Standard Theory Of Particle Physics, The : : Essays To Celebrate Cern's 60th Anniversary.

Saved in:
Bibliographic Details
Superior document:Advanced Series On Directions In High Energy Physics ; v.26
:
TeilnehmendeR:
Place / Publishing House:Singapore : : World Scientific Publishing Company,, 2016.
©2016.
Year of Publication:2016
Edition:1st ed.
Language:English
Series:Advanced Series On Directions In High Energy Physics
Online Access:
Physical Description:1 online resource (483 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Intro
  • Contents
  • Preface
  • 1. The Evolution of Quantum Field Theory: From QED to Grand Unification
  • 1. The Early Days, Before 1970
  • 2. The New Ideas of the 1970s
  • 3. The Strong Interactions
  • 4. The First Years of the Standard Model. Quantum Chromodynamics
  • 5. The Large N Limit. Planar Diagrams
  • 6. Grand Unification
  • 7. Magnetic Monopoles, Solitons and Instantons
  • 8. Supersymmetry and Gravity
  • 9. Calculations
  • 10. Conclusions and Outlook
  • References
  • 2. The Making of the Standard Theory
  • 1. Introduction
  • 2. Prehistory
  • 2.1. The electron spectrum in β-decay
  • 2.2. Enter the neutrino
  • 2.3. Fermi's Tentativo
  • 2.4. The high energy behaviour
  • 3. Thirty Years of Unconcern, Thirty Years of Doubt
  • 3.1. Fermi's theory as the most successful phenomenology
  • 3.2. Fermi's theory as the most inspiring model
  • 3.3. Fermi's theory as a an effective field theory
  • 4. Gauge Theories
  • 4.1. Gauge invariance in classical physics
  • 4.2. Gauge invariance in quantum mechanics
  • 4.3. From general relativity to particle physics
  • 4.4. Yang-Mills and weak interactions
  • 4.5. A model for leptons
  • 5. Fighting the Infinities
  • 5.1. The phenomenology front
  • 5.2. Early attempts
  • 5.3. The leading divergences
  • 5.4. The next-to-leading divergences
  • 6. The Standard Model
  • 6.1. Which model?
  • 6.1.1. No neutral currents
  • 6.1.2. The U(1) × SU(2) model
  • 6.2. A problem of anomalies
  • 6.3. The Standard Model becomes the Standard Theory
  • 7. Beyond the Standard Model
  • 7.1. Why and how
  • 7.2. The most beautiful speculations
  • 7.2.1. Grand unified theories
  • 7.2.2. Supersymmetry
  • References
  • 3. Quantum Chromodynamics and Deep Inelastic Scattering
  • 1. Hard Scattering before QCD
  • 2. The Discovery of Asymptotic Freedom
  • 3. Deep Inelastic Scattering
  • 4. Factorization and the QCD Improved Parton Model.
  • 5. Parton Shower Monte Carlo
  • 6. Jet Cross Sections
  • 7. Technical Advances
  • 7.1. One-loop calculations
  • 8. The Age of the Automation
  • 8.1. Tree graphs
  • 8.2. NLO calculations
  • 9. Outlook for NNLO
  • 10. Epilogue
  • References
  • 4. Electroweak Corrections
  • 1. Introduction
  • 2. The Pioneering Works
  • 3. Constraining mt and mH
  • 4. Indirect Constraints and Orientation on New Physics
  • 4.1. Oblique parameters
  • 4.2. Effective parameters at the Z pole
  • 4.3. Effective operators
  • 4.4. Examples in specific models
  • 5. High Precision in the Standard Model
  • Acknowledgments
  • References
  • 5. Lattice Quantum Chromodynamics
  • 1. Introduction
  • 2. Introduction to Lattice Phenomenology
  • 2.1. Uncertainties in lattice simulations
  • 2.1.1. Unphysical light-quark masses
  • 2.1.2. Lattice spacings and volumes
  • 2.2. Renormalisation
  • 2.3. Heavy quarks
  • 3. Determination of αs and the Quark Masses
  • 4. Selected Quantities in Flavour Physics
  • 4.1. Leptonic decays of mesons
  • 4.2. Neutral-meson mixing and semileptonic decays of pseudoscalar mesons
  • 4.3. Hadronic decays
  • 4.3.1. Two-body decay amplitudes
  • 4.3.2. On the difficulty of studying exclusive nonleptonic B decays
  • 5. New Directions
  • 5.1. Hadronic effects in the muon's electric dipole moment
  • 5.2. Long-distance contributions to hadronic processes
  • 5.3. R(D) and R(D∗)
  • 6. Summary and Future Prospects
  • References
  • 6. The Determination of the Strong Coupling Constant
  • 1. Introduction
  • 2. Theoretical Framework
  • 3. Observables
  • 4. Brief Historical Overview
  • 5. Conclusions
  • Acknowledgments
  • References
  • 7. Hadron Contribution to Vacuum Polarisation
  • 1. Introduction and Historical Perspective
  • 2. Dispersion Relations
  • 3. e+e− Data
  • 3.1. Experimental progress toward precision
  • 3.2. Progress in combining data
  • 4. Use of tau Data.
  • 5. Use of Theory
  • 6. Applications
  • 6.1. The anomalous magnetic moment of the muon
  • 6.2. Running electromagnetic fine structure constant at M2Z
  • 7. Perspectives
  • References
  • 8. The Number of Neutrinos and the Z Line Shape
  • 1. Introduction: What is the Number of Families of Fermions?
  • 2. Determination of the Number of Light Neutrino Species at LEP and SLC
  • 3. Determination of the Z Line Shape Parameters
  • 4. Precision Measurements of the Mass and Width of the Z
  • 5. The Discovery of the Top Quark, the Higgs Boson Mass
  • 6. Discussion and Outlook
  • References
  • 9. Asymmetries at the Z pole: The Quark and Lepton Quantum Numbers
  • 1. Introduction
  • 2. Asymmetries and Polarisations at the Z pole
  • 3. Forward-Backward Asymmetries
  • 3.1. Lepton forward-backward asymmetries
  • 3.2. Heavy quark asymmetries
  • 3.2.1. Lepton tagging
  • 3.2.2. Inclusive measurements
  • 3.2.3. Heavy quark asymmetries: Combined results and QCD corrections
  • 4. Asymmetries with Polarised Beams
  • 4.1. Measurement of the left-right asymmetry (ALR)
  • 4.2. Heavy quark asymmetries with polarised beams
  • 5. Measurement of the tau Polarisation in Z Decays
  • 6. Interpretations
  • 6.1. The determinations of sin2 θ eff
  • 6.2. Extraction of neutral current couplings
  • 7. Summary and Outlook
  • References
  • 10. The W Boson Mass Measurement
  • 1. Introduction
  • 2. History of the W Mass Measurement
  • 3. Theoretical Considerations of MW
  • 4. Tevatron MW Measurements from Run 2
  • 5. Techniques for MW Measurement at Hadron Colliders
  • 5.1. Lepton momentum and energy calibration
  • 5.2. Hadronic recoil simulation
  • 5.3. Backgrounds
  • 5.4. Production and decay model
  • 5.5. Results
  • 6. Summary and Conclusions
  • Acknowledgments
  • References
  • 11. Top Quark Mass
  • 1. A Brief History of the Top Quark
  • 2. The Short Life of a Top Quark.
  • 3. Conventional Top Quark Mass Measurements at Hadron Colliders
  • 3.1. World average anno 2014
  • 3.2. New results in mMCt measurements since 2014
  • 3.3. Prospects for mMC
  • 3.4. Extraction of mMCt with different observables
  • 4. Top Mass Extraction Using Other Top Mass Definitions
  • 5. Top Mass Prospects at Lepton Colliders
  • 6. Summary and Outlook
  • References
  • 12. Global Fits of the Electroweak Standard Theory: Past, Present and Future
  • 1. Introduction
  • 2. Ingredients of Electroweak Fits
  • 2.1. Experimental measurements
  • 2.2. Theoretical predictions
  • 3. Important Milestones of the Electroweak Fit
  • 4. Current Status After the Higgs Discovery
  • 5. Constraints on Physics Beyond the ST
  • 6. Perspectives of the Electroweak Fit
  • 7. Conclusion
  • References
  • 13. Production of Electroweak Bosons at Hadron Colliders: Theoretical Aspects
  • 1. Introduction
  • 2. QCD Aspects of Inclusive Vector Boson Production
  • 2.1. Rapidity spectrum of W and Z bosons
  • 2.1.1. W charge asymmetries
  • 2.1.2. Z rapidity spectrum and lepton charge asymmetries
  • 2.2. Transverse momentum spectrum
  • 2.3. Off-shell gauge-boson production at large invariant mass
  • 3. Multiple Production of Vector Bosons
  • 4. Associated Production of Vector Bosons with Jets and Heavy Quarks
  • 4.1. W+charm quarks
  • 4.2. V + QQ̄, with Q = c, b
  • 4.3. V + tt ̄-- 5. Conclusions
  • References
  • 14. A Historical Profile of the Higgs Boson
  • 1. Introduction
  • 2. Prehistory
  • 3. And Then There Was Higgs
  • 4. A Phenomenological Profile of the Higgs Boson
  • 5. Searches for the Higgs Boson at LEP
  • 6. Searches for the Higgs Boson at Hadron Colliders
  • 7. Is It Really a/the Higgs Boson?
  • 8. More Higgs, Less Higgs? More than Higgs?
  • 9. Apres Higgs
  • Acknowledgements
  • References
  • 15. The Higgs Boson Search and Discovery
  • 1. Overview.
  • 2. Higgs Searches at the Tevatron
  • 2.1. Low mass Higgs boson searches
  • 2.2. High mass Higgs boson searches
  • 3. Higgs Searches at the LHC
  • 3.1. Searches for H → γγ
  • 3.2. Searches for H → ZZ(∗) → llll
  • 3.3. Searches in H → W+W− → +ν − ̄-- 3.4. Searches in H → τ+ττ̔̈2212; and in H → bb̄
  • 4. The Discovery of the Higgs Boson
  • 4.1. ATLAS and CMS discoveries
  • 4.2. Tevatron combined results
  • 5. Conclusion and Prospects
  • References
  • 16. Higgs Boson Properties
  • 1. Introduction
  • 2. Overview of Analyses Used
  • 2.1. Rare decays
  • 2.2. BSM decays
  • 3. Measurements
  • 3.1. Mass
  • 3.2. Total width
  • 3.3. Differential and fiducial cross-sections
  • 4. Searches for Deviations
  • 4.1. Compatibility in decay kinematics
  • 4.1.1. Hypothesis tests on the spin of the new boson
  • 4.1.2. Kinematic decay structure of a J = 0 boson
  • 4.2. Compatibility in signal yields
  • 4.3. Compatibility in couplings
  • 5. Summary
  • References
  • 17. Flavour Physics and Implication for New Phenomena
  • 1. Introduction
  • 2. Some Historical Remarks
  • 3. The Flavour Sector of the Standard Theory
  • 3.1. The CKM matrix
  • 4. The Flavour Problem
  • 5. The Minimal Flavour Violation Hypothesis
  • 6. Flavour Symmetry Breaking Beyond MFV
  • 7. Flavor Physics and Partial Compositeness
  • 8. Dynamical Yukawa Couplings
  • 9. Conclusions
  • References
  • 18. Rare Decays Probing Physics Beyond the Standard Theory
  • 1. Historical Role of Rare Decays
  • 2. Flavour Structure and Symmetries in the ST
  • 3. Quark Flavour Changing Neutral Decays
  • 3.1. K+ → π+νν, K0L→ π0νν
  • 3.2. B0d→ K∗0μ+μτ̔̈2212;
  • 3.3. B0(d,s)→ μ+μτ̔̈2212;
  • 4. Lepton Flavour Changing Neutral Currents
  • 5. Final Remarks
  • Acknowledgments
  • References
  • 19. Neutrino Masses and Flavor Oscillations
  • 1. Neutrinos and Their Sources
  • 1.1. From Pauli's hypothesis to the discoveries of neutrinos.
  • 1.2. Where do neutrinos come from?.