model Approach
  • 4.15.3 Results and Discussion
  • References
  • 5 Data Management
  • 5.1 User Agreement and Data Management Plan
  • 5.2 GeomInt Data
  • 5.3 GeomInt DMP
  • 5.3.1 MEX 0-1a: Bending Fracture Test
  • 5.3.2 MEX 0-1b: Three-Point Fracture Toughness Test, Opalinus Clay
  • 5.3.3 MEX 1-1: Swelling Process, Red Salt Clay
  • 5.3.4 MEX 1-2: Drying and Wetting Paths of the Opalinus Clay
  • 5.3.5 MEX 1-4: CD/LP Experiment (BGR)
  • 5.3.6 MEX 2-1a: Pressure Driven Percolation in Salt
  • 5.3.7 MEX 2-1b: Pressure Driven Percolation, Opalinus Claystone
  • 5.3.8 MEX 2-2: Closure and Healing of Cracks (IfG)
  • 5.3.9 MEX 2-3: Effect of Compressibility on Pressure Driven Percolation
  • 5.3.10 MEX 2-4: Large Wellbore Test (Springen)
  • 5.3.11 MEX 3-1: CNL Direct Shear Test Data (TUBAF)
  • 5.3.12 MEX 3-2: CNS Test
  • 5.3.13 MEX 3-3: Inverse Analysis of Reiche Zeche Data and Harmonic Testing of a Single Fracture
  • References
  • 6 Synthesis and Outlook
  • 6.1 Synthesis-Directions
  • 6.1.1 Numerical Methods Competencies
  • 6.1.2 Proof-of-Concepts
  • 6.1.3 International Collaboration
  • 6.2 GeomInt Outlook-Future Work.
  • 6.3 Pathways Through Swelling and Shrinking Processes
  • 6.4 Displacements Due to Pressure-Driven Percolation
  • 6.4.1 Pressure-Driven Percolation in Clay Rock Under In-Situ Conditions
  • 6.4.2 Pressure-Driven Percolation in Salt Rock Under In-Situ Conditions
  • 6.5 Displacements Due to Stress Redistribution
  • 6.6 Data and Model Integration Using Virtualization and High-Performance Computing
  • References
  • 7 Code Descriptions
  • 7.1 FFS-Forces on Fracture Surfaces
  • 7.2 LEM-Lattice-Element-Method
  • 7.3 SPH-Smoothed-Particle-Hydrodynamics
  • 7.4 OpenGeoSys-Finite-Element-Method
  • 7.5 HDF-Hybrid-Dimensional-Formulation
  • References
  • Appendix A Ergebnisse des GeomInt-Vorhabens
  • A.1 AP1: Wegsamkeiten Durch Quell- und Schrumpfungsprozesse
  • A.2 AP2: Wegsamkeiten Durch Druckgetriebene Perkolation
  • A.3 AP3: Wegsamkeiten Durch Spannungsumlagerungen
  • A.4 Synthese
  • A.4.1 Experimentelle Plattform
  • A.4.2 Modellierungs-Plattform
  • Appendix B Symbols
  • References
  • Index.