Standard Theory Of Particle Physics, The : : Essays To Celebrate Cern's 60th Anniversary.

Saved in:
Bibliographic Details
Superior document:Advanced Series On Directions In High Energy Physics ; v.26
:
TeilnehmendeR:
Place / Publishing House:Singapore : : World Scientific Publishing Company,, 2016.
©2016.
Year of Publication:2016
Edition:1st ed.
Language:English
Series:Advanced Series On Directions In High Energy Physics
Online Access:
Physical Description:1 online resource (483 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 5006383194
ctrlnum (MiAaPQ)5006383194
(Au-PeEL)EBL6383194
(OCoLC)1231606653
collection bib_alma
record_format marc
spelling Maiani, Luciano.
Standard Theory Of Particle Physics, The : Essays To Celebrate Cern's 60th Anniversary.
1st ed.
Singapore : World Scientific Publishing Company, 2016.
©2016.
1 online resource (483 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Advanced Series On Directions In High Energy Physics ; v.26
Intro -- Contents -- Preface -- 1. The Evolution of Quantum Field Theory: From QED to Grand Unification -- 1. The Early Days, Before 1970 -- 2. The New Ideas of the 1970s -- 3. The Strong Interactions -- 4. The First Years of the Standard Model. Quantum Chromodynamics -- 5. The Large N Limit. Planar Diagrams -- 6. Grand Unification -- 7. Magnetic Monopoles, Solitons and Instantons -- 8. Supersymmetry and Gravity -- 9. Calculations -- 10. Conclusions and Outlook -- References -- 2. The Making of the Standard Theory -- 1. Introduction -- 2. Prehistory -- 2.1. The electron spectrum in β-decay -- 2.2. Enter the neutrino -- 2.3. Fermi's Tentativo -- 2.4. The high energy behaviour -- 3. Thirty Years of Unconcern, Thirty Years of Doubt -- 3.1. Fermi's theory as the most successful phenomenology -- 3.2. Fermi's theory as the most inspiring model -- 3.3. Fermi's theory as a an effective field theory -- 4. Gauge Theories -- 4.1. Gauge invariance in classical physics -- 4.2. Gauge invariance in quantum mechanics -- 4.3. From general relativity to particle physics -- 4.4. Yang-Mills and weak interactions -- 4.5. A model for leptons -- 5. Fighting the Infinities -- 5.1. The phenomenology front -- 5.2. Early attempts -- 5.3. The leading divergences -- 5.4. The next-to-leading divergences -- 6. The Standard Model -- 6.1. Which model? -- 6.1.1. No neutral currents -- 6.1.2. The U(1) × SU(2) model -- 6.2. A problem of anomalies -- 6.3. The Standard Model becomes the Standard Theory -- 7. Beyond the Standard Model -- 7.1. Why and how -- 7.2. The most beautiful speculations -- 7.2.1. Grand unified theories -- 7.2.2. Supersymmetry -- References -- 3. Quantum Chromodynamics and Deep Inelastic Scattering -- 1. Hard Scattering before QCD -- 2. The Discovery of Asymptotic Freedom -- 3. Deep Inelastic Scattering -- 4. Factorization and the QCD Improved Parton Model.
5. Parton Shower Monte Carlo -- 6. Jet Cross Sections -- 7. Technical Advances -- 7.1. One-loop calculations -- 8. The Age of the Automation -- 8.1. Tree graphs -- 8.2. NLO calculations -- 9. Outlook for NNLO -- 10. Epilogue -- References -- 4. Electroweak Corrections -- 1. Introduction -- 2. The Pioneering Works -- 3. Constraining mt and mH -- 4. Indirect Constraints and Orientation on New Physics -- 4.1. Oblique parameters -- 4.2. Effective parameters at the Z pole -- 4.3. Effective operators -- 4.4. Examples in specific models -- 5. High Precision in the Standard Model -- Acknowledgments -- References -- 5. Lattice Quantum Chromodynamics -- 1. Introduction -- 2. Introduction to Lattice Phenomenology -- 2.1. Uncertainties in lattice simulations -- 2.1.1. Unphysical light-quark masses -- 2.1.2. Lattice spacings and volumes -- 2.2. Renormalisation -- 2.3. Heavy quarks -- 3. Determination of αs and the Quark Masses -- 4. Selected Quantities in Flavour Physics -- 4.1. Leptonic decays of mesons -- 4.2. Neutral-meson mixing and semileptonic decays of pseudoscalar mesons -- 4.3. Hadronic decays -- 4.3.1. Two-body decay amplitudes -- 4.3.2. On the difficulty of studying exclusive nonleptonic B decays -- 5. New Directions -- 5.1. Hadronic effects in the muon's electric dipole moment -- 5.2. Long-distance contributions to hadronic processes -- 5.3. R(D) and R(D∗) -- 6. Summary and Future Prospects -- References -- 6. The Determination of the Strong Coupling Constant -- 1. Introduction -- 2. Theoretical Framework -- 3. Observables -- 4. Brief Historical Overview -- 5. Conclusions -- Acknowledgments -- References -- 7. Hadron Contribution to Vacuum Polarisation -- 1. Introduction and Historical Perspective -- 2. Dispersion Relations -- 3. e+e− Data -- 3.1. Experimental progress toward precision -- 3.2. Progress in combining data -- 4. Use of tau Data.
5. Use of Theory -- 6. Applications -- 6.1. The anomalous magnetic moment of the muon -- 6.2. Running electromagnetic fine structure constant at M2Z -- 7. Perspectives -- References -- 8. The Number of Neutrinos and the Z Line Shape -- 1. Introduction: What is the Number of Families of Fermions? -- 2. Determination of the Number of Light Neutrino Species at LEP and SLC -- 3. Determination of the Z Line Shape Parameters -- 4. Precision Measurements of the Mass and Width of the Z -- 5. The Discovery of the Top Quark, the Higgs Boson Mass -- 6. Discussion and Outlook -- References -- 9. Asymmetries at the Z pole: The Quark and Lepton Quantum Numbers -- 1. Introduction -- 2. Asymmetries and Polarisations at the Z pole -- 3. Forward-Backward Asymmetries -- 3.1. Lepton forward-backward asymmetries -- 3.2. Heavy quark asymmetries -- 3.2.1. Lepton tagging -- 3.2.2. Inclusive measurements -- 3.2.3. Heavy quark asymmetries: Combined results and QCD corrections -- 4. Asymmetries with Polarised Beams -- 4.1. Measurement of the left-right asymmetry (ALR) -- 4.2. Heavy quark asymmetries with polarised beams -- 5. Measurement of the tau Polarisation in Z Decays -- 6. Interpretations -- 6.1. The determinations of sin2 θ eff -- 6.2. Extraction of neutral current couplings -- 7. Summary and Outlook -- References -- 10. The W Boson Mass Measurement -- 1. Introduction -- 2. History of the W Mass Measurement -- 3. Theoretical Considerations of MW -- 4. Tevatron MW Measurements from Run 2 -- 5. Techniques for MW Measurement at Hadron Colliders -- 5.1. Lepton momentum and energy calibration -- 5.2. Hadronic recoil simulation -- 5.3. Backgrounds -- 5.4. Production and decay model -- 5.5. Results -- 6. Summary and Conclusions -- Acknowledgments -- References -- 11. Top Quark Mass -- 1. A Brief History of the Top Quark -- 2. The Short Life of a Top Quark.
3. Conventional Top Quark Mass Measurements at Hadron Colliders -- 3.1. World average anno 2014 -- 3.2. New results in mMCt measurements since 2014 -- 3.3. Prospects for mMC -- 3.4. Extraction of mMCt with different observables -- 4. Top Mass Extraction Using Other Top Mass Definitions -- 5. Top Mass Prospects at Lepton Colliders -- 6. Summary and Outlook -- References -- 12. Global Fits of the Electroweak Standard Theory: Past, Present and Future -- 1. Introduction -- 2. Ingredients of Electroweak Fits -- 2.1. Experimental measurements -- 2.2. Theoretical predictions -- 3. Important Milestones of the Electroweak Fit -- 4. Current Status After the Higgs Discovery -- 5. Constraints on Physics Beyond the ST -- 6. Perspectives of the Electroweak Fit -- 7. Conclusion -- References -- 13. Production of Electroweak Bosons at Hadron Colliders: Theoretical Aspects -- 1. Introduction -- 2. QCD Aspects of Inclusive Vector Boson Production -- 2.1. Rapidity spectrum of W and Z bosons -- 2.1.1. W charge asymmetries -- 2.1.2. Z rapidity spectrum and lepton charge asymmetries -- 2.2. Transverse momentum spectrum -- 2.3. Off-shell gauge-boson production at large invariant mass -- 3. Multiple Production of Vector Bosons -- 4. Associated Production of Vector Bosons with Jets and Heavy Quarks -- 4.1. W+charm quarks -- 4.2. V + QQ̄, with Q = c, b -- 4.3. V + tt ̄-- 5. Conclusions -- References -- 14. A Historical Profile of the Higgs Boson -- 1. Introduction -- 2. Prehistory -- 3. And Then There Was Higgs -- 4. A Phenomenological Profile of the Higgs Boson -- 5. Searches for the Higgs Boson at LEP -- 6. Searches for the Higgs Boson at Hadron Colliders -- 7. Is It Really a/the Higgs Boson? -- 8. More Higgs, Less Higgs? More than Higgs? -- 9. Apres Higgs -- Acknowledgements -- References -- 15. The Higgs Boson Search and Discovery -- 1. Overview.
2. Higgs Searches at the Tevatron -- 2.1. Low mass Higgs boson searches -- 2.2. High mass Higgs boson searches -- 3. Higgs Searches at the LHC -- 3.1. Searches for H → γγ -- 3.2. Searches for H → ZZ(∗) → llll -- 3.3. Searches in H → W+W− → +ν − ̄-- 3.4. Searches in H → τ+ττ̔̈2212; and in H → bb̄ -- 4. The Discovery of the Higgs Boson -- 4.1. ATLAS and CMS discoveries -- 4.2. Tevatron combined results -- 5. Conclusion and Prospects -- References -- 16. Higgs Boson Properties -- 1. Introduction -- 2. Overview of Analyses Used -- 2.1. Rare decays -- 2.2. BSM decays -- 3. Measurements -- 3.1. Mass -- 3.2. Total width -- 3.3. Differential and fiducial cross-sections -- 4. Searches for Deviations -- 4.1. Compatibility in decay kinematics -- 4.1.1. Hypothesis tests on the spin of the new boson -- 4.1.2. Kinematic decay structure of a J = 0 boson -- 4.2. Compatibility in signal yields -- 4.3. Compatibility in couplings -- 5. Summary -- References -- 17. Flavour Physics and Implication for New Phenomena -- 1. Introduction -- 2. Some Historical Remarks -- 3. The Flavour Sector of the Standard Theory -- 3.1. The CKM matrix -- 4. The Flavour Problem -- 5. The Minimal Flavour Violation Hypothesis -- 6. Flavour Symmetry Breaking Beyond MFV -- 7. Flavor Physics and Partial Compositeness -- 8. Dynamical Yukawa Couplings -- 9. Conclusions -- References -- 18. Rare Decays Probing Physics Beyond the Standard Theory -- 1. Historical Role of Rare Decays -- 2. Flavour Structure and Symmetries in the ST -- 3. Quark Flavour Changing Neutral Decays -- 3.1. K+ → π+νν, K0L→ π0νν -- 3.2. B0d→ K∗0μ+μτ̔̈2212; -- 3.3. B0(d,s)→ μ+μτ̔̈2212; -- 4. Lepton Flavour Changing Neutral Currents -- 5. Final Remarks -- Acknowledgments -- References -- 19. Neutrino Masses and Flavor Oscillations -- 1. Neutrinos and Their Sources -- 1.1. From Pauli's hypothesis to the discoveries of neutrinos.
1.2. Where do neutrinos come from?.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic books.
Rolandi, Luigi.
Print version: Maiani, Luciano Standard Theory Of Particle Physics, The: Essays To Celebrate Cern's 60th Anniversary Singapore : World Scientific Publishing Company,c2016 9789814733502
ProQuest (Firm)
Advanced Series On Directions In High Energy Physics
https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6383194 Click to View
language English
format eBook
author Maiani, Luciano.
spellingShingle Maiani, Luciano.
Standard Theory Of Particle Physics, The : Essays To Celebrate Cern's 60th Anniversary.
Advanced Series On Directions In High Energy Physics ;
Intro -- Contents -- Preface -- 1. The Evolution of Quantum Field Theory: From QED to Grand Unification -- 1. The Early Days, Before 1970 -- 2. The New Ideas of the 1970s -- 3. The Strong Interactions -- 4. The First Years of the Standard Model. Quantum Chromodynamics -- 5. The Large N Limit. Planar Diagrams -- 6. Grand Unification -- 7. Magnetic Monopoles, Solitons and Instantons -- 8. Supersymmetry and Gravity -- 9. Calculations -- 10. Conclusions and Outlook -- References -- 2. The Making of the Standard Theory -- 1. Introduction -- 2. Prehistory -- 2.1. The electron spectrum in β-decay -- 2.2. Enter the neutrino -- 2.3. Fermi's Tentativo -- 2.4. The high energy behaviour -- 3. Thirty Years of Unconcern, Thirty Years of Doubt -- 3.1. Fermi's theory as the most successful phenomenology -- 3.2. Fermi's theory as the most inspiring model -- 3.3. Fermi's theory as a an effective field theory -- 4. Gauge Theories -- 4.1. Gauge invariance in classical physics -- 4.2. Gauge invariance in quantum mechanics -- 4.3. From general relativity to particle physics -- 4.4. Yang-Mills and weak interactions -- 4.5. A model for leptons -- 5. Fighting the Infinities -- 5.1. The phenomenology front -- 5.2. Early attempts -- 5.3. The leading divergences -- 5.4. The next-to-leading divergences -- 6. The Standard Model -- 6.1. Which model? -- 6.1.1. No neutral currents -- 6.1.2. The U(1) × SU(2) model -- 6.2. A problem of anomalies -- 6.3. The Standard Model becomes the Standard Theory -- 7. Beyond the Standard Model -- 7.1. Why and how -- 7.2. The most beautiful speculations -- 7.2.1. Grand unified theories -- 7.2.2. Supersymmetry -- References -- 3. Quantum Chromodynamics and Deep Inelastic Scattering -- 1. Hard Scattering before QCD -- 2. The Discovery of Asymptotic Freedom -- 3. Deep Inelastic Scattering -- 4. Factorization and the QCD Improved Parton Model.
5. Parton Shower Monte Carlo -- 6. Jet Cross Sections -- 7. Technical Advances -- 7.1. One-loop calculations -- 8. The Age of the Automation -- 8.1. Tree graphs -- 8.2. NLO calculations -- 9. Outlook for NNLO -- 10. Epilogue -- References -- 4. Electroweak Corrections -- 1. Introduction -- 2. The Pioneering Works -- 3. Constraining mt and mH -- 4. Indirect Constraints and Orientation on New Physics -- 4.1. Oblique parameters -- 4.2. Effective parameters at the Z pole -- 4.3. Effective operators -- 4.4. Examples in specific models -- 5. High Precision in the Standard Model -- Acknowledgments -- References -- 5. Lattice Quantum Chromodynamics -- 1. Introduction -- 2. Introduction to Lattice Phenomenology -- 2.1. Uncertainties in lattice simulations -- 2.1.1. Unphysical light-quark masses -- 2.1.2. Lattice spacings and volumes -- 2.2. Renormalisation -- 2.3. Heavy quarks -- 3. Determination of αs and the Quark Masses -- 4. Selected Quantities in Flavour Physics -- 4.1. Leptonic decays of mesons -- 4.2. Neutral-meson mixing and semileptonic decays of pseudoscalar mesons -- 4.3. Hadronic decays -- 4.3.1. Two-body decay amplitudes -- 4.3.2. On the difficulty of studying exclusive nonleptonic B decays -- 5. New Directions -- 5.1. Hadronic effects in the muon's electric dipole moment -- 5.2. Long-distance contributions to hadronic processes -- 5.3. R(D) and R(D∗) -- 6. Summary and Future Prospects -- References -- 6. The Determination of the Strong Coupling Constant -- 1. Introduction -- 2. Theoretical Framework -- 3. Observables -- 4. Brief Historical Overview -- 5. Conclusions -- Acknowledgments -- References -- 7. Hadron Contribution to Vacuum Polarisation -- 1. Introduction and Historical Perspective -- 2. Dispersion Relations -- 3. e+e− Data -- 3.1. Experimental progress toward precision -- 3.2. Progress in combining data -- 4. Use of tau Data.
5. Use of Theory -- 6. Applications -- 6.1. The anomalous magnetic moment of the muon -- 6.2. Running electromagnetic fine structure constant at M2Z -- 7. Perspectives -- References -- 8. The Number of Neutrinos and the Z Line Shape -- 1. Introduction: What is the Number of Families of Fermions? -- 2. Determination of the Number of Light Neutrino Species at LEP and SLC -- 3. Determination of the Z Line Shape Parameters -- 4. Precision Measurements of the Mass and Width of the Z -- 5. The Discovery of the Top Quark, the Higgs Boson Mass -- 6. Discussion and Outlook -- References -- 9. Asymmetries at the Z pole: The Quark and Lepton Quantum Numbers -- 1. Introduction -- 2. Asymmetries and Polarisations at the Z pole -- 3. Forward-Backward Asymmetries -- 3.1. Lepton forward-backward asymmetries -- 3.2. Heavy quark asymmetries -- 3.2.1. Lepton tagging -- 3.2.2. Inclusive measurements -- 3.2.3. Heavy quark asymmetries: Combined results and QCD corrections -- 4. Asymmetries with Polarised Beams -- 4.1. Measurement of the left-right asymmetry (ALR) -- 4.2. Heavy quark asymmetries with polarised beams -- 5. Measurement of the tau Polarisation in Z Decays -- 6. Interpretations -- 6.1. The determinations of sin2 θ eff -- 6.2. Extraction of neutral current couplings -- 7. Summary and Outlook -- References -- 10. The W Boson Mass Measurement -- 1. Introduction -- 2. History of the W Mass Measurement -- 3. Theoretical Considerations of MW -- 4. Tevatron MW Measurements from Run 2 -- 5. Techniques for MW Measurement at Hadron Colliders -- 5.1. Lepton momentum and energy calibration -- 5.2. Hadronic recoil simulation -- 5.3. Backgrounds -- 5.4. Production and decay model -- 5.5. Results -- 6. Summary and Conclusions -- Acknowledgments -- References -- 11. Top Quark Mass -- 1. A Brief History of the Top Quark -- 2. The Short Life of a Top Quark.
3. Conventional Top Quark Mass Measurements at Hadron Colliders -- 3.1. World average anno 2014 -- 3.2. New results in mMCt measurements since 2014 -- 3.3. Prospects for mMC -- 3.4. Extraction of mMCt with different observables -- 4. Top Mass Extraction Using Other Top Mass Definitions -- 5. Top Mass Prospects at Lepton Colliders -- 6. Summary and Outlook -- References -- 12. Global Fits of the Electroweak Standard Theory: Past, Present and Future -- 1. Introduction -- 2. Ingredients of Electroweak Fits -- 2.1. Experimental measurements -- 2.2. Theoretical predictions -- 3. Important Milestones of the Electroweak Fit -- 4. Current Status After the Higgs Discovery -- 5. Constraints on Physics Beyond the ST -- 6. Perspectives of the Electroweak Fit -- 7. Conclusion -- References -- 13. Production of Electroweak Bosons at Hadron Colliders: Theoretical Aspects -- 1. Introduction -- 2. QCD Aspects of Inclusive Vector Boson Production -- 2.1. Rapidity spectrum of W and Z bosons -- 2.1.1. W charge asymmetries -- 2.1.2. Z rapidity spectrum and lepton charge asymmetries -- 2.2. Transverse momentum spectrum -- 2.3. Off-shell gauge-boson production at large invariant mass -- 3. Multiple Production of Vector Bosons -- 4. Associated Production of Vector Bosons with Jets and Heavy Quarks -- 4.1. W+charm quarks -- 4.2. V + QQ̄, with Q = c, b -- 4.3. V + tt ̄-- 5. Conclusions -- References -- 14. A Historical Profile of the Higgs Boson -- 1. Introduction -- 2. Prehistory -- 3. And Then There Was Higgs -- 4. A Phenomenological Profile of the Higgs Boson -- 5. Searches for the Higgs Boson at LEP -- 6. Searches for the Higgs Boson at Hadron Colliders -- 7. Is It Really a/the Higgs Boson? -- 8. More Higgs, Less Higgs? More than Higgs? -- 9. Apres Higgs -- Acknowledgements -- References -- 15. The Higgs Boson Search and Discovery -- 1. Overview.
2. Higgs Searches at the Tevatron -- 2.1. Low mass Higgs boson searches -- 2.2. High mass Higgs boson searches -- 3. Higgs Searches at the LHC -- 3.1. Searches for H → γγ -- 3.2. Searches for H → ZZ(∗) → llll -- 3.3. Searches in H → W+W− → +ν − ̄-- 3.4. Searches in H → τ+ττ̔̈2212; and in H → bb̄ -- 4. The Discovery of the Higgs Boson -- 4.1. ATLAS and CMS discoveries -- 4.2. Tevatron combined results -- 5. Conclusion and Prospects -- References -- 16. Higgs Boson Properties -- 1. Introduction -- 2. Overview of Analyses Used -- 2.1. Rare decays -- 2.2. BSM decays -- 3. Measurements -- 3.1. Mass -- 3.2. Total width -- 3.3. Differential and fiducial cross-sections -- 4. Searches for Deviations -- 4.1. Compatibility in decay kinematics -- 4.1.1. Hypothesis tests on the spin of the new boson -- 4.1.2. Kinematic decay structure of a J = 0 boson -- 4.2. Compatibility in signal yields -- 4.3. Compatibility in couplings -- 5. Summary -- References -- 17. Flavour Physics and Implication for New Phenomena -- 1. Introduction -- 2. Some Historical Remarks -- 3. The Flavour Sector of the Standard Theory -- 3.1. The CKM matrix -- 4. The Flavour Problem -- 5. The Minimal Flavour Violation Hypothesis -- 6. Flavour Symmetry Breaking Beyond MFV -- 7. Flavor Physics and Partial Compositeness -- 8. Dynamical Yukawa Couplings -- 9. Conclusions -- References -- 18. Rare Decays Probing Physics Beyond the Standard Theory -- 1. Historical Role of Rare Decays -- 2. Flavour Structure and Symmetries in the ST -- 3. Quark Flavour Changing Neutral Decays -- 3.1. K+ → π+νν, K0L→ π0νν -- 3.2. B0d→ K∗0μ+μτ̔̈2212; -- 3.3. B0(d,s)→ μ+μτ̔̈2212; -- 4. Lepton Flavour Changing Neutral Currents -- 5. Final Remarks -- Acknowledgments -- References -- 19. Neutrino Masses and Flavor Oscillations -- 1. Neutrinos and Their Sources -- 1.1. From Pauli's hypothesis to the discoveries of neutrinos.
1.2. Where do neutrinos come from?.
author_facet Maiani, Luciano.
Rolandi, Luigi.
author_variant l m lm
author2 Rolandi, Luigi.
author2_variant l r lr
author2_role TeilnehmendeR
author_sort Maiani, Luciano.
title Standard Theory Of Particle Physics, The : Essays To Celebrate Cern's 60th Anniversary.
title_sub Essays To Celebrate Cern's 60th Anniversary.
title_full Standard Theory Of Particle Physics, The : Essays To Celebrate Cern's 60th Anniversary.
title_fullStr Standard Theory Of Particle Physics, The : Essays To Celebrate Cern's 60th Anniversary.
title_full_unstemmed Standard Theory Of Particle Physics, The : Essays To Celebrate Cern's 60th Anniversary.
title_auth Standard Theory Of Particle Physics, The : Essays To Celebrate Cern's 60th Anniversary.
title_new Standard Theory Of Particle Physics, The :
title_sort standard theory of particle physics, the : essays to celebrate cern's 60th anniversary.
series Advanced Series On Directions In High Energy Physics ;
series2 Advanced Series On Directions In High Energy Physics ;
publisher World Scientific Publishing Company,
publishDate 2016
physical 1 online resource (483 pages)
edition 1st ed.
contents Intro -- Contents -- Preface -- 1. The Evolution of Quantum Field Theory: From QED to Grand Unification -- 1. The Early Days, Before 1970 -- 2. The New Ideas of the 1970s -- 3. The Strong Interactions -- 4. The First Years of the Standard Model. Quantum Chromodynamics -- 5. The Large N Limit. Planar Diagrams -- 6. Grand Unification -- 7. Magnetic Monopoles, Solitons and Instantons -- 8. Supersymmetry and Gravity -- 9. Calculations -- 10. Conclusions and Outlook -- References -- 2. The Making of the Standard Theory -- 1. Introduction -- 2. Prehistory -- 2.1. The electron spectrum in β-decay -- 2.2. Enter the neutrino -- 2.3. Fermi's Tentativo -- 2.4. The high energy behaviour -- 3. Thirty Years of Unconcern, Thirty Years of Doubt -- 3.1. Fermi's theory as the most successful phenomenology -- 3.2. Fermi's theory as the most inspiring model -- 3.3. Fermi's theory as a an effective field theory -- 4. Gauge Theories -- 4.1. Gauge invariance in classical physics -- 4.2. Gauge invariance in quantum mechanics -- 4.3. From general relativity to particle physics -- 4.4. Yang-Mills and weak interactions -- 4.5. A model for leptons -- 5. Fighting the Infinities -- 5.1. The phenomenology front -- 5.2. Early attempts -- 5.3. The leading divergences -- 5.4. The next-to-leading divergences -- 6. The Standard Model -- 6.1. Which model? -- 6.1.1. No neutral currents -- 6.1.2. The U(1) × SU(2) model -- 6.2. A problem of anomalies -- 6.3. The Standard Model becomes the Standard Theory -- 7. Beyond the Standard Model -- 7.1. Why and how -- 7.2. The most beautiful speculations -- 7.2.1. Grand unified theories -- 7.2.2. Supersymmetry -- References -- 3. Quantum Chromodynamics and Deep Inelastic Scattering -- 1. Hard Scattering before QCD -- 2. The Discovery of Asymptotic Freedom -- 3. Deep Inelastic Scattering -- 4. Factorization and the QCD Improved Parton Model.
5. Parton Shower Monte Carlo -- 6. Jet Cross Sections -- 7. Technical Advances -- 7.1. One-loop calculations -- 8. The Age of the Automation -- 8.1. Tree graphs -- 8.2. NLO calculations -- 9. Outlook for NNLO -- 10. Epilogue -- References -- 4. Electroweak Corrections -- 1. Introduction -- 2. The Pioneering Works -- 3. Constraining mt and mH -- 4. Indirect Constraints and Orientation on New Physics -- 4.1. Oblique parameters -- 4.2. Effective parameters at the Z pole -- 4.3. Effective operators -- 4.4. Examples in specific models -- 5. High Precision in the Standard Model -- Acknowledgments -- References -- 5. Lattice Quantum Chromodynamics -- 1. Introduction -- 2. Introduction to Lattice Phenomenology -- 2.1. Uncertainties in lattice simulations -- 2.1.1. Unphysical light-quark masses -- 2.1.2. Lattice spacings and volumes -- 2.2. Renormalisation -- 2.3. Heavy quarks -- 3. Determination of αs and the Quark Masses -- 4. Selected Quantities in Flavour Physics -- 4.1. Leptonic decays of mesons -- 4.2. Neutral-meson mixing and semileptonic decays of pseudoscalar mesons -- 4.3. Hadronic decays -- 4.3.1. Two-body decay amplitudes -- 4.3.2. On the difficulty of studying exclusive nonleptonic B decays -- 5. New Directions -- 5.1. Hadronic effects in the muon's electric dipole moment -- 5.2. Long-distance contributions to hadronic processes -- 5.3. R(D) and R(D∗) -- 6. Summary and Future Prospects -- References -- 6. The Determination of the Strong Coupling Constant -- 1. Introduction -- 2. Theoretical Framework -- 3. Observables -- 4. Brief Historical Overview -- 5. Conclusions -- Acknowledgments -- References -- 7. Hadron Contribution to Vacuum Polarisation -- 1. Introduction and Historical Perspective -- 2. Dispersion Relations -- 3. e+e− Data -- 3.1. Experimental progress toward precision -- 3.2. Progress in combining data -- 4. Use of tau Data.
5. Use of Theory -- 6. Applications -- 6.1. The anomalous magnetic moment of the muon -- 6.2. Running electromagnetic fine structure constant at M2Z -- 7. Perspectives -- References -- 8. The Number of Neutrinos and the Z Line Shape -- 1. Introduction: What is the Number of Families of Fermions? -- 2. Determination of the Number of Light Neutrino Species at LEP and SLC -- 3. Determination of the Z Line Shape Parameters -- 4. Precision Measurements of the Mass and Width of the Z -- 5. The Discovery of the Top Quark, the Higgs Boson Mass -- 6. Discussion and Outlook -- References -- 9. Asymmetries at the Z pole: The Quark and Lepton Quantum Numbers -- 1. Introduction -- 2. Asymmetries and Polarisations at the Z pole -- 3. Forward-Backward Asymmetries -- 3.1. Lepton forward-backward asymmetries -- 3.2. Heavy quark asymmetries -- 3.2.1. Lepton tagging -- 3.2.2. Inclusive measurements -- 3.2.3. Heavy quark asymmetries: Combined results and QCD corrections -- 4. Asymmetries with Polarised Beams -- 4.1. Measurement of the left-right asymmetry (ALR) -- 4.2. Heavy quark asymmetries with polarised beams -- 5. Measurement of the tau Polarisation in Z Decays -- 6. Interpretations -- 6.1. The determinations of sin2 θ eff -- 6.2. Extraction of neutral current couplings -- 7. Summary and Outlook -- References -- 10. The W Boson Mass Measurement -- 1. Introduction -- 2. History of the W Mass Measurement -- 3. Theoretical Considerations of MW -- 4. Tevatron MW Measurements from Run 2 -- 5. Techniques for MW Measurement at Hadron Colliders -- 5.1. Lepton momentum and energy calibration -- 5.2. Hadronic recoil simulation -- 5.3. Backgrounds -- 5.4. Production and decay model -- 5.5. Results -- 6. Summary and Conclusions -- Acknowledgments -- References -- 11. Top Quark Mass -- 1. A Brief History of the Top Quark -- 2. The Short Life of a Top Quark.
3. Conventional Top Quark Mass Measurements at Hadron Colliders -- 3.1. World average anno 2014 -- 3.2. New results in mMCt measurements since 2014 -- 3.3. Prospects for mMC -- 3.4. Extraction of mMCt with different observables -- 4. Top Mass Extraction Using Other Top Mass Definitions -- 5. Top Mass Prospects at Lepton Colliders -- 6. Summary and Outlook -- References -- 12. Global Fits of the Electroweak Standard Theory: Past, Present and Future -- 1. Introduction -- 2. Ingredients of Electroweak Fits -- 2.1. Experimental measurements -- 2.2. Theoretical predictions -- 3. Important Milestones of the Electroweak Fit -- 4. Current Status After the Higgs Discovery -- 5. Constraints on Physics Beyond the ST -- 6. Perspectives of the Electroweak Fit -- 7. Conclusion -- References -- 13. Production of Electroweak Bosons at Hadron Colliders: Theoretical Aspects -- 1. Introduction -- 2. QCD Aspects of Inclusive Vector Boson Production -- 2.1. Rapidity spectrum of W and Z bosons -- 2.1.1. W charge asymmetries -- 2.1.2. Z rapidity spectrum and lepton charge asymmetries -- 2.2. Transverse momentum spectrum -- 2.3. Off-shell gauge-boson production at large invariant mass -- 3. Multiple Production of Vector Bosons -- 4. Associated Production of Vector Bosons with Jets and Heavy Quarks -- 4.1. W+charm quarks -- 4.2. V + QQ̄, with Q = c, b -- 4.3. V + tt ̄-- 5. Conclusions -- References -- 14. A Historical Profile of the Higgs Boson -- 1. Introduction -- 2. Prehistory -- 3. And Then There Was Higgs -- 4. A Phenomenological Profile of the Higgs Boson -- 5. Searches for the Higgs Boson at LEP -- 6. Searches for the Higgs Boson at Hadron Colliders -- 7. Is It Really a/the Higgs Boson? -- 8. More Higgs, Less Higgs? More than Higgs? -- 9. Apres Higgs -- Acknowledgements -- References -- 15. The Higgs Boson Search and Discovery -- 1. Overview.
2. Higgs Searches at the Tevatron -- 2.1. Low mass Higgs boson searches -- 2.2. High mass Higgs boson searches -- 3. Higgs Searches at the LHC -- 3.1. Searches for H → γγ -- 3.2. Searches for H → ZZ(∗) → llll -- 3.3. Searches in H → W+W− → +ν − ̄-- 3.4. Searches in H → τ+ττ̔̈2212; and in H → bb̄ -- 4. The Discovery of the Higgs Boson -- 4.1. ATLAS and CMS discoveries -- 4.2. Tevatron combined results -- 5. Conclusion and Prospects -- References -- 16. Higgs Boson Properties -- 1. Introduction -- 2. Overview of Analyses Used -- 2.1. Rare decays -- 2.2. BSM decays -- 3. Measurements -- 3.1. Mass -- 3.2. Total width -- 3.3. Differential and fiducial cross-sections -- 4. Searches for Deviations -- 4.1. Compatibility in decay kinematics -- 4.1.1. Hypothesis tests on the spin of the new boson -- 4.1.2. Kinematic decay structure of a J = 0 boson -- 4.2. Compatibility in signal yields -- 4.3. Compatibility in couplings -- 5. Summary -- References -- 17. Flavour Physics and Implication for New Phenomena -- 1. Introduction -- 2. Some Historical Remarks -- 3. The Flavour Sector of the Standard Theory -- 3.1. The CKM matrix -- 4. The Flavour Problem -- 5. The Minimal Flavour Violation Hypothesis -- 6. Flavour Symmetry Breaking Beyond MFV -- 7. Flavor Physics and Partial Compositeness -- 8. Dynamical Yukawa Couplings -- 9. Conclusions -- References -- 18. Rare Decays Probing Physics Beyond the Standard Theory -- 1. Historical Role of Rare Decays -- 2. Flavour Structure and Symmetries in the ST -- 3. Quark Flavour Changing Neutral Decays -- 3.1. K+ → π+νν, K0L→ π0νν -- 3.2. B0d→ K∗0μ+μτ̔̈2212; -- 3.3. B0(d,s)→ μ+μτ̔̈2212; -- 4. Lepton Flavour Changing Neutral Currents -- 5. Final Remarks -- Acknowledgments -- References -- 19. Neutrino Masses and Flavor Oscillations -- 1. Neutrinos and Their Sources -- 1.1. From Pauli's hypothesis to the discoveries of neutrinos.
1.2. Where do neutrinos come from?.
isbn 9789814733519
9789814733502
genre Electronic books.
genre_facet Electronic books.
url https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6383194
illustrated Not Illustrated
oclc_num 1231606653
work_keys_str_mv AT maianiluciano standardtheoryofparticlephysicstheessaystocelebratecerns60thanniversary
AT rolandiluigi standardtheoryofparticlephysicstheessaystocelebratecerns60thanniversary
status_str n
ids_txt_mv (MiAaPQ)5006383194
(Au-PeEL)EBL6383194
(OCoLC)1231606653
carrierType_str_mv cr
hierarchy_parent_title Advanced Series On Directions In High Energy Physics ; v.26
is_hierarchy_title Standard Theory Of Particle Physics, The : Essays To Celebrate Cern's 60th Anniversary.
container_title Advanced Series On Directions In High Energy Physics ; v.26
author2_original_writing_str_mv noLinkedField
marc_error Minor Error : Unlikely sequence of punctuation mark found in Greek character set, it likely a number, inserting change to default character set --- [ 505 : a ]
Minor Error : Unlikely sequence of punctuation mark found in Greek character set, it likely a number, inserting change to default character set --- [ 505 : a ]
Minor Error : Unlikely sequence of punctuation mark found in Greek character set, it likely a number, inserting change to default character set --- [ 505 : a ]
_version_ 1792331057144528897
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>11399nam a22004573i 4500</leader><controlfield tag="001">5006383194</controlfield><controlfield tag="003">MiAaPQ</controlfield><controlfield tag="005">20240229073836.0</controlfield><controlfield tag="006">m o d | </controlfield><controlfield tag="007">cr cnu||||||||</controlfield><controlfield tag="008">240229s2016 xx o ||||0 eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814733519</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789814733502</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(MiAaPQ)5006383194</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(Au-PeEL)EBL6383194</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1231606653</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">MiAaPQ</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">MiAaPQ</subfield><subfield code="d">MiAaPQ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Maiani, Luciano.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Standard Theory Of Particle Physics, The :</subfield><subfield code="b">Essays To Celebrate Cern's 60th Anniversary.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore :</subfield><subfield code="b">World Scientific Publishing Company,</subfield><subfield code="c">2016.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2016.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (483 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Advanced Series On Directions In High Energy Physics ;</subfield><subfield code="v">v.26</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Intro -- Contents -- Preface -- 1. The Evolution of Quantum Field Theory: From QED to Grand Unification -- 1. The Early Days, Before 1970 -- 2. The New Ideas of the 1970s -- 3. The Strong Interactions -- 4. The First Years of the Standard Model. Quantum Chromodynamics -- 5. The Large N Limit. Planar Diagrams -- 6. Grand Unification -- 7. Magnetic Monopoles, Solitons and Instantons -- 8. Supersymmetry and Gravity -- 9. Calculations -- 10. Conclusions and Outlook -- References -- 2. The Making of the Standard Theory -- 1. Introduction -- 2. Prehistory -- 2.1. The electron spectrum in β-decay -- 2.2. Enter the neutrino -- 2.3. Fermi's Tentativo -- 2.4. The high energy behaviour -- 3. Thirty Years of Unconcern, Thirty Years of Doubt -- 3.1. Fermi's theory as the most successful phenomenology -- 3.2. Fermi's theory as the most inspiring model -- 3.3. Fermi's theory as a an effective field theory -- 4. Gauge Theories -- 4.1. Gauge invariance in classical physics -- 4.2. Gauge invariance in quantum mechanics -- 4.3. From general relativity to particle physics -- 4.4. Yang-Mills and weak interactions -- 4.5. A model for leptons -- 5. Fighting the Infinities -- 5.1. The phenomenology front -- 5.2. Early attempts -- 5.3. The leading divergences -- 5.4. The next-to-leading divergences -- 6. The Standard Model -- 6.1. Which model? -- 6.1.1. No neutral currents -- 6.1.2. The U(1) × SU(2) model -- 6.2. A problem of anomalies -- 6.3. The Standard Model becomes the Standard Theory -- 7. Beyond the Standard Model -- 7.1. Why and how -- 7.2. The most beautiful speculations -- 7.2.1. Grand unified theories -- 7.2.2. Supersymmetry -- References -- 3. Quantum Chromodynamics and Deep Inelastic Scattering -- 1. Hard Scattering before QCD -- 2. The Discovery of Asymptotic Freedom -- 3. Deep Inelastic Scattering -- 4. Factorization and the QCD Improved Parton Model.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5. Parton Shower Monte Carlo -- 6. Jet Cross Sections -- 7. Technical Advances -- 7.1. One-loop calculations -- 8. The Age of the Automation -- 8.1. Tree graphs -- 8.2. NLO calculations -- 9. Outlook for NNLO -- 10. Epilogue -- References -- 4. Electroweak Corrections -- 1. Introduction -- 2. The Pioneering Works -- 3. Constraining mt and mH -- 4. Indirect Constraints and Orientation on New Physics -- 4.1. Oblique parameters -- 4.2. Effective parameters at the Z pole -- 4.3. Effective operators -- 4.4. Examples in specific models -- 5. High Precision in the Standard Model -- Acknowledgments -- References -- 5. Lattice Quantum Chromodynamics -- 1. Introduction -- 2. Introduction to Lattice Phenomenology -- 2.1. Uncertainties in lattice simulations -- 2.1.1. Unphysical light-quark masses -- 2.1.2. Lattice spacings and volumes -- 2.2. Renormalisation -- 2.3. Heavy quarks -- 3. Determination of αs and the Quark Masses -- 4. Selected Quantities in Flavour Physics -- 4.1. Leptonic decays of mesons -- 4.2. Neutral-meson mixing and semileptonic decays of pseudoscalar mesons -- 4.3. Hadronic decays -- 4.3.1. Two-body decay amplitudes -- 4.3.2. On the difficulty of studying exclusive nonleptonic B decays -- 5. New Directions -- 5.1. Hadronic effects in the muon's electric dipole moment -- 5.2. Long-distance contributions to hadronic processes -- 5.3. R(D) and R(D∗) -- 6. Summary and Future Prospects -- References -- 6. The Determination of the Strong Coupling Constant -- 1. Introduction -- 2. Theoretical Framework -- 3. Observables -- 4. Brief Historical Overview -- 5. Conclusions -- Acknowledgments -- References -- 7. Hadron Contribution to Vacuum Polarisation -- 1. Introduction and Historical Perspective -- 2. Dispersion Relations -- 3. e+e− Data -- 3.1. Experimental progress toward precision -- 3.2. Progress in combining data -- 4. Use of tau Data.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5. Use of Theory -- 6. Applications -- 6.1. The anomalous magnetic moment of the muon -- 6.2. Running electromagnetic fine structure constant at M2Z -- 7. Perspectives -- References -- 8. The Number of Neutrinos and the Z Line Shape -- 1. Introduction: What is the Number of Families of Fermions? -- 2. Determination of the Number of Light Neutrino Species at LEP and SLC -- 3. Determination of the Z Line Shape Parameters -- 4. Precision Measurements of the Mass and Width of the Z -- 5. The Discovery of the Top Quark, the Higgs Boson Mass -- 6. Discussion and Outlook -- References -- 9. Asymmetries at the Z pole: The Quark and Lepton Quantum Numbers -- 1. Introduction -- 2. Asymmetries and Polarisations at the Z pole -- 3. Forward-Backward Asymmetries -- 3.1. Lepton forward-backward asymmetries -- 3.2. Heavy quark asymmetries -- 3.2.1. Lepton tagging -- 3.2.2. Inclusive measurements -- 3.2.3. Heavy quark asymmetries: Combined results and QCD corrections -- 4. Asymmetries with Polarised Beams -- 4.1. Measurement of the left-right asymmetry (ALR) -- 4.2. Heavy quark asymmetries with polarised beams -- 5. Measurement of the tau Polarisation in Z Decays -- 6. Interpretations -- 6.1. The determinations of sin2 θ eff -- 6.2. Extraction of neutral current couplings -- 7. Summary and Outlook -- References -- 10. The W Boson Mass Measurement -- 1. Introduction -- 2. History of the W Mass Measurement -- 3. Theoretical Considerations of MW -- 4. Tevatron MW Measurements from Run 2 -- 5. Techniques for MW Measurement at Hadron Colliders -- 5.1. Lepton momentum and energy calibration -- 5.2. Hadronic recoil simulation -- 5.3. Backgrounds -- 5.4. Production and decay model -- 5.5. Results -- 6. Summary and Conclusions -- Acknowledgments -- References -- 11. Top Quark Mass -- 1. A Brief History of the Top Quark -- 2. The Short Life of a Top Quark.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3. Conventional Top Quark Mass Measurements at Hadron Colliders -- 3.1. World average anno 2014 -- 3.2. New results in mMCt measurements since 2014 -- 3.3. Prospects for mMC -- 3.4. Extraction of mMCt with different observables -- 4. Top Mass Extraction Using Other Top Mass Definitions -- 5. Top Mass Prospects at Lepton Colliders -- 6. Summary and Outlook -- References -- 12. Global Fits of the Electroweak Standard Theory: Past, Present and Future -- 1. Introduction -- 2. Ingredients of Electroweak Fits -- 2.1. Experimental measurements -- 2.2. Theoretical predictions -- 3. Important Milestones of the Electroweak Fit -- 4. Current Status After the Higgs Discovery -- 5. Constraints on Physics Beyond the ST -- 6. Perspectives of the Electroweak Fit -- 7. Conclusion -- References -- 13. Production of Electroweak Bosons at Hadron Colliders: Theoretical Aspects -- 1. Introduction -- 2. QCD Aspects of Inclusive Vector Boson Production -- 2.1. Rapidity spectrum of W and Z bosons -- 2.1.1. W charge asymmetries -- 2.1.2. Z rapidity spectrum and lepton charge asymmetries -- 2.2. Transverse momentum spectrum -- 2.3. Off-shell gauge-boson production at large invariant mass -- 3. Multiple Production of Vector Bosons -- 4. Associated Production of Vector Bosons with Jets and Heavy Quarks -- 4.1. W+charm quarks -- 4.2. V + QQ̄, with Q = c, b -- 4.3. V + tt ̄-- 5. Conclusions -- References -- 14. A Historical Profile of the Higgs Boson -- 1. Introduction -- 2. Prehistory -- 3. And Then There Was Higgs -- 4. A Phenomenological Profile of the Higgs Boson -- 5. Searches for the Higgs Boson at LEP -- 6. Searches for the Higgs Boson at Hadron Colliders -- 7. Is It Really a/the Higgs Boson? -- 8. More Higgs, Less Higgs? More than Higgs? -- 9. Apres Higgs -- Acknowledgements -- References -- 15. The Higgs Boson Search and Discovery -- 1. Overview.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2. Higgs Searches at the Tevatron -- 2.1. Low mass Higgs boson searches -- 2.2. High mass Higgs boson searches -- 3. Higgs Searches at the LHC -- 3.1. Searches for H → γγ -- 3.2. Searches for H → ZZ(∗) → llll -- 3.3. Searches in H → W+W− → +ν − ̄-- 3.4. Searches in H → τ+ττ̔̈2212; and in H → bb̄ -- 4. The Discovery of the Higgs Boson -- 4.1. ATLAS and CMS discoveries -- 4.2. Tevatron combined results -- 5. Conclusion and Prospects -- References -- 16. Higgs Boson Properties -- 1. Introduction -- 2. Overview of Analyses Used -- 2.1. Rare decays -- 2.2. BSM decays -- 3. Measurements -- 3.1. Mass -- 3.2. Total width -- 3.3. Differential and fiducial cross-sections -- 4. Searches for Deviations -- 4.1. Compatibility in decay kinematics -- 4.1.1. Hypothesis tests on the spin of the new boson -- 4.1.2. Kinematic decay structure of a J = 0 boson -- 4.2. Compatibility in signal yields -- 4.3. Compatibility in couplings -- 5. Summary -- References -- 17. Flavour Physics and Implication for New Phenomena -- 1. Introduction -- 2. Some Historical Remarks -- 3. The Flavour Sector of the Standard Theory -- 3.1. The CKM matrix -- 4. The Flavour Problem -- 5. The Minimal Flavour Violation Hypothesis -- 6. Flavour Symmetry Breaking Beyond MFV -- 7. Flavor Physics and Partial Compositeness -- 8. Dynamical Yukawa Couplings -- 9. Conclusions -- References -- 18. Rare Decays Probing Physics Beyond the Standard Theory -- 1. Historical Role of Rare Decays -- 2. Flavour Structure and Symmetries in the ST -- 3. Quark Flavour Changing Neutral Decays -- 3.1. K+ → π+νν, K0L→ π0νν -- 3.2. B0d→ K∗0μ+μτ̔̈2212; -- 3.3. B0(d,s)→ μ+μτ̔̈2212; -- 4. Lepton Flavour Changing Neutral Currents -- 5. Final Remarks -- Acknowledgments -- References -- 19. Neutrino Masses and Flavor Oscillations -- 1. Neutrinos and Their Sources -- 1.1. From Pauli's hypothesis to the discoveries of neutrinos.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1.2. Where do neutrinos come from?.</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources.</subfield></datafield><datafield tag="590" ind1=" " ind2=" "><subfield code="a">Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. </subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rolandi, Luigi.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Maiani, Luciano</subfield><subfield code="t">Standard Theory Of Particle Physics, The: Essays To Celebrate Cern's 60th Anniversary</subfield><subfield code="d">Singapore : World Scientific Publishing Company,c2016</subfield><subfield code="z">9789814733502</subfield></datafield><datafield tag="797" ind1="2" ind2=" "><subfield code="a">ProQuest (Firm)</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Advanced Series On Directions In High Energy Physics</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6383194</subfield><subfield code="z">Click to View</subfield></datafield></record></collection>