Aquaculture Perspective of Multi-Use Sites in the Open Ocean : : The Untapped Potential for Marine Resources in the Anthropocene.

Saved in:
Bibliographic Details
:
TeilnehmendeR:
Place / Publishing House:Cham : : Springer International Publishing AG,, 2017.
©2017.
Year of Publication:2017
Edition:1st ed.
Language:English
Online Access:
Physical Description:1 online resource (413 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 5006422539
ctrlnum (MiAaPQ)5006422539
(Au-PeEL)EBL6422539
(OCoLC)982656470
collection bib_alma
record_format marc
spelling Buck, Bela H.
Aquaculture Perspective of Multi-Use Sites in the Open Ocean : The Untapped Potential for Marine Resources in the Anthropocene.
1st ed.
Cham : Springer International Publishing AG, 2017.
©2017.
1 online resource (413 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Intro -- Preface -- The Global Imperative to Develop New Models of Open Ocean Aquaculture for Accelerating Large-Scale Food and Energy Production -- ReferencesBarange, M., Merino, G. Blanchard, J. L., Scholtens, J., Harle, J., Ellison, E. H. et al. (2014). Impacts of climate change on marine ecosystem production in fisheries-dependent societies. Nature Climate Change, 4, 211-216.Barents Observer. (2015). Norway and Russia agree on Barents Sea quotas for 2015. Kirkenes, Norway. Retrieved October 20, 2016, from http://barentsobserver.com/en/nature/2014/10/norway-and-russia-agree-barents-sea-quotas-2015-10-10.Costa-Pierce, B. A. (2016). Ocean f -- Contents -- Editors and Contributors -- Abbreviations -- 1 Introduction: New Approaches to Sustainable Offshore Food Production and the Development of Offshore Platforms -- Abstract -- 1.1 Aquaculture-A Historical Overview -- 1.2 Moving Aquaculture Operations Offshore -- 1.3 The Multi-use Concept -- 1.3.1 Pilot Projects in Russia -- 1.3.2 Pilot Projects in the USA -- 1.3.3 Pilot Projects in Germany -- 1.4 Initiation to the Topic -- References -- Species, Techniques and System Design -- 2 Offshore and Multi-Use Aquaculture with Extractive Species: Seaweeds and Bivalves -- Abstract -- 2.1 Sustainable Aquaculture -- 2.2 Introduction to Extractive Species -- 2.3 IMTA on Offshore Applications -- 2.4 Extractive Species Aquaculture -- 2.4.1 Seaweeds -- 2.4.2 Bivalves -- 2.5 Cultivation Technologies, Challenges and Future Directions in Major Cultured Extractive Species -- 2.5.1 Red Seaweeds -- 2.5.1.1 Pyropia and Porphyra ('Gim' in Korean or 'Nori' in Japanese) -- 2.5.2 Brown Seaweeds -- 2.5.2.1 Saccharina and Undaria -- 2.5.2.2 Sargassum -- 2.5.3 Bivalves -- 2.5.3.1 Mussels -- 2.5.3.2 Oysters -- 2.6 Current Status of Offshore Seaweed and Bivalve Production and Their Potential for Multi-Use -- 2.6.1 Germany.
2.6.2 Belgium -- 2.6.3 Norway -- 2.6.4 Denmark -- 2.6.5 The Netherlands -- 2.6.6 France -- 2.6.7 United Kingdom -- 2.6.8 Italy -- 2.6.9 The United States -- 2.6.10 The Republic of Korea -- 2.6.11 China -- 2.7 Ecosystem Services -- 2.8 Concluding Remarks and Outlook -- References -- 3 Technological Approaches to Longline- and Cage-Based Aquaculture in Open Ocean Environments -- Abstract -- 3.1 Introduction -- 3.2 Case Study on Long Lines -- 3.2.1 Mussel Farming Development in NZ -- 3.2.2 Oyster Farming in the Open Ocean -- 3.3 Case Study on Submerged Aquaculture -- 3.3.1 Open Ocean Aquaculture in New Hampshire, USA -- 3.4 Case Study on Multi-use on Open Ocean Environment -- 3.4.1 Methodology -- 3.4.2 Velocity, Force and Scour Regimes -- 3.5 Discussion and Conclusions -- References -- 4 Operation and Maintenance Costs of Offshore Wind Farms and Potential Multi-use Platforms in the Dutch North Sea -- Abstract -- 4.1 Introduction -- 4.2 Offshore Operation and Maintenance Activities -- 4.2.1 Accessibility of Offshore Wind Farms -- 4.2.2 Infrastructure for Cabling and Cable Repair -- 4.2.3 Trained Staff -- 4.2.4 Dutch Offshore Wind Energy Services (DOWES) -- 4.2.5 Analysis of Operation and Maintenance Costs -- 4.3 Potential for Synergy -- 4.3.1 Operations and Life Cycle Management -- 4.3.2 Inspective, Preventive, Corrective Maintenance and Improvement Maintenance -- 4.3.3 Asset Management Control (AMC) Model -- 4.4 Conclusions -- Annex 1-Transport System Details -- Subsea Power Cable Subsystem -- Offshore Wind and Fish Farming Support Ships -- Tooling and Spars Container Support System -- Mussel Harvest Subsystems -- References -- 5 Technical Risks of Offshore Structures -- Abstract -- 5.1 Introduction -- 5.2 Corrosion Aspects and Biofouling -- 5.2.1 Corrosion Mechanisms and Corrosivity Zones for Offshore Structures.
5.2.2 Corrosion Risks in Currently Used Offshore Wind Turbines -- 5.2.3 Biofouling on Offshore Structures -- 5.2.4 Potential Influence of Offshore Aquaculture on the Corrosion of Unprotected Steel Structures -- 5.3 Mechanical Risks of Wind Farms Due to the Presence of Offshore Aquaculture Constructions -- 5.4 Scenario Analyses -- 5.5 Conclusions and Recommendations -- References -- Aquaculture Governance -- 6 Aquaculture Site-Selection and Marine Spatial Planning: The Roles of GIS-Based Tools and Models -- Abstract -- 6.1 Reconciling Ocean Uses Through Marine Spatial Planning -- 6.2 Potential Benefits of MSP to Aquaculture -- 6.3 Decision Support Systems for MSP and Aquaculture Siting -- 6.3.1 The Importance of Spatial Data in the Planning Process -- 6.3.2 DSS for Aquaculture Siting -- 6.4 The Co-location Scenario: Combining Offshore Wind Energy and Aquaculture -- 6.4.1 Co-location as an Opportunity for Spatial Planning? -- 6.4.2 Case Study in the German Bight -- 6.5 Conclusions and Future Needs -- Acknowledgements -- References -- 7 Governance and Offshore Aquaculture in Multi-resource Use Settings -- Abstract -- 7.1 Introduction -- 7.2 Defining Governance, Management and Policy -- 7.3 Developing a Multi-level Governance Framework for Offshore Aquaculture -- 7.4 Knowledge and Information Gaps in Offshore Aquaculture Multi-use Governance -- 7.5 Outlook -- References -- 8 The Socio-economic Dimensions of Offshore Aquaculture in a Multi-use Setting -- Abstract -- 8.1 Background -- 8.2 Socio-economic Dimensions of Aquaculture-A First Typology -- 8.2.1 Attitudes to and Perceptions of Aquaculture -- 8.2.2 Organization of and Participation in Planning for Aquaculture -- 8.2.3 Direct Benefits of Aquaculture, and Their Distribution -- 8.2.4 Negative Effects of Aquaculture Production Activities and Conflicts with Other Interests.
8.2.5 Effects on the Wider Economic and Innovation System -- 8.2.6 Effects on Cultural Fabric and Other Social Aspects -- 8.3 Current Knowledge on Socio-economic Effects of Offshore Aquaculture -- 8.4 Implications for Assessing the Socio-economic Effects of Offshore Aquaculture in a Multi-use Setting -- 8.5 Outlook -- Acknowledgements -- References -- 9 Regulation and Permitting of Standalone and Co-located Open Ocean Aquaculture Facilities -- Abstract -- 9.1 Introduction -- 9.1.1 Cultured Seafood Trends -- 9.1.2 Ocean Energy Trends -- 9.2 Status of Commercial Offshore Aquaculture -- 9.2.1 Standalone Aquaculture Projects -- 9.2.2 Aquaculture Co-located with Platforms -- 9.3 Case Studies on Permitting and Regulation -- 9.3.1 Introduction -- 9.3.2 Regulating Finfish Aquaculture in the U.S. EEZ, a Regional Approach -- 9.3.2.1 Background -- 9.3.2.2 A Path Forward -- 9.3.2.3 The Gulf Council Permit Process -- Core Terms -- Description of the Application -- Description of the Permit Process -- Consultations -- Operational and Monitoring Requirements -- Sanctions and Denials -- 9.3.2.4 Other Required Permits -- DA Section 10 Permit, ACOE- -- National Pollution Discharge Elimination System (NPDES), EPA -- 9.3.2.5 Successful State Permit/Leasing Processes -- Maine -- Hawaii -- 9.3.2.6 Discussion -- Evolution of the Regional Approach -- The Gulf Plan Rules, Concerns -- Core Terms, Concerns -- The Application, Concerns -- Operating and Monitoring Requirements, Concerns -- Comparison with State Processes -- 9.3.3 Case Study-Shellfish Farming in the Northeastern and West Coasts of the U.S., Recent Examples -- 9.3.3.1 Catalina Sea Ranch-First Farm Permitted in Federal Waters -- Catalina Sea Ranch's Offshore Mariculture Monitoring Program -- 9.3.3.2 Massachusetts Case Studies-A Tale of Two Projects -- Cape Ann Mussel Farm -- Nantucket Sound Mussel Farm.
9.3.3.3 Discussion -- 9.3.4 Case Study: Mussel Farming Off the English Coast -- One Farmer's Experience -- 9.3.4.1 Introduction -- 9.3.4.2 Description of Farm -- 9.3.4.3 Legislatory Framework -- 9.3.4.4 Application Process -- Informal Consultation -- Coast Protection Act 1949 -- Section 34 -- Seabed Lease -- Aquaculture Production Business -- Shellfish Harvesting Area Classification -- 9.3.4.5 Discussion of Current Licensing Process -- Environmental Impact -- Socio-Economic Impact -- 9.3.4.6 Discussion-Future Regulation and Co-location of Offshore Aquaculture -- 9.4 Recommendations for Developing a Regulatory System -- 9.4.1 Planning a Regulatory System -- 9.4.2 The Regulatory System -- References -- Aquaculture Economics -- 10 Economics of Multi-use and Co-location -- Abstract -- 10.1 Introduction -- 10.2 Ocean Space as an Input to Economic Production -- 10.2.1 Production Function -- 10.2.2 Unit Values -- 10.3 Public Benefits from Multi-use and Co-location -- 10.4 Private Benefits from Multi-use and Co-location -- 10.5 Case Study: Mussel Culture and Wind Farms in the Netherlands -- 10.6 Conclusions -- References -- Case Studies -- 11 The German Case Study: Pioneer Projects of Aquaculture-Wind Farm Multi-Uses -- Abstract -- 11.1 Introduction -- 11.2 The Beginning -- 11.3 Potential Species for Offshore Aquaculture -- 11.3.1 Seaweed Species -- 11.3.1.1 Candidate: Laminarian Species -- 11.3.1.2 Candidate: Palmaria palmata -- 11.3.1.3 Candidate: Delesseria sanguinea -- 11.3.2 Bivalve Species -- 11.3.2.1 Candidate: Mytilus edulis -- 11.3.2.2 Candidates: Crassostrea gigas and Ostrea edulis -- 11.3.3 Crustacean Species -- 11.3.3.1 Candidate: Homarus gammarus -- 11.3.3.2 Candidate: Cancer pagurus -- 11.3.4 Fish Species -- 11.3.4.1 Candidate: Dicentrarchus labrax -- 11.3.4.2 Candidate: Gadus morhua -- 11.3.4.3 Candidate: Hippoglossus hippoglossus.
11.3.4.4 Candidate: Scophthalmus maximus.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic books.
Langan, Richard.
Print version: Buck, Bela H. Aquaculture Perspective of Multi-Use Sites in the Open Ocean Cham : Springer International Publishing AG,c2017 9783319511573
ProQuest (Firm)
https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6422539 Click to View
language English
format eBook
author Buck, Bela H.
spellingShingle Buck, Bela H.
Aquaculture Perspective of Multi-Use Sites in the Open Ocean : The Untapped Potential for Marine Resources in the Anthropocene.
Intro -- Preface -- The Global Imperative to Develop New Models of Open Ocean Aquaculture for Accelerating Large-Scale Food and Energy Production -- ReferencesBarange, M., Merino, G. Blanchard, J. L., Scholtens, J., Harle, J., Ellison, E. H. et al. (2014). Impacts of climate change on marine ecosystem production in fisheries-dependent societies. Nature Climate Change, 4, 211-216.Barents Observer. (2015). Norway and Russia agree on Barents Sea quotas for 2015. Kirkenes, Norway. Retrieved October 20, 2016, from http://barentsobserver.com/en/nature/2014/10/norway-and-russia-agree-barents-sea-quotas-2015-10-10.Costa-Pierce, B. A. (2016). Ocean f -- Contents -- Editors and Contributors -- Abbreviations -- 1 Introduction: New Approaches to Sustainable Offshore Food Production and the Development of Offshore Platforms -- Abstract -- 1.1 Aquaculture-A Historical Overview -- 1.2 Moving Aquaculture Operations Offshore -- 1.3 The Multi-use Concept -- 1.3.1 Pilot Projects in Russia -- 1.3.2 Pilot Projects in the USA -- 1.3.3 Pilot Projects in Germany -- 1.4 Initiation to the Topic -- References -- Species, Techniques and System Design -- 2 Offshore and Multi-Use Aquaculture with Extractive Species: Seaweeds and Bivalves -- Abstract -- 2.1 Sustainable Aquaculture -- 2.2 Introduction to Extractive Species -- 2.3 IMTA on Offshore Applications -- 2.4 Extractive Species Aquaculture -- 2.4.1 Seaweeds -- 2.4.2 Bivalves -- 2.5 Cultivation Technologies, Challenges and Future Directions in Major Cultured Extractive Species -- 2.5.1 Red Seaweeds -- 2.5.1.1 Pyropia and Porphyra ('Gim' in Korean or 'Nori' in Japanese) -- 2.5.2 Brown Seaweeds -- 2.5.2.1 Saccharina and Undaria -- 2.5.2.2 Sargassum -- 2.5.3 Bivalves -- 2.5.3.1 Mussels -- 2.5.3.2 Oysters -- 2.6 Current Status of Offshore Seaweed and Bivalve Production and Their Potential for Multi-Use -- 2.6.1 Germany.
2.6.2 Belgium -- 2.6.3 Norway -- 2.6.4 Denmark -- 2.6.5 The Netherlands -- 2.6.6 France -- 2.6.7 United Kingdom -- 2.6.8 Italy -- 2.6.9 The United States -- 2.6.10 The Republic of Korea -- 2.6.11 China -- 2.7 Ecosystem Services -- 2.8 Concluding Remarks and Outlook -- References -- 3 Technological Approaches to Longline- and Cage-Based Aquaculture in Open Ocean Environments -- Abstract -- 3.1 Introduction -- 3.2 Case Study on Long Lines -- 3.2.1 Mussel Farming Development in NZ -- 3.2.2 Oyster Farming in the Open Ocean -- 3.3 Case Study on Submerged Aquaculture -- 3.3.1 Open Ocean Aquaculture in New Hampshire, USA -- 3.4 Case Study on Multi-use on Open Ocean Environment -- 3.4.1 Methodology -- 3.4.2 Velocity, Force and Scour Regimes -- 3.5 Discussion and Conclusions -- References -- 4 Operation and Maintenance Costs of Offshore Wind Farms and Potential Multi-use Platforms in the Dutch North Sea -- Abstract -- 4.1 Introduction -- 4.2 Offshore Operation and Maintenance Activities -- 4.2.1 Accessibility of Offshore Wind Farms -- 4.2.2 Infrastructure for Cabling and Cable Repair -- 4.2.3 Trained Staff -- 4.2.4 Dutch Offshore Wind Energy Services (DOWES) -- 4.2.5 Analysis of Operation and Maintenance Costs -- 4.3 Potential for Synergy -- 4.3.1 Operations and Life Cycle Management -- 4.3.2 Inspective, Preventive, Corrective Maintenance and Improvement Maintenance -- 4.3.3 Asset Management Control (AMC) Model -- 4.4 Conclusions -- Annex 1-Transport System Details -- Subsea Power Cable Subsystem -- Offshore Wind and Fish Farming Support Ships -- Tooling and Spars Container Support System -- Mussel Harvest Subsystems -- References -- 5 Technical Risks of Offshore Structures -- Abstract -- 5.1 Introduction -- 5.2 Corrosion Aspects and Biofouling -- 5.2.1 Corrosion Mechanisms and Corrosivity Zones for Offshore Structures.
5.2.2 Corrosion Risks in Currently Used Offshore Wind Turbines -- 5.2.3 Biofouling on Offshore Structures -- 5.2.4 Potential Influence of Offshore Aquaculture on the Corrosion of Unprotected Steel Structures -- 5.3 Mechanical Risks of Wind Farms Due to the Presence of Offshore Aquaculture Constructions -- 5.4 Scenario Analyses -- 5.5 Conclusions and Recommendations -- References -- Aquaculture Governance -- 6 Aquaculture Site-Selection and Marine Spatial Planning: The Roles of GIS-Based Tools and Models -- Abstract -- 6.1 Reconciling Ocean Uses Through Marine Spatial Planning -- 6.2 Potential Benefits of MSP to Aquaculture -- 6.3 Decision Support Systems for MSP and Aquaculture Siting -- 6.3.1 The Importance of Spatial Data in the Planning Process -- 6.3.2 DSS for Aquaculture Siting -- 6.4 The Co-location Scenario: Combining Offshore Wind Energy and Aquaculture -- 6.4.1 Co-location as an Opportunity for Spatial Planning? -- 6.4.2 Case Study in the German Bight -- 6.5 Conclusions and Future Needs -- Acknowledgements -- References -- 7 Governance and Offshore Aquaculture in Multi-resource Use Settings -- Abstract -- 7.1 Introduction -- 7.2 Defining Governance, Management and Policy -- 7.3 Developing a Multi-level Governance Framework for Offshore Aquaculture -- 7.4 Knowledge and Information Gaps in Offshore Aquaculture Multi-use Governance -- 7.5 Outlook -- References -- 8 The Socio-economic Dimensions of Offshore Aquaculture in a Multi-use Setting -- Abstract -- 8.1 Background -- 8.2 Socio-economic Dimensions of Aquaculture-A First Typology -- 8.2.1 Attitudes to and Perceptions of Aquaculture -- 8.2.2 Organization of and Participation in Planning for Aquaculture -- 8.2.3 Direct Benefits of Aquaculture, and Their Distribution -- 8.2.4 Negative Effects of Aquaculture Production Activities and Conflicts with Other Interests.
8.2.5 Effects on the Wider Economic and Innovation System -- 8.2.6 Effects on Cultural Fabric and Other Social Aspects -- 8.3 Current Knowledge on Socio-economic Effects of Offshore Aquaculture -- 8.4 Implications for Assessing the Socio-economic Effects of Offshore Aquaculture in a Multi-use Setting -- 8.5 Outlook -- Acknowledgements -- References -- 9 Regulation and Permitting of Standalone and Co-located Open Ocean Aquaculture Facilities -- Abstract -- 9.1 Introduction -- 9.1.1 Cultured Seafood Trends -- 9.1.2 Ocean Energy Trends -- 9.2 Status of Commercial Offshore Aquaculture -- 9.2.1 Standalone Aquaculture Projects -- 9.2.2 Aquaculture Co-located with Platforms -- 9.3 Case Studies on Permitting and Regulation -- 9.3.1 Introduction -- 9.3.2 Regulating Finfish Aquaculture in the U.S. EEZ, a Regional Approach -- 9.3.2.1 Background -- 9.3.2.2 A Path Forward -- 9.3.2.3 The Gulf Council Permit Process -- Core Terms -- Description of the Application -- Description of the Permit Process -- Consultations -- Operational and Monitoring Requirements -- Sanctions and Denials -- 9.3.2.4 Other Required Permits -- DA Section 10 Permit, ACOE- -- National Pollution Discharge Elimination System (NPDES), EPA -- 9.3.2.5 Successful State Permit/Leasing Processes -- Maine -- Hawaii -- 9.3.2.6 Discussion -- Evolution of the Regional Approach -- The Gulf Plan Rules, Concerns -- Core Terms, Concerns -- The Application, Concerns -- Operating and Monitoring Requirements, Concerns -- Comparison with State Processes -- 9.3.3 Case Study-Shellfish Farming in the Northeastern and West Coasts of the U.S., Recent Examples -- 9.3.3.1 Catalina Sea Ranch-First Farm Permitted in Federal Waters -- Catalina Sea Ranch's Offshore Mariculture Monitoring Program -- 9.3.3.2 Massachusetts Case Studies-A Tale of Two Projects -- Cape Ann Mussel Farm -- Nantucket Sound Mussel Farm.
9.3.3.3 Discussion -- 9.3.4 Case Study: Mussel Farming Off the English Coast -- One Farmer's Experience -- 9.3.4.1 Introduction -- 9.3.4.2 Description of Farm -- 9.3.4.3 Legislatory Framework -- 9.3.4.4 Application Process -- Informal Consultation -- Coast Protection Act 1949 -- Section 34 -- Seabed Lease -- Aquaculture Production Business -- Shellfish Harvesting Area Classification -- 9.3.4.5 Discussion of Current Licensing Process -- Environmental Impact -- Socio-Economic Impact -- 9.3.4.6 Discussion-Future Regulation and Co-location of Offshore Aquaculture -- 9.4 Recommendations for Developing a Regulatory System -- 9.4.1 Planning a Regulatory System -- 9.4.2 The Regulatory System -- References -- Aquaculture Economics -- 10 Economics of Multi-use and Co-location -- Abstract -- 10.1 Introduction -- 10.2 Ocean Space as an Input to Economic Production -- 10.2.1 Production Function -- 10.2.2 Unit Values -- 10.3 Public Benefits from Multi-use and Co-location -- 10.4 Private Benefits from Multi-use and Co-location -- 10.5 Case Study: Mussel Culture and Wind Farms in the Netherlands -- 10.6 Conclusions -- References -- Case Studies -- 11 The German Case Study: Pioneer Projects of Aquaculture-Wind Farm Multi-Uses -- Abstract -- 11.1 Introduction -- 11.2 The Beginning -- 11.3 Potential Species for Offshore Aquaculture -- 11.3.1 Seaweed Species -- 11.3.1.1 Candidate: Laminarian Species -- 11.3.1.2 Candidate: Palmaria palmata -- 11.3.1.3 Candidate: Delesseria sanguinea -- 11.3.2 Bivalve Species -- 11.3.2.1 Candidate: Mytilus edulis -- 11.3.2.2 Candidates: Crassostrea gigas and Ostrea edulis -- 11.3.3 Crustacean Species -- 11.3.3.1 Candidate: Homarus gammarus -- 11.3.3.2 Candidate: Cancer pagurus -- 11.3.4 Fish Species -- 11.3.4.1 Candidate: Dicentrarchus labrax -- 11.3.4.2 Candidate: Gadus morhua -- 11.3.4.3 Candidate: Hippoglossus hippoglossus.
11.3.4.4 Candidate: Scophthalmus maximus.
author_facet Buck, Bela H.
Langan, Richard.
author_variant b h b bh bhb
author2 Langan, Richard.
author2_variant r l rl
author2_role TeilnehmendeR
author_sort Buck, Bela H.
title Aquaculture Perspective of Multi-Use Sites in the Open Ocean : The Untapped Potential for Marine Resources in the Anthropocene.
title_sub The Untapped Potential for Marine Resources in the Anthropocene.
title_full Aquaculture Perspective of Multi-Use Sites in the Open Ocean : The Untapped Potential for Marine Resources in the Anthropocene.
title_fullStr Aquaculture Perspective of Multi-Use Sites in the Open Ocean : The Untapped Potential for Marine Resources in the Anthropocene.
title_full_unstemmed Aquaculture Perspective of Multi-Use Sites in the Open Ocean : The Untapped Potential for Marine Resources in the Anthropocene.
title_auth Aquaculture Perspective of Multi-Use Sites in the Open Ocean : The Untapped Potential for Marine Resources in the Anthropocene.
title_new Aquaculture Perspective of Multi-Use Sites in the Open Ocean :
title_sort aquaculture perspective of multi-use sites in the open ocean : the untapped potential for marine resources in the anthropocene.
publisher Springer International Publishing AG,
publishDate 2017
physical 1 online resource (413 pages)
edition 1st ed.
contents Intro -- Preface -- The Global Imperative to Develop New Models of Open Ocean Aquaculture for Accelerating Large-Scale Food and Energy Production -- ReferencesBarange, M., Merino, G. Blanchard, J. L., Scholtens, J., Harle, J., Ellison, E. H. et al. (2014). Impacts of climate change on marine ecosystem production in fisheries-dependent societies. Nature Climate Change, 4, 211-216.Barents Observer. (2015). Norway and Russia agree on Barents Sea quotas for 2015. Kirkenes, Norway. Retrieved October 20, 2016, from http://barentsobserver.com/en/nature/2014/10/norway-and-russia-agree-barents-sea-quotas-2015-10-10.Costa-Pierce, B. A. (2016). Ocean f -- Contents -- Editors and Contributors -- Abbreviations -- 1 Introduction: New Approaches to Sustainable Offshore Food Production and the Development of Offshore Platforms -- Abstract -- 1.1 Aquaculture-A Historical Overview -- 1.2 Moving Aquaculture Operations Offshore -- 1.3 The Multi-use Concept -- 1.3.1 Pilot Projects in Russia -- 1.3.2 Pilot Projects in the USA -- 1.3.3 Pilot Projects in Germany -- 1.4 Initiation to the Topic -- References -- Species, Techniques and System Design -- 2 Offshore and Multi-Use Aquaculture with Extractive Species: Seaweeds and Bivalves -- Abstract -- 2.1 Sustainable Aquaculture -- 2.2 Introduction to Extractive Species -- 2.3 IMTA on Offshore Applications -- 2.4 Extractive Species Aquaculture -- 2.4.1 Seaweeds -- 2.4.2 Bivalves -- 2.5 Cultivation Technologies, Challenges and Future Directions in Major Cultured Extractive Species -- 2.5.1 Red Seaweeds -- 2.5.1.1 Pyropia and Porphyra ('Gim' in Korean or 'Nori' in Japanese) -- 2.5.2 Brown Seaweeds -- 2.5.2.1 Saccharina and Undaria -- 2.5.2.2 Sargassum -- 2.5.3 Bivalves -- 2.5.3.1 Mussels -- 2.5.3.2 Oysters -- 2.6 Current Status of Offshore Seaweed and Bivalve Production and Their Potential for Multi-Use -- 2.6.1 Germany.
2.6.2 Belgium -- 2.6.3 Norway -- 2.6.4 Denmark -- 2.6.5 The Netherlands -- 2.6.6 France -- 2.6.7 United Kingdom -- 2.6.8 Italy -- 2.6.9 The United States -- 2.6.10 The Republic of Korea -- 2.6.11 China -- 2.7 Ecosystem Services -- 2.8 Concluding Remarks and Outlook -- References -- 3 Technological Approaches to Longline- and Cage-Based Aquaculture in Open Ocean Environments -- Abstract -- 3.1 Introduction -- 3.2 Case Study on Long Lines -- 3.2.1 Mussel Farming Development in NZ -- 3.2.2 Oyster Farming in the Open Ocean -- 3.3 Case Study on Submerged Aquaculture -- 3.3.1 Open Ocean Aquaculture in New Hampshire, USA -- 3.4 Case Study on Multi-use on Open Ocean Environment -- 3.4.1 Methodology -- 3.4.2 Velocity, Force and Scour Regimes -- 3.5 Discussion and Conclusions -- References -- 4 Operation and Maintenance Costs of Offshore Wind Farms and Potential Multi-use Platforms in the Dutch North Sea -- Abstract -- 4.1 Introduction -- 4.2 Offshore Operation and Maintenance Activities -- 4.2.1 Accessibility of Offshore Wind Farms -- 4.2.2 Infrastructure for Cabling and Cable Repair -- 4.2.3 Trained Staff -- 4.2.4 Dutch Offshore Wind Energy Services (DOWES) -- 4.2.5 Analysis of Operation and Maintenance Costs -- 4.3 Potential for Synergy -- 4.3.1 Operations and Life Cycle Management -- 4.3.2 Inspective, Preventive, Corrective Maintenance and Improvement Maintenance -- 4.3.3 Asset Management Control (AMC) Model -- 4.4 Conclusions -- Annex 1-Transport System Details -- Subsea Power Cable Subsystem -- Offshore Wind and Fish Farming Support Ships -- Tooling and Spars Container Support System -- Mussel Harvest Subsystems -- References -- 5 Technical Risks of Offshore Structures -- Abstract -- 5.1 Introduction -- 5.2 Corrosion Aspects and Biofouling -- 5.2.1 Corrosion Mechanisms and Corrosivity Zones for Offshore Structures.
5.2.2 Corrosion Risks in Currently Used Offshore Wind Turbines -- 5.2.3 Biofouling on Offshore Structures -- 5.2.4 Potential Influence of Offshore Aquaculture on the Corrosion of Unprotected Steel Structures -- 5.3 Mechanical Risks of Wind Farms Due to the Presence of Offshore Aquaculture Constructions -- 5.4 Scenario Analyses -- 5.5 Conclusions and Recommendations -- References -- Aquaculture Governance -- 6 Aquaculture Site-Selection and Marine Spatial Planning: The Roles of GIS-Based Tools and Models -- Abstract -- 6.1 Reconciling Ocean Uses Through Marine Spatial Planning -- 6.2 Potential Benefits of MSP to Aquaculture -- 6.3 Decision Support Systems for MSP and Aquaculture Siting -- 6.3.1 The Importance of Spatial Data in the Planning Process -- 6.3.2 DSS for Aquaculture Siting -- 6.4 The Co-location Scenario: Combining Offshore Wind Energy and Aquaculture -- 6.4.1 Co-location as an Opportunity for Spatial Planning? -- 6.4.2 Case Study in the German Bight -- 6.5 Conclusions and Future Needs -- Acknowledgements -- References -- 7 Governance and Offshore Aquaculture in Multi-resource Use Settings -- Abstract -- 7.1 Introduction -- 7.2 Defining Governance, Management and Policy -- 7.3 Developing a Multi-level Governance Framework for Offshore Aquaculture -- 7.4 Knowledge and Information Gaps in Offshore Aquaculture Multi-use Governance -- 7.5 Outlook -- References -- 8 The Socio-economic Dimensions of Offshore Aquaculture in a Multi-use Setting -- Abstract -- 8.1 Background -- 8.2 Socio-economic Dimensions of Aquaculture-A First Typology -- 8.2.1 Attitudes to and Perceptions of Aquaculture -- 8.2.2 Organization of and Participation in Planning for Aquaculture -- 8.2.3 Direct Benefits of Aquaculture, and Their Distribution -- 8.2.4 Negative Effects of Aquaculture Production Activities and Conflicts with Other Interests.
8.2.5 Effects on the Wider Economic and Innovation System -- 8.2.6 Effects on Cultural Fabric and Other Social Aspects -- 8.3 Current Knowledge on Socio-economic Effects of Offshore Aquaculture -- 8.4 Implications for Assessing the Socio-economic Effects of Offshore Aquaculture in a Multi-use Setting -- 8.5 Outlook -- Acknowledgements -- References -- 9 Regulation and Permitting of Standalone and Co-located Open Ocean Aquaculture Facilities -- Abstract -- 9.1 Introduction -- 9.1.1 Cultured Seafood Trends -- 9.1.2 Ocean Energy Trends -- 9.2 Status of Commercial Offshore Aquaculture -- 9.2.1 Standalone Aquaculture Projects -- 9.2.2 Aquaculture Co-located with Platforms -- 9.3 Case Studies on Permitting and Regulation -- 9.3.1 Introduction -- 9.3.2 Regulating Finfish Aquaculture in the U.S. EEZ, a Regional Approach -- 9.3.2.1 Background -- 9.3.2.2 A Path Forward -- 9.3.2.3 The Gulf Council Permit Process -- Core Terms -- Description of the Application -- Description of the Permit Process -- Consultations -- Operational and Monitoring Requirements -- Sanctions and Denials -- 9.3.2.4 Other Required Permits -- DA Section 10 Permit, ACOE- -- National Pollution Discharge Elimination System (NPDES), EPA -- 9.3.2.5 Successful State Permit/Leasing Processes -- Maine -- Hawaii -- 9.3.2.6 Discussion -- Evolution of the Regional Approach -- The Gulf Plan Rules, Concerns -- Core Terms, Concerns -- The Application, Concerns -- Operating and Monitoring Requirements, Concerns -- Comparison with State Processes -- 9.3.3 Case Study-Shellfish Farming in the Northeastern and West Coasts of the U.S., Recent Examples -- 9.3.3.1 Catalina Sea Ranch-First Farm Permitted in Federal Waters -- Catalina Sea Ranch's Offshore Mariculture Monitoring Program -- 9.3.3.2 Massachusetts Case Studies-A Tale of Two Projects -- Cape Ann Mussel Farm -- Nantucket Sound Mussel Farm.
9.3.3.3 Discussion -- 9.3.4 Case Study: Mussel Farming Off the English Coast -- One Farmer's Experience -- 9.3.4.1 Introduction -- 9.3.4.2 Description of Farm -- 9.3.4.3 Legislatory Framework -- 9.3.4.4 Application Process -- Informal Consultation -- Coast Protection Act 1949 -- Section 34 -- Seabed Lease -- Aquaculture Production Business -- Shellfish Harvesting Area Classification -- 9.3.4.5 Discussion of Current Licensing Process -- Environmental Impact -- Socio-Economic Impact -- 9.3.4.6 Discussion-Future Regulation and Co-location of Offshore Aquaculture -- 9.4 Recommendations for Developing a Regulatory System -- 9.4.1 Planning a Regulatory System -- 9.4.2 The Regulatory System -- References -- Aquaculture Economics -- 10 Economics of Multi-use and Co-location -- Abstract -- 10.1 Introduction -- 10.2 Ocean Space as an Input to Economic Production -- 10.2.1 Production Function -- 10.2.2 Unit Values -- 10.3 Public Benefits from Multi-use and Co-location -- 10.4 Private Benefits from Multi-use and Co-location -- 10.5 Case Study: Mussel Culture and Wind Farms in the Netherlands -- 10.6 Conclusions -- References -- Case Studies -- 11 The German Case Study: Pioneer Projects of Aquaculture-Wind Farm Multi-Uses -- Abstract -- 11.1 Introduction -- 11.2 The Beginning -- 11.3 Potential Species for Offshore Aquaculture -- 11.3.1 Seaweed Species -- 11.3.1.1 Candidate: Laminarian Species -- 11.3.1.2 Candidate: Palmaria palmata -- 11.3.1.3 Candidate: Delesseria sanguinea -- 11.3.2 Bivalve Species -- 11.3.2.1 Candidate: Mytilus edulis -- 11.3.2.2 Candidates: Crassostrea gigas and Ostrea edulis -- 11.3.3 Crustacean Species -- 11.3.3.1 Candidate: Homarus gammarus -- 11.3.3.2 Candidate: Cancer pagurus -- 11.3.4 Fish Species -- 11.3.4.1 Candidate: Dicentrarchus labrax -- 11.3.4.2 Candidate: Gadus morhua -- 11.3.4.3 Candidate: Hippoglossus hippoglossus.
11.3.4.4 Candidate: Scophthalmus maximus.
isbn 9783319511597
9783319511573
callnumber-first G - Geography, Anthropology, Recreation
callnumber-subject GB - Physical Geography
callnumber-label GB651-2998
callnumber-sort GB 3651 42998
genre Electronic books.
genre_facet Electronic books.
url https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6422539
illustrated Not Illustrated
dewey-hundreds 600 - Technology
dewey-tens 630 - Agriculture
dewey-ones 639 - Hunting, fishing & conservation
dewey-full 639.89
dewey-sort 3639.89
dewey-raw 639.89
dewey-search 639.89
oclc_num 982656470
work_keys_str_mv AT buckbelah aquacultureperspectiveofmultiusesitesintheopenoceantheuntappedpotentialformarineresourcesintheanthropocene
AT langanrichard aquacultureperspectiveofmultiusesitesintheopenoceantheuntappedpotentialformarineresourcesintheanthropocene
status_str n
ids_txt_mv (MiAaPQ)5006422539
(Au-PeEL)EBL6422539
(OCoLC)982656470
carrierType_str_mv cr
is_hierarchy_title Aquaculture Perspective of Multi-Use Sites in the Open Ocean : The Untapped Potential for Marine Resources in the Anthropocene.
author2_original_writing_str_mv noLinkedField
marc_error Info : MARC8 translation shorter than ISO-8859-1, choosing MARC8. --- [ 856 : z ]
_version_ 1792331057787305984
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>11068nam a22004573i 4500</leader><controlfield tag="001">5006422539</controlfield><controlfield tag="003">MiAaPQ</controlfield><controlfield tag="005">20240229073837.0</controlfield><controlfield tag="006">m o d | </controlfield><controlfield tag="007">cr cnu||||||||</controlfield><controlfield tag="008">240229s2017 xx o ||||0 eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783319511597</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783319511573</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(MiAaPQ)5006422539</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(Au-PeEL)EBL6422539</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)982656470</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">MiAaPQ</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">MiAaPQ</subfield><subfield code="d">MiAaPQ</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">GB651-2998</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">639.89</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Buck, Bela H.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Aquaculture Perspective of Multi-Use Sites in the Open Ocean :</subfield><subfield code="b">The Untapped Potential for Marine Resources in the Anthropocene.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham :</subfield><subfield code="b">Springer International Publishing AG,</subfield><subfield code="c">2017.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2017.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (413 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Intro -- Preface -- The Global Imperative to Develop New Models of Open Ocean Aquaculture for Accelerating Large-Scale Food and Energy Production -- ReferencesBarange, M., Merino, G. Blanchard, J. L., Scholtens, J., Harle, J., Ellison, E. H. et al. (2014). Impacts of climate change on marine ecosystem production in fisheries-dependent societies. Nature Climate Change, 4, 211-216.Barents Observer. (2015). Norway and Russia agree on Barents Sea quotas for 2015. Kirkenes, Norway. Retrieved October 20, 2016, from http://barentsobserver.com/en/nature/2014/10/norway-and-russia-agree-barents-sea-quotas-2015-10-10.Costa-Pierce, B. A. (2016). Ocean f -- Contents -- Editors and Contributors -- Abbreviations -- 1 Introduction: New Approaches to Sustainable Offshore Food Production and the Development of Offshore Platforms -- Abstract -- 1.1 Aquaculture-A Historical Overview -- 1.2 Moving Aquaculture Operations Offshore -- 1.3 The Multi-use Concept -- 1.3.1 Pilot Projects in Russia -- 1.3.2 Pilot Projects in the USA -- 1.3.3 Pilot Projects in Germany -- 1.4 Initiation to the Topic -- References -- Species, Techniques and System Design -- 2 Offshore and Multi-Use Aquaculture with Extractive Species: Seaweeds and Bivalves -- Abstract -- 2.1 Sustainable Aquaculture -- 2.2 Introduction to Extractive Species -- 2.3 IMTA on Offshore Applications -- 2.4 Extractive Species Aquaculture -- 2.4.1 Seaweeds -- 2.4.2 Bivalves -- 2.5 Cultivation Technologies, Challenges and Future Directions in Major Cultured Extractive Species -- 2.5.1 Red Seaweeds -- 2.5.1.1 Pyropia and Porphyra ('Gim' in Korean or 'Nori' in Japanese) -- 2.5.2 Brown Seaweeds -- 2.5.2.1 Saccharina and Undaria -- 2.5.2.2 Sargassum -- 2.5.3 Bivalves -- 2.5.3.1 Mussels -- 2.5.3.2 Oysters -- 2.6 Current Status of Offshore Seaweed and Bivalve Production and Their Potential for Multi-Use -- 2.6.1 Germany.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.6.2 Belgium -- 2.6.3 Norway -- 2.6.4 Denmark -- 2.6.5 The Netherlands -- 2.6.6 France -- 2.6.7 United Kingdom -- 2.6.8 Italy -- 2.6.9 The United States -- 2.6.10 The Republic of Korea -- 2.6.11 China -- 2.7 Ecosystem Services -- 2.8 Concluding Remarks and Outlook -- References -- 3 Technological Approaches to Longline- and Cage-Based Aquaculture in Open Ocean Environments -- Abstract -- 3.1 Introduction -- 3.2 Case Study on Long Lines -- 3.2.1 Mussel Farming Development in NZ -- 3.2.2 Oyster Farming in the Open Ocean -- 3.3 Case Study on Submerged Aquaculture -- 3.3.1 Open Ocean Aquaculture in New Hampshire, USA -- 3.4 Case Study on Multi-use on Open Ocean Environment -- 3.4.1 Methodology -- 3.4.2 Velocity, Force and Scour Regimes -- 3.5 Discussion and Conclusions -- References -- 4 Operation and Maintenance Costs of Offshore Wind Farms and Potential Multi-use Platforms in the Dutch North Sea -- Abstract -- 4.1 Introduction -- 4.2 Offshore Operation and Maintenance Activities -- 4.2.1 Accessibility of Offshore Wind Farms -- 4.2.2 Infrastructure for Cabling and Cable Repair -- 4.2.3 Trained Staff -- 4.2.4 Dutch Offshore Wind Energy Services (DOWES) -- 4.2.5 Analysis of Operation and Maintenance Costs -- 4.3 Potential for Synergy -- 4.3.1 Operations and Life Cycle Management -- 4.3.2 Inspective, Preventive, Corrective Maintenance and Improvement Maintenance -- 4.3.3 Asset Management Control (AMC) Model -- 4.4 Conclusions -- Annex 1-Transport System Details -- Subsea Power Cable Subsystem -- Offshore Wind and Fish Farming Support Ships -- Tooling and Spars Container Support System -- Mussel Harvest Subsystems -- References -- 5 Technical Risks of Offshore Structures -- Abstract -- 5.1 Introduction -- 5.2 Corrosion Aspects and Biofouling -- 5.2.1 Corrosion Mechanisms and Corrosivity Zones for Offshore Structures.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.2.2 Corrosion Risks in Currently Used Offshore Wind Turbines -- 5.2.3 Biofouling on Offshore Structures -- 5.2.4 Potential Influence of Offshore Aquaculture on the Corrosion of Unprotected Steel Structures -- 5.3 Mechanical Risks of Wind Farms Due to the Presence of Offshore Aquaculture Constructions -- 5.4 Scenario Analyses -- 5.5 Conclusions and Recommendations -- References -- Aquaculture Governance -- 6 Aquaculture Site-Selection and Marine Spatial Planning: The Roles of GIS-Based Tools and Models -- Abstract -- 6.1 Reconciling Ocean Uses Through Marine Spatial Planning -- 6.2 Potential Benefits of MSP to Aquaculture -- 6.3 Decision Support Systems for MSP and Aquaculture Siting -- 6.3.1 The Importance of Spatial Data in the Planning Process -- 6.3.2 DSS for Aquaculture Siting -- 6.4 The Co-location Scenario: Combining Offshore Wind Energy and Aquaculture -- 6.4.1 Co-location as an Opportunity for Spatial Planning? -- 6.4.2 Case Study in the German Bight -- 6.5 Conclusions and Future Needs -- Acknowledgements -- References -- 7 Governance and Offshore Aquaculture in Multi-resource Use Settings -- Abstract -- 7.1 Introduction -- 7.2 Defining Governance, Management and Policy -- 7.3 Developing a Multi-level Governance Framework for Offshore Aquaculture -- 7.4 Knowledge and Information Gaps in Offshore Aquaculture Multi-use Governance -- 7.5 Outlook -- References -- 8 The Socio-economic Dimensions of Offshore Aquaculture in a Multi-use Setting -- Abstract -- 8.1 Background -- 8.2 Socio-economic Dimensions of Aquaculture-A First Typology -- 8.2.1 Attitudes to and Perceptions of Aquaculture -- 8.2.2 Organization of and Participation in Planning for Aquaculture -- 8.2.3 Direct Benefits of Aquaculture, and Their Distribution -- 8.2.4 Negative Effects of Aquaculture Production Activities and Conflicts with Other Interests.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">8.2.5 Effects on the Wider Economic and Innovation System -- 8.2.6 Effects on Cultural Fabric and Other Social Aspects -- 8.3 Current Knowledge on Socio-economic Effects of Offshore Aquaculture -- 8.4 Implications for Assessing the Socio-economic Effects of Offshore Aquaculture in a Multi-use Setting -- 8.5 Outlook -- Acknowledgements -- References -- 9 Regulation and Permitting of Standalone and Co-located Open Ocean Aquaculture Facilities -- Abstract -- 9.1 Introduction -- 9.1.1 Cultured Seafood Trends -- 9.1.2 Ocean Energy Trends -- 9.2 Status of Commercial Offshore Aquaculture -- 9.2.1 Standalone Aquaculture Projects -- 9.2.2 Aquaculture Co-located with Platforms -- 9.3 Case Studies on Permitting and Regulation -- 9.3.1 Introduction -- 9.3.2 Regulating Finfish Aquaculture in the U.S. EEZ, a Regional Approach -- 9.3.2.1 Background -- 9.3.2.2 A Path Forward -- 9.3.2.3 The Gulf Council Permit Process -- Core Terms -- Description of the Application -- Description of the Permit Process -- Consultations -- Operational and Monitoring Requirements -- Sanctions and Denials -- 9.3.2.4 Other Required Permits -- DA Section 10 Permit, ACOE- -- National Pollution Discharge Elimination System (NPDES), EPA -- 9.3.2.5 Successful State Permit/Leasing Processes -- Maine -- Hawaii -- 9.3.2.6 Discussion -- Evolution of the Regional Approach -- The Gulf Plan Rules, Concerns -- Core Terms, Concerns -- The Application, Concerns -- Operating and Monitoring Requirements, Concerns -- Comparison with State Processes -- 9.3.3 Case Study-Shellfish Farming in the Northeastern and West Coasts of the U.S., Recent Examples -- 9.3.3.1 Catalina Sea Ranch-First Farm Permitted in Federal Waters -- Catalina Sea Ranch's Offshore Mariculture Monitoring Program -- 9.3.3.2 Massachusetts Case Studies-A Tale of Two Projects -- Cape Ann Mussel Farm -- Nantucket Sound Mussel Farm.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">9.3.3.3 Discussion -- 9.3.4 Case Study: Mussel Farming Off the English Coast -- One Farmer's Experience -- 9.3.4.1 Introduction -- 9.3.4.2 Description of Farm -- 9.3.4.3 Legislatory Framework -- 9.3.4.4 Application Process -- Informal Consultation -- Coast Protection Act 1949 -- Section 34 -- Seabed Lease -- Aquaculture Production Business -- Shellfish Harvesting Area Classification -- 9.3.4.5 Discussion of Current Licensing Process -- Environmental Impact -- Socio-Economic Impact -- 9.3.4.6 Discussion-Future Regulation and Co-location of Offshore Aquaculture -- 9.4 Recommendations for Developing a Regulatory System -- 9.4.1 Planning a Regulatory System -- 9.4.2 The Regulatory System -- References -- Aquaculture Economics -- 10 Economics of Multi-use and Co-location -- Abstract -- 10.1 Introduction -- 10.2 Ocean Space as an Input to Economic Production -- 10.2.1 Production Function -- 10.2.2 Unit Values -- 10.3 Public Benefits from Multi-use and Co-location -- 10.4 Private Benefits from Multi-use and Co-location -- 10.5 Case Study: Mussel Culture and Wind Farms in the Netherlands -- 10.6 Conclusions -- References -- Case Studies -- 11 The German Case Study: Pioneer Projects of Aquaculture-Wind Farm Multi-Uses -- Abstract -- 11.1 Introduction -- 11.2 The Beginning -- 11.3 Potential Species for Offshore Aquaculture -- 11.3.1 Seaweed Species -- 11.3.1.1 Candidate: Laminarian Species -- 11.3.1.2 Candidate: Palmaria palmata -- 11.3.1.3 Candidate: Delesseria sanguinea -- 11.3.2 Bivalve Species -- 11.3.2.1 Candidate: Mytilus edulis -- 11.3.2.2 Candidates: Crassostrea gigas and Ostrea edulis -- 11.3.3 Crustacean Species -- 11.3.3.1 Candidate: Homarus gammarus -- 11.3.3.2 Candidate: Cancer pagurus -- 11.3.4 Fish Species -- 11.3.4.1 Candidate: Dicentrarchus labrax -- 11.3.4.2 Candidate: Gadus morhua -- 11.3.4.3 Candidate: Hippoglossus hippoglossus.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">11.3.4.4 Candidate: Scophthalmus maximus.</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources.</subfield></datafield><datafield tag="590" ind1=" " ind2=" "><subfield code="a">Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. </subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Langan, Richard.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Buck, Bela H.</subfield><subfield code="t">Aquaculture Perspective of Multi-Use Sites in the Open Ocean</subfield><subfield code="d">Cham : Springer International Publishing AG,c2017</subfield><subfield code="z">9783319511573</subfield></datafield><datafield tag="797" ind1="2" ind2=" "><subfield code="a">ProQuest (Firm)</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6422539</subfield><subfield code="z">Click to View</subfield></datafield></record></collection>