GeomInt-Mechanical Integrity of Host Rocks.

Saved in:
Bibliographic Details
Superior document:Terrestrial Environmental Sciences Series
:
TeilnehmendeR:
Place / Publishing House:Cham : : Springer International Publishing AG,, 2021.
©2021.
Year of Publication:2021
Edition:1st ed.
Language:English
Series:Terrestrial Environmental Sciences Series
Online Access:
Physical Description:1 online resource (287 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 5006533358
ctrlnum (MiAaPQ)5006533358
(Au-PeEL)EBL6533358
(OCoLC)1246246584
collection bib_alma
record_format marc
spelling Kolditz, Olaf.
GeomInt-Mechanical Integrity of Host Rocks.
1st ed.
Cham : Springer International Publishing AG, 2021.
©2021.
1 online resource (287 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Terrestrial Environmental Sciences Series
Intro -- Acknowledgements -- About this book -- Hintergrund -- Das GeomInt-Projekt -- Der GeomInt-Ansatz: lab, in-situ, in-silico, virtual reality -- Contents -- Contributors -- 1 Introduction to GeomInt -- 1.1 Background -- 1.2 The GeomInt Project -- 1.3 GeomInt Approach: Lab, In-situ, In-silico, Virtual Reality -- 1.4 GeomInt Team -- 1.4.1 BGR -- 1.4.2 CAU -- 1.4.3 IfG -- 1.4.4 TUBAF -- 1.4.5 UFZ -- 1.4.6 UoS -- Reference -- 2 Experimental Platform -- 2.1 Rock Material Properties -- 2.1.1 Opalinus Clay from Mont Terri, Switzerland -- 2.1.2 Rock Salt Samples -- 2.1.3 Crystalline Rock Samples -- 2.2 Thermo-Hydro-Mechanical Laboratory Tests -- 2.2.1 X-ray Micro Computed Tomography -- 2.2.2 Fracture Toughness of the Opalinus Clay -- 2.2.3 Brazilian Disk Test on Barrier Rocks -- 2.2.4 True Triaxial Test on the Cubic Opalinus Clay Samples -- 2.2.5 Triaxial Compression Strength Tests for Salt-Methodology and Equipment -- 2.3 Shrinkage and Swelling Laboratory Tests (WP1) -- 2.3.1 The Swelling and Permeability of T4 Salt Clay -- 2.3.2 The Wetting and Drying Paths of the Opalinus Clay -- 2.3.3 In-situ Condition Desiccation Process -- 2.4 Pressure Driven Percolation Laboratory Tests (WP2) -- 2.4.1 Pressure Driven Percolation -- 2.4.2 Fluid Driven Percolation Tests on Cubic Opalinus Claystone Samples from Mont Terri -- 2.5 Stress Redistribution Laboratory Tests (WP3) -- 2.5.1 Direct Shear Test -- 2.5.2 Cyclic Loading Pressure Diffusion -- References -- 3 Numerical Platform -- 3.1 State-of-the-Art -- 3.1.1 THM Simulations and Open Source Development -- 3.1.2 Continuum Models (XFEM and Variational Phase Field) -- 3.1.3 Discontinuum Models -- 3.1.4 Smoothed Particle Hydrodynamics -- 3.2 Numerical Methods -- 3.2.1 FFS-Forces on Fracture Surfaces -- 3.2.2 LEM-Lattice-Element-Method -- 3.2.3 DEM-Distinct-Element-Method.
3.2.4 SPH-Smoothed-Particle-Hydrodynamics -- 3.2.5 PFM-Variational Phase-Field Method -- 3.2.6 HDF-Hybrid-Dimensional-Formulation -- References -- 4 Model-Experiment-Exercises (MEX) -- 4.1 Model-Experiment-Exercise MEX 0-1: Bending Fracture Test -- 4.1.1 Experimental Set-Up -- 4.1.2 Model Approach -- 4.1.3 Results and Discussion -- 4.2 Model-Experiments-Exercise MEX 0-1 (01): Bending Fracture Test (OPA) -- 4.2.1 Experimental Set-Up and Results -- 4.2.2 Model Approach -- 4.3 Model-Experiment-Exercise MEX 0-2: Humidity Controlled Long-Term Bending Test -- 4.3.1 Experimental Set-Up -- 4.3.2 Model Approach -- 4.4 Model-Experiment-Exercise MEX 1-1: Swelling of Red Salt Clay -- 4.4.1 Experiment -- 4.4.2 Model Approach -- 4.4.3 Results and Discussion -- 4.5 Model-Experiment-Exercise MEX 1-2: The Drying and Wetting Paths of Opalinus Clay -- 4.5.1 Experimental Set-Up -- 4.5.2 Model Approaches -- 4.5.3 Results and Discussion -- 4.6 Model Exercise 1-3: Desiccation Under In-Situ Conditions -- 4.7 Model Exercise 1-4: CD/LP Experiment (Mont Terri) -- 4.7.1 Motivation -- 4.7.2 Problem Statement -- 4.7.3 Unsaturated One-Phase Flow Using the Richards Approximation (``Richards Flow'', RF) -- 4.7.4 Unsaturated Single-Phase Coupled with Linear Elasticity (``Richards Mechanics'', RM) -- 4.7.5 Code Performance -- 4.7.6 Conclusions -- 4.8 Model-Experiment-Exercise MEX 2-1a: Fluid Driven Percolation in Salt -- 4.8.1 Experimental Set-Up -- 4.8.2 Model Approaches -- 4.8.3 Results and Discussion -- 4.9 Model-Experiment-Exercise MEX 2-1b: Fluid Driven Percolation in Clay -- 4.9.1 Experimental Set-Up -- 4.9.2 Model Approaches -- 4.9.3 Results and Discussion -- 4.10 Model-Experiment-Exercise MEX 2-2: Pressure Driven Percolation (Healing) -- 4.10.1 Experimental Set-Up -- 4.10.2 Model Approaches.
4.11 Model-Experiment-Exercise 2-3: Effect of Compressibility on Pressure Driven Percolation -- 4.11.1 Model Set-Up -- 4.11.2 Model Approaches -- 4.11.3 Discussion (Preliminary) -- 4.12 Model-Experiment-Exercise 2-4: Large Wellbore Test (Springen) -- 4.13 Model-Experiment-Exercise MEX 3-1: Constant Normal Load (CNL) Direct Shear Test -- 4.13.1 Experimental Set-Up -- 4.13.2 Model Approach -- 4.13.3 Results and Discussion -- 4.14 Model-Experiment-Exercise MEX 3-2: Constant Normal Stiffness (CNS) Direct Shear Test -- 4.14.1 Experimental Set-Up -- 4.14.2 Model Approach -- 4.14.3 Results and Discussion -- 4.15 Model-Experiment-Exercise MEX 3-3: Cycling Loading Pressure Diffusion -- 4.15.1 Experimental Set-Up -- 4.15.2 Model Approach -- 4.15.3 Results and Discussion -- References -- 5 Data Management -- 5.1 User Agreement and Data Management Plan -- 5.2 GeomInt Data -- 5.3 GeomInt DMP -- 5.3.1 MEX 0-1a: Bending Fracture Test -- 5.3.2 MEX 0-1b: Three-Point Fracture Toughness Test, Opalinus Clay -- 5.3.3 MEX 1-1: Swelling Process, Red Salt Clay -- 5.3.4 MEX 1-2: Drying and Wetting Paths of the Opalinus Clay -- 5.3.5 MEX 1-4: CD/LP Experiment (BGR) -- 5.3.6 MEX 2-1a: Pressure Driven Percolation in Salt -- 5.3.7 MEX 2-1b: Pressure Driven Percolation, Opalinus Claystone -- 5.3.8 MEX 2-2: Closure and Healing of Cracks (IfG) -- 5.3.9 MEX 2-3: Effect of Compressibility on Pressure Driven Percolation -- 5.3.10 MEX 2-4: Large Wellbore Test (Springen) -- 5.3.11 MEX 3-1: CNL Direct Shear Test Data (TUBAF) -- 5.3.12 MEX 3-2: CNS Test -- 5.3.13 MEX 3-3: Inverse Analysis of Reiche Zeche Data and Harmonic Testing of a Single Fracture -- References -- 6 Synthesis and Outlook -- 6.1 Synthesis-Directions -- 6.1.1 Numerical Methods Competencies -- 6.1.2 Proof-of-Concepts -- 6.1.3 International Collaboration -- 6.2 GeomInt Outlook-Future Work.
6.3 Pathways Through Swelling and Shrinking Processes -- 6.4 Displacements Due to Pressure-Driven Percolation -- 6.4.1 Pressure-Driven Percolation in Clay Rock Under In-Situ Conditions -- 6.4.2 Pressure-Driven Percolation in Salt Rock Under In-Situ Conditions -- 6.5 Displacements Due to Stress Redistribution -- 6.6 Data and Model Integration Using Virtualization and High-Performance Computing -- References -- 7 Code Descriptions -- 7.1 FFS-Forces on Fracture Surfaces -- 7.2 LEM-Lattice-Element-Method -- 7.3 SPH-Smoothed-Particle-Hydrodynamics -- 7.4 OpenGeoSys-Finite-Element-Method -- 7.5 HDF-Hybrid-Dimensional-Formulation -- References -- Appendix A Ergebnisse des GeomInt-Vorhabens -- A.1 AP1: Wegsamkeiten Durch Quell- und Schrumpfungsprozesse -- A.2 AP2: Wegsamkeiten Durch Druckgetriebene Perkolation -- A.3 AP3: Wegsamkeiten Durch Spannungsumlagerungen -- A.4 Synthese -- A.4.1 Experimentelle Plattform -- A.4.2 Modellierungs-Plattform -- Appendix B Symbols -- References -- Index.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic books.
Görke, Uwe-Jens.
Konietzky, Heinz.
Maßmann, Jobst.
Nest, Mathias.
Steeb, Holger.
Wuttke, Frank.
Nagel, Thomas.
Print version: Kolditz, Olaf GeomInt-Mechanical Integrity of Host Rocks Cham : Springer International Publishing AG,c2021 9783030619084
ProQuest (Firm)
https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6533358 Click to View
language English
format eBook
author Kolditz, Olaf.
spellingShingle Kolditz, Olaf.
GeomInt-Mechanical Integrity of Host Rocks.
Terrestrial Environmental Sciences Series
Intro -- Acknowledgements -- About this book -- Hintergrund -- Das GeomInt-Projekt -- Der GeomInt-Ansatz: lab, in-situ, in-silico, virtual reality -- Contents -- Contributors -- 1 Introduction to GeomInt -- 1.1 Background -- 1.2 The GeomInt Project -- 1.3 GeomInt Approach: Lab, In-situ, In-silico, Virtual Reality -- 1.4 GeomInt Team -- 1.4.1 BGR -- 1.4.2 CAU -- 1.4.3 IfG -- 1.4.4 TUBAF -- 1.4.5 UFZ -- 1.4.6 UoS -- Reference -- 2 Experimental Platform -- 2.1 Rock Material Properties -- 2.1.1 Opalinus Clay from Mont Terri, Switzerland -- 2.1.2 Rock Salt Samples -- 2.1.3 Crystalline Rock Samples -- 2.2 Thermo-Hydro-Mechanical Laboratory Tests -- 2.2.1 X-ray Micro Computed Tomography -- 2.2.2 Fracture Toughness of the Opalinus Clay -- 2.2.3 Brazilian Disk Test on Barrier Rocks -- 2.2.4 True Triaxial Test on the Cubic Opalinus Clay Samples -- 2.2.5 Triaxial Compression Strength Tests for Salt-Methodology and Equipment -- 2.3 Shrinkage and Swelling Laboratory Tests (WP1) -- 2.3.1 The Swelling and Permeability of T4 Salt Clay -- 2.3.2 The Wetting and Drying Paths of the Opalinus Clay -- 2.3.3 In-situ Condition Desiccation Process -- 2.4 Pressure Driven Percolation Laboratory Tests (WP2) -- 2.4.1 Pressure Driven Percolation -- 2.4.2 Fluid Driven Percolation Tests on Cubic Opalinus Claystone Samples from Mont Terri -- 2.5 Stress Redistribution Laboratory Tests (WP3) -- 2.5.1 Direct Shear Test -- 2.5.2 Cyclic Loading Pressure Diffusion -- References -- 3 Numerical Platform -- 3.1 State-of-the-Art -- 3.1.1 THM Simulations and Open Source Development -- 3.1.2 Continuum Models (XFEM and Variational Phase Field) -- 3.1.3 Discontinuum Models -- 3.1.4 Smoothed Particle Hydrodynamics -- 3.2 Numerical Methods -- 3.2.1 FFS-Forces on Fracture Surfaces -- 3.2.2 LEM-Lattice-Element-Method -- 3.2.3 DEM-Distinct-Element-Method.
3.2.4 SPH-Smoothed-Particle-Hydrodynamics -- 3.2.5 PFM-Variational Phase-Field Method -- 3.2.6 HDF-Hybrid-Dimensional-Formulation -- References -- 4 Model-Experiment-Exercises (MEX) -- 4.1 Model-Experiment-Exercise MEX 0-1: Bending Fracture Test -- 4.1.1 Experimental Set-Up -- 4.1.2 Model Approach -- 4.1.3 Results and Discussion -- 4.2 Model-Experiments-Exercise MEX 0-1 (01): Bending Fracture Test (OPA) -- 4.2.1 Experimental Set-Up and Results -- 4.2.2 Model Approach -- 4.3 Model-Experiment-Exercise MEX 0-2: Humidity Controlled Long-Term Bending Test -- 4.3.1 Experimental Set-Up -- 4.3.2 Model Approach -- 4.4 Model-Experiment-Exercise MEX 1-1: Swelling of Red Salt Clay -- 4.4.1 Experiment -- 4.4.2 Model Approach -- 4.4.3 Results and Discussion -- 4.5 Model-Experiment-Exercise MEX 1-2: The Drying and Wetting Paths of Opalinus Clay -- 4.5.1 Experimental Set-Up -- 4.5.2 Model Approaches -- 4.5.3 Results and Discussion -- 4.6 Model Exercise 1-3: Desiccation Under In-Situ Conditions -- 4.7 Model Exercise 1-4: CD/LP Experiment (Mont Terri) -- 4.7.1 Motivation -- 4.7.2 Problem Statement -- 4.7.3 Unsaturated One-Phase Flow Using the Richards Approximation (``Richards Flow'', RF) -- 4.7.4 Unsaturated Single-Phase Coupled with Linear Elasticity (``Richards Mechanics'', RM) -- 4.7.5 Code Performance -- 4.7.6 Conclusions -- 4.8 Model-Experiment-Exercise MEX 2-1a: Fluid Driven Percolation in Salt -- 4.8.1 Experimental Set-Up -- 4.8.2 Model Approaches -- 4.8.3 Results and Discussion -- 4.9 Model-Experiment-Exercise MEX 2-1b: Fluid Driven Percolation in Clay -- 4.9.1 Experimental Set-Up -- 4.9.2 Model Approaches -- 4.9.3 Results and Discussion -- 4.10 Model-Experiment-Exercise MEX 2-2: Pressure Driven Percolation (Healing) -- 4.10.1 Experimental Set-Up -- 4.10.2 Model Approaches.
4.11 Model-Experiment-Exercise 2-3: Effect of Compressibility on Pressure Driven Percolation -- 4.11.1 Model Set-Up -- 4.11.2 Model Approaches -- 4.11.3 Discussion (Preliminary) -- 4.12 Model-Experiment-Exercise 2-4: Large Wellbore Test (Springen) -- 4.13 Model-Experiment-Exercise MEX 3-1: Constant Normal Load (CNL) Direct Shear Test -- 4.13.1 Experimental Set-Up -- 4.13.2 Model Approach -- 4.13.3 Results and Discussion -- 4.14 Model-Experiment-Exercise MEX 3-2: Constant Normal Stiffness (CNS) Direct Shear Test -- 4.14.1 Experimental Set-Up -- 4.14.2 Model Approach -- 4.14.3 Results and Discussion -- 4.15 Model-Experiment-Exercise MEX 3-3: Cycling Loading Pressure Diffusion -- 4.15.1 Experimental Set-Up -- 4.15.2 Model Approach -- 4.15.3 Results and Discussion -- References -- 5 Data Management -- 5.1 User Agreement and Data Management Plan -- 5.2 GeomInt Data -- 5.3 GeomInt DMP -- 5.3.1 MEX 0-1a: Bending Fracture Test -- 5.3.2 MEX 0-1b: Three-Point Fracture Toughness Test, Opalinus Clay -- 5.3.3 MEX 1-1: Swelling Process, Red Salt Clay -- 5.3.4 MEX 1-2: Drying and Wetting Paths of the Opalinus Clay -- 5.3.5 MEX 1-4: CD/LP Experiment (BGR) -- 5.3.6 MEX 2-1a: Pressure Driven Percolation in Salt -- 5.3.7 MEX 2-1b: Pressure Driven Percolation, Opalinus Claystone -- 5.3.8 MEX 2-2: Closure and Healing of Cracks (IfG) -- 5.3.9 MEX 2-3: Effect of Compressibility on Pressure Driven Percolation -- 5.3.10 MEX 2-4: Large Wellbore Test (Springen) -- 5.3.11 MEX 3-1: CNL Direct Shear Test Data (TUBAF) -- 5.3.12 MEX 3-2: CNS Test -- 5.3.13 MEX 3-3: Inverse Analysis of Reiche Zeche Data and Harmonic Testing of a Single Fracture -- References -- 6 Synthesis and Outlook -- 6.1 Synthesis-Directions -- 6.1.1 Numerical Methods Competencies -- 6.1.2 Proof-of-Concepts -- 6.1.3 International Collaboration -- 6.2 GeomInt Outlook-Future Work.
6.3 Pathways Through Swelling and Shrinking Processes -- 6.4 Displacements Due to Pressure-Driven Percolation -- 6.4.1 Pressure-Driven Percolation in Clay Rock Under In-Situ Conditions -- 6.4.2 Pressure-Driven Percolation in Salt Rock Under In-Situ Conditions -- 6.5 Displacements Due to Stress Redistribution -- 6.6 Data and Model Integration Using Virtualization and High-Performance Computing -- References -- 7 Code Descriptions -- 7.1 FFS-Forces on Fracture Surfaces -- 7.2 LEM-Lattice-Element-Method -- 7.3 SPH-Smoothed-Particle-Hydrodynamics -- 7.4 OpenGeoSys-Finite-Element-Method -- 7.5 HDF-Hybrid-Dimensional-Formulation -- References -- Appendix A Ergebnisse des GeomInt-Vorhabens -- A.1 AP1: Wegsamkeiten Durch Quell- und Schrumpfungsprozesse -- A.2 AP2: Wegsamkeiten Durch Druckgetriebene Perkolation -- A.3 AP3: Wegsamkeiten Durch Spannungsumlagerungen -- A.4 Synthese -- A.4.1 Experimentelle Plattform -- A.4.2 Modellierungs-Plattform -- Appendix B Symbols -- References -- Index.
author_facet Kolditz, Olaf.
Görke, Uwe-Jens.
Konietzky, Heinz.
Maßmann, Jobst.
Nest, Mathias.
Steeb, Holger.
Wuttke, Frank.
Nagel, Thomas.
author_variant o k ok
author2 Görke, Uwe-Jens.
Konietzky, Heinz.
Maßmann, Jobst.
Nest, Mathias.
Steeb, Holger.
Wuttke, Frank.
Nagel, Thomas.
author2_variant u j g ujg
h k hk
j m jm
m n mn
h s hs
f w fw
t n tn
author2_role TeilnehmendeR
TeilnehmendeR
TeilnehmendeR
TeilnehmendeR
TeilnehmendeR
TeilnehmendeR
TeilnehmendeR
author_sort Kolditz, Olaf.
title GeomInt-Mechanical Integrity of Host Rocks.
title_full GeomInt-Mechanical Integrity of Host Rocks.
title_fullStr GeomInt-Mechanical Integrity of Host Rocks.
title_full_unstemmed GeomInt-Mechanical Integrity of Host Rocks.
title_auth GeomInt-Mechanical Integrity of Host Rocks.
title_new GeomInt-Mechanical Integrity of Host Rocks.
title_sort geomint-mechanical integrity of host rocks.
series Terrestrial Environmental Sciences Series
series2 Terrestrial Environmental Sciences Series
publisher Springer International Publishing AG,
publishDate 2021
physical 1 online resource (287 pages)
edition 1st ed.
contents Intro -- Acknowledgements -- About this book -- Hintergrund -- Das GeomInt-Projekt -- Der GeomInt-Ansatz: lab, in-situ, in-silico, virtual reality -- Contents -- Contributors -- 1 Introduction to GeomInt -- 1.1 Background -- 1.2 The GeomInt Project -- 1.3 GeomInt Approach: Lab, In-situ, In-silico, Virtual Reality -- 1.4 GeomInt Team -- 1.4.1 BGR -- 1.4.2 CAU -- 1.4.3 IfG -- 1.4.4 TUBAF -- 1.4.5 UFZ -- 1.4.6 UoS -- Reference -- 2 Experimental Platform -- 2.1 Rock Material Properties -- 2.1.1 Opalinus Clay from Mont Terri, Switzerland -- 2.1.2 Rock Salt Samples -- 2.1.3 Crystalline Rock Samples -- 2.2 Thermo-Hydro-Mechanical Laboratory Tests -- 2.2.1 X-ray Micro Computed Tomography -- 2.2.2 Fracture Toughness of the Opalinus Clay -- 2.2.3 Brazilian Disk Test on Barrier Rocks -- 2.2.4 True Triaxial Test on the Cubic Opalinus Clay Samples -- 2.2.5 Triaxial Compression Strength Tests for Salt-Methodology and Equipment -- 2.3 Shrinkage and Swelling Laboratory Tests (WP1) -- 2.3.1 The Swelling and Permeability of T4 Salt Clay -- 2.3.2 The Wetting and Drying Paths of the Opalinus Clay -- 2.3.3 In-situ Condition Desiccation Process -- 2.4 Pressure Driven Percolation Laboratory Tests (WP2) -- 2.4.1 Pressure Driven Percolation -- 2.4.2 Fluid Driven Percolation Tests on Cubic Opalinus Claystone Samples from Mont Terri -- 2.5 Stress Redistribution Laboratory Tests (WP3) -- 2.5.1 Direct Shear Test -- 2.5.2 Cyclic Loading Pressure Diffusion -- References -- 3 Numerical Platform -- 3.1 State-of-the-Art -- 3.1.1 THM Simulations and Open Source Development -- 3.1.2 Continuum Models (XFEM and Variational Phase Field) -- 3.1.3 Discontinuum Models -- 3.1.4 Smoothed Particle Hydrodynamics -- 3.2 Numerical Methods -- 3.2.1 FFS-Forces on Fracture Surfaces -- 3.2.2 LEM-Lattice-Element-Method -- 3.2.3 DEM-Distinct-Element-Method.
3.2.4 SPH-Smoothed-Particle-Hydrodynamics -- 3.2.5 PFM-Variational Phase-Field Method -- 3.2.6 HDF-Hybrid-Dimensional-Formulation -- References -- 4 Model-Experiment-Exercises (MEX) -- 4.1 Model-Experiment-Exercise MEX 0-1: Bending Fracture Test -- 4.1.1 Experimental Set-Up -- 4.1.2 Model Approach -- 4.1.3 Results and Discussion -- 4.2 Model-Experiments-Exercise MEX 0-1 (01): Bending Fracture Test (OPA) -- 4.2.1 Experimental Set-Up and Results -- 4.2.2 Model Approach -- 4.3 Model-Experiment-Exercise MEX 0-2: Humidity Controlled Long-Term Bending Test -- 4.3.1 Experimental Set-Up -- 4.3.2 Model Approach -- 4.4 Model-Experiment-Exercise MEX 1-1: Swelling of Red Salt Clay -- 4.4.1 Experiment -- 4.4.2 Model Approach -- 4.4.3 Results and Discussion -- 4.5 Model-Experiment-Exercise MEX 1-2: The Drying and Wetting Paths of Opalinus Clay -- 4.5.1 Experimental Set-Up -- 4.5.2 Model Approaches -- 4.5.3 Results and Discussion -- 4.6 Model Exercise 1-3: Desiccation Under In-Situ Conditions -- 4.7 Model Exercise 1-4: CD/LP Experiment (Mont Terri) -- 4.7.1 Motivation -- 4.7.2 Problem Statement -- 4.7.3 Unsaturated One-Phase Flow Using the Richards Approximation (``Richards Flow'', RF) -- 4.7.4 Unsaturated Single-Phase Coupled with Linear Elasticity (``Richards Mechanics'', RM) -- 4.7.5 Code Performance -- 4.7.6 Conclusions -- 4.8 Model-Experiment-Exercise MEX 2-1a: Fluid Driven Percolation in Salt -- 4.8.1 Experimental Set-Up -- 4.8.2 Model Approaches -- 4.8.3 Results and Discussion -- 4.9 Model-Experiment-Exercise MEX 2-1b: Fluid Driven Percolation in Clay -- 4.9.1 Experimental Set-Up -- 4.9.2 Model Approaches -- 4.9.3 Results and Discussion -- 4.10 Model-Experiment-Exercise MEX 2-2: Pressure Driven Percolation (Healing) -- 4.10.1 Experimental Set-Up -- 4.10.2 Model Approaches.
4.11 Model-Experiment-Exercise 2-3: Effect of Compressibility on Pressure Driven Percolation -- 4.11.1 Model Set-Up -- 4.11.2 Model Approaches -- 4.11.3 Discussion (Preliminary) -- 4.12 Model-Experiment-Exercise 2-4: Large Wellbore Test (Springen) -- 4.13 Model-Experiment-Exercise MEX 3-1: Constant Normal Load (CNL) Direct Shear Test -- 4.13.1 Experimental Set-Up -- 4.13.2 Model Approach -- 4.13.3 Results and Discussion -- 4.14 Model-Experiment-Exercise MEX 3-2: Constant Normal Stiffness (CNS) Direct Shear Test -- 4.14.1 Experimental Set-Up -- 4.14.2 Model Approach -- 4.14.3 Results and Discussion -- 4.15 Model-Experiment-Exercise MEX 3-3: Cycling Loading Pressure Diffusion -- 4.15.1 Experimental Set-Up -- 4.15.2 Model Approach -- 4.15.3 Results and Discussion -- References -- 5 Data Management -- 5.1 User Agreement and Data Management Plan -- 5.2 GeomInt Data -- 5.3 GeomInt DMP -- 5.3.1 MEX 0-1a: Bending Fracture Test -- 5.3.2 MEX 0-1b: Three-Point Fracture Toughness Test, Opalinus Clay -- 5.3.3 MEX 1-1: Swelling Process, Red Salt Clay -- 5.3.4 MEX 1-2: Drying and Wetting Paths of the Opalinus Clay -- 5.3.5 MEX 1-4: CD/LP Experiment (BGR) -- 5.3.6 MEX 2-1a: Pressure Driven Percolation in Salt -- 5.3.7 MEX 2-1b: Pressure Driven Percolation, Opalinus Claystone -- 5.3.8 MEX 2-2: Closure and Healing of Cracks (IfG) -- 5.3.9 MEX 2-3: Effect of Compressibility on Pressure Driven Percolation -- 5.3.10 MEX 2-4: Large Wellbore Test (Springen) -- 5.3.11 MEX 3-1: CNL Direct Shear Test Data (TUBAF) -- 5.3.12 MEX 3-2: CNS Test -- 5.3.13 MEX 3-3: Inverse Analysis of Reiche Zeche Data and Harmonic Testing of a Single Fracture -- References -- 6 Synthesis and Outlook -- 6.1 Synthesis-Directions -- 6.1.1 Numerical Methods Competencies -- 6.1.2 Proof-of-Concepts -- 6.1.3 International Collaboration -- 6.2 GeomInt Outlook-Future Work.
6.3 Pathways Through Swelling and Shrinking Processes -- 6.4 Displacements Due to Pressure-Driven Percolation -- 6.4.1 Pressure-Driven Percolation in Clay Rock Under In-Situ Conditions -- 6.4.2 Pressure-Driven Percolation in Salt Rock Under In-Situ Conditions -- 6.5 Displacements Due to Stress Redistribution -- 6.6 Data and Model Integration Using Virtualization and High-Performance Computing -- References -- 7 Code Descriptions -- 7.1 FFS-Forces on Fracture Surfaces -- 7.2 LEM-Lattice-Element-Method -- 7.3 SPH-Smoothed-Particle-Hydrodynamics -- 7.4 OpenGeoSys-Finite-Element-Method -- 7.5 HDF-Hybrid-Dimensional-Formulation -- References -- Appendix A Ergebnisse des GeomInt-Vorhabens -- A.1 AP1: Wegsamkeiten Durch Quell- und Schrumpfungsprozesse -- A.2 AP2: Wegsamkeiten Durch Druckgetriebene Perkolation -- A.3 AP3: Wegsamkeiten Durch Spannungsumlagerungen -- A.4 Synthese -- A.4.1 Experimentelle Plattform -- A.4.2 Modellierungs-Plattform -- Appendix B Symbols -- References -- Index.
isbn 9783030619091
9783030619084
callnumber-first T - Technology
callnumber-subject TA - General and Civil Engineering
callnumber-label TA703-705
callnumber-sort TA 3703 3705.4
genre Electronic books.
genre_facet Electronic books.
url https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6533358
illustrated Not Illustrated
oclc_num 1246246584
work_keys_str_mv AT kolditzolaf geomintmechanicalintegrityofhostrocks
AT gorkeuwejens geomintmechanicalintegrityofhostrocks
AT konietzkyheinz geomintmechanicalintegrityofhostrocks
AT maßmannjobst geomintmechanicalintegrityofhostrocks
AT nestmathias geomintmechanicalintegrityofhostrocks
AT steebholger geomintmechanicalintegrityofhostrocks
AT wuttkefrank geomintmechanicalintegrityofhostrocks
AT nagelthomas geomintmechanicalintegrityofhostrocks
status_str n
ids_txt_mv (MiAaPQ)5006533358
(Au-PeEL)EBL6533358
(OCoLC)1246246584
carrierType_str_mv cr
hierarchy_parent_title Terrestrial Environmental Sciences Series
is_hierarchy_title GeomInt-Mechanical Integrity of Host Rocks.
container_title Terrestrial Environmental Sciences Series
author2_original_writing_str_mv noLinkedField
noLinkedField
noLinkedField
noLinkedField
noLinkedField
noLinkedField
noLinkedField
marc_error Info : No Determination made, defaulting to MARC8 --- [ 856 : z ]
_version_ 1792331060658307073
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>08343nam a22005173i 4500</leader><controlfield tag="001">5006533358</controlfield><controlfield tag="003">MiAaPQ</controlfield><controlfield tag="005">20240229073840.0</controlfield><controlfield tag="006">m o d | </controlfield><controlfield tag="007">cr cnu||||||||</controlfield><controlfield tag="008">240229s2021 xx o ||||0 eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783030619091</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783030619084</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(MiAaPQ)5006533358</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(Au-PeEL)EBL6533358</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1246246584</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">MiAaPQ</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">MiAaPQ</subfield><subfield code="d">MiAaPQ</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">TA703-705.4</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kolditz, Olaf.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">GeomInt-Mechanical Integrity of Host Rocks.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham :</subfield><subfield code="b">Springer International Publishing AG,</subfield><subfield code="c">2021.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2021.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (287 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Terrestrial Environmental Sciences Series</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Intro -- Acknowledgements -- About this book -- Hintergrund -- Das GeomInt-Projekt -- Der GeomInt-Ansatz: lab, in-situ, in-silico, virtual reality -- Contents -- Contributors -- 1 Introduction to GeomInt -- 1.1 Background -- 1.2 The GeomInt Project -- 1.3 GeomInt Approach: Lab, In-situ, In-silico, Virtual Reality -- 1.4 GeomInt Team -- 1.4.1 BGR -- 1.4.2 CAU -- 1.4.3 IfG -- 1.4.4 TUBAF -- 1.4.5 UFZ -- 1.4.6 UoS -- Reference -- 2 Experimental Platform -- 2.1 Rock Material Properties -- 2.1.1 Opalinus Clay from Mont Terri, Switzerland -- 2.1.2 Rock Salt Samples -- 2.1.3 Crystalline Rock Samples -- 2.2 Thermo-Hydro-Mechanical Laboratory Tests -- 2.2.1 X-ray Micro Computed Tomography -- 2.2.2 Fracture Toughness of the Opalinus Clay -- 2.2.3 Brazilian Disk Test on Barrier Rocks -- 2.2.4 True Triaxial Test on the Cubic Opalinus Clay Samples -- 2.2.5 Triaxial Compression Strength Tests for Salt-Methodology and Equipment -- 2.3 Shrinkage and Swelling Laboratory Tests (WP1) -- 2.3.1 The Swelling and Permeability of T4 Salt Clay -- 2.3.2 The Wetting and Drying Paths of the Opalinus Clay -- 2.3.3 In-situ Condition Desiccation Process -- 2.4 Pressure Driven Percolation Laboratory Tests (WP2) -- 2.4.1 Pressure Driven Percolation -- 2.4.2 Fluid Driven Percolation Tests on Cubic Opalinus Claystone Samples from Mont Terri -- 2.5 Stress Redistribution Laboratory Tests (WP3) -- 2.5.1 Direct Shear Test -- 2.5.2 Cyclic Loading Pressure Diffusion -- References -- 3 Numerical Platform -- 3.1 State-of-the-Art -- 3.1.1 THM Simulations and Open Source Development -- 3.1.2 Continuum Models (XFEM and Variational Phase Field) -- 3.1.3 Discontinuum Models -- 3.1.4 Smoothed Particle Hydrodynamics -- 3.2 Numerical Methods -- 3.2.1 FFS-Forces on Fracture Surfaces -- 3.2.2 LEM-Lattice-Element-Method -- 3.2.3 DEM-Distinct-Element-Method.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.2.4 SPH-Smoothed-Particle-Hydrodynamics -- 3.2.5 PFM-Variational Phase-Field Method -- 3.2.6 HDF-Hybrid-Dimensional-Formulation -- References -- 4 Model-Experiment-Exercises (MEX) -- 4.1 Model-Experiment-Exercise MEX 0-1: Bending Fracture Test -- 4.1.1 Experimental Set-Up -- 4.1.2 Model Approach -- 4.1.3 Results and Discussion -- 4.2 Model-Experiments-Exercise MEX 0-1 (01): Bending Fracture Test (OPA) -- 4.2.1 Experimental Set-Up and Results -- 4.2.2 Model Approach -- 4.3 Model-Experiment-Exercise MEX 0-2: Humidity Controlled Long-Term Bending Test -- 4.3.1 Experimental Set-Up -- 4.3.2 Model Approach -- 4.4 Model-Experiment-Exercise MEX 1-1: Swelling of Red Salt Clay -- 4.4.1 Experiment -- 4.4.2 Model Approach -- 4.4.3 Results and Discussion -- 4.5 Model-Experiment-Exercise MEX 1-2: The Drying and Wetting Paths of Opalinus Clay -- 4.5.1 Experimental Set-Up -- 4.5.2 Model Approaches -- 4.5.3 Results and Discussion -- 4.6 Model Exercise 1-3: Desiccation Under In-Situ Conditions -- 4.7 Model Exercise 1-4: CD/LP Experiment (Mont Terri) -- 4.7.1 Motivation -- 4.7.2 Problem Statement -- 4.7.3 Unsaturated One-Phase Flow Using the Richards Approximation (``Richards Flow'', RF) -- 4.7.4 Unsaturated Single-Phase Coupled with Linear Elasticity (``Richards Mechanics'', RM) -- 4.7.5 Code Performance -- 4.7.6 Conclusions -- 4.8 Model-Experiment-Exercise MEX 2-1a: Fluid Driven Percolation in Salt -- 4.8.1 Experimental Set-Up -- 4.8.2 Model Approaches -- 4.8.3 Results and Discussion -- 4.9 Model-Experiment-Exercise MEX 2-1b: Fluid Driven Percolation in Clay -- 4.9.1 Experimental Set-Up -- 4.9.2 Model Approaches -- 4.9.3 Results and Discussion -- 4.10 Model-Experiment-Exercise MEX 2-2: Pressure Driven Percolation (Healing) -- 4.10.1 Experimental Set-Up -- 4.10.2 Model Approaches.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.11 Model-Experiment-Exercise 2-3: Effect of Compressibility on Pressure Driven Percolation -- 4.11.1 Model Set-Up -- 4.11.2 Model Approaches -- 4.11.3 Discussion (Preliminary) -- 4.12 Model-Experiment-Exercise 2-4: Large Wellbore Test (Springen) -- 4.13 Model-Experiment-Exercise MEX 3-1: Constant Normal Load (CNL) Direct Shear Test -- 4.13.1 Experimental Set-Up -- 4.13.2 Model Approach -- 4.13.3 Results and Discussion -- 4.14 Model-Experiment-Exercise MEX 3-2: Constant Normal Stiffness (CNS) Direct Shear Test -- 4.14.1 Experimental Set-Up -- 4.14.2 Model Approach -- 4.14.3 Results and Discussion -- 4.15 Model-Experiment-Exercise MEX 3-3: Cycling Loading Pressure Diffusion -- 4.15.1 Experimental Set-Up -- 4.15.2 Model Approach -- 4.15.3 Results and Discussion -- References -- 5 Data Management -- 5.1 User Agreement and Data Management Plan -- 5.2 GeomInt Data -- 5.3 GeomInt DMP -- 5.3.1 MEX 0-1a: Bending Fracture Test -- 5.3.2 MEX 0-1b: Three-Point Fracture Toughness Test, Opalinus Clay -- 5.3.3 MEX 1-1: Swelling Process, Red Salt Clay -- 5.3.4 MEX 1-2: Drying and Wetting Paths of the Opalinus Clay -- 5.3.5 MEX 1-4: CD/LP Experiment (BGR) -- 5.3.6 MEX 2-1a: Pressure Driven Percolation in Salt -- 5.3.7 MEX 2-1b: Pressure Driven Percolation, Opalinus Claystone -- 5.3.8 MEX 2-2: Closure and Healing of Cracks (IfG) -- 5.3.9 MEX 2-3: Effect of Compressibility on Pressure Driven Percolation -- 5.3.10 MEX 2-4: Large Wellbore Test (Springen) -- 5.3.11 MEX 3-1: CNL Direct Shear Test Data (TUBAF) -- 5.3.12 MEX 3-2: CNS Test -- 5.3.13 MEX 3-3: Inverse Analysis of Reiche Zeche Data and Harmonic Testing of a Single Fracture -- References -- 6 Synthesis and Outlook -- 6.1 Synthesis-Directions -- 6.1.1 Numerical Methods Competencies -- 6.1.2 Proof-of-Concepts -- 6.1.3 International Collaboration -- 6.2 GeomInt Outlook-Future Work.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.3 Pathways Through Swelling and Shrinking Processes -- 6.4 Displacements Due to Pressure-Driven Percolation -- 6.4.1 Pressure-Driven Percolation in Clay Rock Under In-Situ Conditions -- 6.4.2 Pressure-Driven Percolation in Salt Rock Under In-Situ Conditions -- 6.5 Displacements Due to Stress Redistribution -- 6.6 Data and Model Integration Using Virtualization and High-Performance Computing -- References -- 7 Code Descriptions -- 7.1 FFS-Forces on Fracture Surfaces -- 7.2 LEM-Lattice-Element-Method -- 7.3 SPH-Smoothed-Particle-Hydrodynamics -- 7.4 OpenGeoSys-Finite-Element-Method -- 7.5 HDF-Hybrid-Dimensional-Formulation -- References -- Appendix A Ergebnisse des GeomInt-Vorhabens -- A.1 AP1: Wegsamkeiten Durch Quell- und Schrumpfungsprozesse -- A.2 AP2: Wegsamkeiten Durch Druckgetriebene Perkolation -- A.3 AP3: Wegsamkeiten Durch Spannungsumlagerungen -- A.4 Synthese -- A.4.1 Experimentelle Plattform -- A.4.2 Modellierungs-Plattform -- Appendix B Symbols -- References -- Index.</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources.</subfield></datafield><datafield tag="590" ind1=" " ind2=" "><subfield code="a">Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. </subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Görke, Uwe-Jens.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Konietzky, Heinz.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Maßmann, Jobst.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nest, Mathias.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Steeb, Holger.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wuttke, Frank.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nagel, Thomas.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Kolditz, Olaf</subfield><subfield code="t">GeomInt-Mechanical Integrity of Host Rocks</subfield><subfield code="d">Cham : Springer International Publishing AG,c2021</subfield><subfield code="z">9783030619084</subfield></datafield><datafield tag="797" ind1="2" ind2=" "><subfield code="a">ProQuest (Firm)</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Terrestrial Environmental Sciences Series</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6533358</subfield><subfield code="z">Click to View</subfield></datafield></record></collection>