Demystifying Climate Models : : A Users Guide to Earth System Models.

Saved in:
Bibliographic Details
Superior document:Earth Systems Data and Models Series ; v.2
:
TeilnehmendeR:
Place / Publishing House:Berlin, Heidelberg : : Springer Berlin / Heidelberg,, 2016.
©2016.
Year of Publication:2016
Edition:1st ed.
Language:English
Series:Earth Systems Data and Models Series
Online Access:
Physical Description:1 online resource (282 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Intro
  • Acknowledgments
  • Contents
  • About the Authors
  • Introduction
  • Part I Basic Principles and the Problem of Climate Forecasts
  • 1 Key Concepts in Climate Modeling
  • 1.1 What Is Climate?
  • 1.2 What Is a Model?
  • 1.3 Uncertainty
  • 1.3.1 Model Uncertainty
  • 1.3.2 Scenario Uncertainty
  • 1.3.3 Initial Condition Uncertainty
  • 1.3.4 Total Uncertainty
  • 1.4 Summary
  • 2 Components of the Climate System
  • 2.1 Components of the Earth System
  • 2.1.1 The Atmosphere
  • 2.1.2 The Ocean and Sea Ice
  • 2.1.3 Terrestrial Systems
  • 2.2 Timescales and Interactions
  • 2.3 Summary
  • 3 Climate Change and Global Warming
  • 3.1 Coupling of the Pieces
  • 3.2 Forcing the Climate System
  • 3.3 Climate History
  • 3.4 Understanding Where the Energy Goes
  • 3.5 Summary
  • 4 Essence of a Climate Model
  • 4.1 Scientific Principles in Climate Models
  • 4.2 Basic Formulation and Constraints
  • 4.2.1 Finite Pieces
  • 4.2.2 Processes
  • 4.2.3 Marching Forward in Time
  • 4.2.4 Examples of Finite Element Models
  • 4.3 Coupled Models
  • 4.4 A Brief History of Climate Models
  • 4.5 Computational Aspects of Climate Modeling
  • 4.5.1 The Computer Program
  • 4.5.2 Running a Model
  • 4.6 Summary
  • Part II Model Mechanics
  • 5 Simulating the Atmosphere
  • 5.1 Role of the Atmosphere in Climate
  • 5.2 Types of Atmospheric Models
  • 5.3 General Circulation
  • 5.4 Parts of an Atmosphere Model
  • 5.4.1 Clouds
  • 5.4.2 Radiative Energy
  • 5.4.3 Chemistry
  • 5.5 Weather Models Versus Climate Models
  • 5.6 Challenges for Atmospheric Models
  • 5.6.1 Uncertain and Unknown Processes
  • 5.6.2 Scales
  • 5.6.3 Feedbacks
  • 5.6.4 Cloud Feedback
  • 5.7 Applications: Impacts of Tropical Cyclones
  • 5.8 Summary
  • 6 Simulating the Ocean and Sea Ice
  • 6.1 Understanding the Ocean
  • 6.1.1 Structure of the Ocean
  • 6.1.2 Forcing of the Ocean
  • 6.2 "Limited" Ocean Models.
  • 6.3 Ocean General Circulation Models
  • 6.3.1 Topography and Grids
  • 6.3.2 Deep Ocean
  • 6.3.3 Eddies in the Ocean
  • 6.3.4 Surface Ocean
  • 6.3.5 Structure of an Ocean Model
  • 6.3.6 Ocean Versus Atmosphere Models
  • 6.4 Sea-Ice Modeling
  • 6.5 The Ocean Carbon Cycle
  • 6.6 Challenges
  • 6.6.1 Challenges in Ocean Modeling
  • 6.6.2 Challenges in Sea Ice Modeling
  • 6.7 Applications: Sea-Level Rise, Norfolk, Virginia
  • 6.8 Summary
  • 7 Simulating Terrestrial Systems
  • 7.1 Role of the Land Surface in Climate
  • 7.1.1 Precipitation and the Water Cycle
  • 7.1.2 Vegetation
  • 7.1.3 Ice and Snow
  • 7.1.4 Human Impacts
  • 7.2 Building a Land Surface Simulation
  • 7.2.1 Evolution of a Terrestrial System Model
  • 7.2.2 Biogeophysics: Surface Fluxes and Heat
  • 7.2.3 Biogeophysics: Hydrology
  • 7.2.4 Ecosystem Dynamics (Vegetation and Land Cover/Use Change)
  • 7.2.5 Summary: Structure of a Land Model
  • 7.3 Biogeochemistry: Carbon and Other Nutrient Cycles
  • 7.4 Land-Atmosphere Interactions
  • 7.5 Land Ice
  • 7.6 Humans
  • 7.7 Integrated Assessment Models
  • 7.8 Challenges in Terrestrial System Modeling
  • 7.8.1 Ice Sheet Modeling
  • 7.8.2 Surface Albedo Feedback
  • 7.8.3 Carbon Feedback
  • 7.9 Applications: Wolf and Moose Ecosystem, Isle Royale National Park
  • 7.10 Summary
  • 8 Bringing the System Together: Coupling and Complexity
  • 8.1 Types of Coupled Models
  • 8.1.1 Regional Models
  • 8.1.2 Statistical Models and Downscaling
  • 8.1.3 Integrated Assessment Models
  • 8.2 Coupling Models Together: Common Threads
  • 8.3 Key Interactions in Climate Models
  • 8.3.1 Intermixing of the Feedback Loops
  • 8.3.2 Water Feedbacks
  • 8.3.3 Albedo Feedbacks
  • 8.3.4 Ocean Feedbacks
  • 8.3.5 Sea-Level Change
  • 8.4 Coupled Modes of Climate Variability
  • 8.4.1 Tropical Cyclones
  • 8.4.2 Monsoons
  • 8.4.3 El Niño
  • 8.4.4 Precipitation and the Land Surface.
  • 8.4.5 Carbon Cycle and Climate
  • 8.5 Challenges
  • 8.6 Applications: Integrated Assessment of Water Resources
  • 8.7 Summary
  • Part III Using Models
  • 9 Model Evaluation
  • 9.1 Evaluation Versus Validation
  • 9.1.1 Evaluation and Missing Information
  • 9.1.2 Observations
  • 9.1.3 Model Improvement
  • 9.2 Climate Model Evaluation
  • 9.2.1 Types of Comparisons
  • 9.2.2 Model Simulations
  • 9.2.3 Using Model Evaluation to Guide Further Observations
  • 9.3 Predicting the Future: Forecasts Versus Projections
  • 9.3.1 Forecasts
  • 9.3.2 Projections
  • 9.4 Applications of Climate Model Evaluation: Ozone Assessment
  • 9.5 Summary
  • 10 Predictability
  • 10.1 Knowledge and Key Uncertainties
  • 10.1.1 Physics of the System
  • 10.1.2 Variability
  • 10.1.3 Sensitivity to Changes
  • 10.2 Types of Uncertainty and Timescales
  • 10.2.1 Predicting the Near Term: Initial Condition Uncertainty
  • 10.2.2 Predicting the Next 30-50 Years: Scenario Uncertainty
  • 10.2.3 Predicting the Long Term: Model Uncertainty Versus Scenario Uncertainty
  • 10.3 Ensembles: Multiple Models and Simulations
  • 10.4 Applications: Developing and Using Scenarios
  • 10.5 Summary
  • 11 Results of Current Models
  • 11.1 Organization of Climate Model Results
  • 11.2 Prediction and Uncertainty
  • 11.2.1 Goals of Prediction
  • 11.2.2 Uncertainty
  • 11.2.3 Why Models?
  • 11.3 What Is the Confidence in Predictions?
  • 11.3.1 Confident Predictions
  • 11.3.1.1 Temperature
  • 11.3.1.2 Precipitation
  • 11.3.2 Uncertain Predictions: Where to Be Cautious
  • 11.3.3 Bad Predictions
  • 11.3.4 How Do We Predict Extreme Events?
  • 11.4 Climate Impacts and Extremes
  • 11.4.1 Tropical Cyclones
  • 11.4.2 Stream Flow and Extreme Events
  • 11.4.3 Electricity Demand and Extreme Events
  • 11.5 Application: Climate Model Impacts in Colorado
  • 11.6 Summary.
  • 12 Usability of Climate Model Projections by Practitioners
  • 12.1 Knowledge Systems
  • 12.2 Interpretation and Translation
  • 12.2.1 Barriers to the Use of Climate Model Projections
  • 12.2.2 Downscaled Datasets
  • 12.2.3 Climate Assessments
  • 12.2.4 Expert Analysis
  • 12.3 Uncertainty
  • 12.3.1 Ensembles
  • 12.3.2 Uncertainty in Assessment Reports
  • 12.4 Framing Uncertainty
  • 12.5 Summary
  • 13 Summary and Final Thoughts
  • 13.1 What Is Climate?
  • 13.2 Key Features of a Climate Model
  • 13.3 Components of the Climate System
  • 13.3.1 The Atmosphere
  • 13.3.2 The Ocean
  • 13.3.3 Terrestrial Systems
  • 13.3.4 Coupled Components
  • 13.4 Evaluation and Uncertainty
  • 13.4.1 Evaluation
  • 13.4.2 Uncertainty
  • 13.5 What We Know (and Do not Know)
  • 13.6 The Future of Climate Modeling
  • 13.6.1 Increasing Resolution
  • 13.6.2 New and Improved Processes
  • 13.6.3 Challenges
  • 13.7 Final Thoughts
  • Climate Modeling Text Glossary
  • Index.