Demystifying Climate Models : : A Users Guide to Earth System Models.

Saved in:
Bibliographic Details
Superior document:Earth Systems Data and Models Series ; v.2
:
TeilnehmendeR:
Place / Publishing House:Berlin, Heidelberg : : Springer Berlin / Heidelberg,, 2016.
©2016.
Year of Publication:2016
Edition:1st ed.
Language:English
Series:Earth Systems Data and Models Series
Online Access:
Physical Description:1 online resource (282 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 5006381169
ctrlnum (MiAaPQ)5006381169
(Au-PeEL)EBL6381169
(OCoLC)1291318249
collection bib_alma
record_format marc
spelling Gettelman, Andrew.
Demystifying Climate Models : A Users Guide to Earth System Models.
1st ed.
Berlin, Heidelberg : Springer Berlin / Heidelberg, 2016.
©2016.
1 online resource (282 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Earth Systems Data and Models Series ; v.2
Intro -- Acknowledgments -- Contents -- About the Authors -- Introduction -- Part I Basic Principles and the Problem of Climate Forecasts -- 1 Key Concepts in Climate Modeling -- 1.1 What Is Climate? -- 1.2 What Is a Model? -- 1.3 Uncertainty -- 1.3.1 Model Uncertainty -- 1.3.2 Scenario Uncertainty -- 1.3.3 Initial Condition Uncertainty -- 1.3.4 Total Uncertainty -- 1.4 Summary -- 2 Components of the Climate System -- 2.1 Components of the Earth System -- 2.1.1 The Atmosphere -- 2.1.2 The Ocean and Sea Ice -- 2.1.3 Terrestrial Systems -- 2.2 Timescales and Interactions -- 2.3 Summary -- 3 Climate Change and Global Warming -- 3.1 Coupling of the Pieces -- 3.2 Forcing the Climate System -- 3.3 Climate History -- 3.4 Understanding Where the Energy Goes -- 3.5 Summary -- 4 Essence of a Climate Model -- 4.1 Scientific Principles in Climate Models -- 4.2 Basic Formulation and Constraints -- 4.2.1 Finite Pieces -- 4.2.2 Processes -- 4.2.3 Marching Forward in Time -- 4.2.4 Examples of Finite Element Models -- 4.3 Coupled Models -- 4.4 A Brief History of Climate Models -- 4.5 Computational Aspects of Climate Modeling -- 4.5.1 The Computer Program -- 4.5.2 Running a Model -- 4.6 Summary -- Part II Model Mechanics -- 5 Simulating the Atmosphere -- 5.1 Role of the Atmosphere in Climate -- 5.2 Types of Atmospheric Models -- 5.3 General Circulation -- 5.4 Parts of an Atmosphere Model -- 5.4.1 Clouds -- 5.4.2 Radiative Energy -- 5.4.3 Chemistry -- 5.5 Weather Models Versus Climate Models -- 5.6 Challenges for Atmospheric Models -- 5.6.1 Uncertain and Unknown Processes -- 5.6.2 Scales -- 5.6.3 Feedbacks -- 5.6.4 Cloud Feedback -- 5.7 Applications: Impacts of Tropical Cyclones -- 5.8 Summary -- 6 Simulating the Ocean and Sea Ice -- 6.1 Understanding the Ocean -- 6.1.1 Structure of the Ocean -- 6.1.2 Forcing of the Ocean -- 6.2 "Limited" Ocean Models.
6.3 Ocean General Circulation Models -- 6.3.1 Topography and Grids -- 6.3.2 Deep Ocean -- 6.3.3 Eddies in the Ocean -- 6.3.4 Surface Ocean -- 6.3.5 Structure of an Ocean Model -- 6.3.6 Ocean Versus Atmosphere Models -- 6.4 Sea-Ice Modeling -- 6.5 The Ocean Carbon Cycle -- 6.6 Challenges -- 6.6.1 Challenges in Ocean Modeling -- 6.6.2 Challenges in Sea Ice Modeling -- 6.7 Applications: Sea-Level Rise, Norfolk, Virginia -- 6.8 Summary -- 7 Simulating Terrestrial Systems -- 7.1 Role of the Land Surface in Climate -- 7.1.1 Precipitation and the Water Cycle -- 7.1.2 Vegetation -- 7.1.3 Ice and Snow -- 7.1.4 Human Impacts -- 7.2 Building a Land Surface Simulation -- 7.2.1 Evolution of a Terrestrial System Model -- 7.2.2 Biogeophysics: Surface Fluxes and Heat -- 7.2.3 Biogeophysics: Hydrology -- 7.2.4 Ecosystem Dynamics (Vegetation and Land Cover/Use Change) -- 7.2.5 Summary: Structure of a Land Model -- 7.3 Biogeochemistry: Carbon and Other Nutrient Cycles -- 7.4 Land-Atmosphere Interactions -- 7.5 Land Ice -- 7.6 Humans -- 7.7 Integrated Assessment Models -- 7.8 Challenges in Terrestrial System Modeling -- 7.8.1 Ice Sheet Modeling -- 7.8.2 Surface Albedo Feedback -- 7.8.3 Carbon Feedback -- 7.9 Applications: Wolf and Moose Ecosystem, Isle Royale National Park -- 7.10 Summary -- 8 Bringing the System Together: Coupling and Complexity -- 8.1 Types of Coupled Models -- 8.1.1 Regional Models -- 8.1.2 Statistical Models and Downscaling -- 8.1.3 Integrated Assessment Models -- 8.2 Coupling Models Together: Common Threads -- 8.3 Key Interactions in Climate Models -- 8.3.1 Intermixing of the Feedback Loops -- 8.3.2 Water Feedbacks -- 8.3.3 Albedo Feedbacks -- 8.3.4 Ocean Feedbacks -- 8.3.5 Sea-Level Change -- 8.4 Coupled Modes of Climate Variability -- 8.4.1 Tropical Cyclones -- 8.4.2 Monsoons -- 8.4.3 El Niño -- 8.4.4 Precipitation and the Land Surface.
8.4.5 Carbon Cycle and Climate -- 8.5 Challenges -- 8.6 Applications: Integrated Assessment of Water Resources -- 8.7 Summary -- Part III Using Models -- 9 Model Evaluation -- 9.1 Evaluation Versus Validation -- 9.1.1 Evaluation and Missing Information -- 9.1.2 Observations -- 9.1.3 Model Improvement -- 9.2 Climate Model Evaluation -- 9.2.1 Types of Comparisons -- 9.2.2 Model Simulations -- 9.2.3 Using Model Evaluation to Guide Further Observations -- 9.3 Predicting the Future: Forecasts Versus Projections -- 9.3.1 Forecasts -- 9.3.2 Projections -- 9.4 Applications of Climate Model Evaluation: Ozone Assessment -- 9.5 Summary -- 10 Predictability -- 10.1 Knowledge and Key Uncertainties -- 10.1.1 Physics of the System -- 10.1.2 Variability -- 10.1.3 Sensitivity to Changes -- 10.2 Types of Uncertainty and Timescales -- 10.2.1 Predicting the Near Term: Initial Condition Uncertainty -- 10.2.2 Predicting the Next 30-50 Years: Scenario Uncertainty -- 10.2.3 Predicting the Long Term: Model Uncertainty Versus Scenario Uncertainty -- 10.3 Ensembles: Multiple Models and Simulations -- 10.4 Applications: Developing and Using Scenarios -- 10.5 Summary -- 11 Results of Current Models -- 11.1 Organization of Climate Model Results -- 11.2 Prediction and Uncertainty -- 11.2.1 Goals of Prediction -- 11.2.2 Uncertainty -- 11.2.3 Why Models? -- 11.3 What Is the Confidence in Predictions? -- 11.3.1 Confident Predictions -- 11.3.1.1 Temperature -- 11.3.1.2 Precipitation -- 11.3.2 Uncertain Predictions: Where to Be Cautious -- 11.3.3 Bad Predictions -- 11.3.4 How Do We Predict Extreme Events? -- 11.4 Climate Impacts and Extremes -- 11.4.1 Tropical Cyclones -- 11.4.2 Stream Flow and Extreme Events -- 11.4.3 Electricity Demand and Extreme Events -- 11.5 Application: Climate Model Impacts in Colorado -- 11.6 Summary.
12 Usability of Climate Model Projections by Practitioners -- 12.1 Knowledge Systems -- 12.2 Interpretation and Translation -- 12.2.1 Barriers to the Use of Climate Model Projections -- 12.2.2 Downscaled Datasets -- 12.2.3 Climate Assessments -- 12.2.4 Expert Analysis -- 12.3 Uncertainty -- 12.3.1 Ensembles -- 12.3.2 Uncertainty in Assessment Reports -- 12.4 Framing Uncertainty -- 12.5 Summary -- 13 Summary and Final Thoughts -- 13.1 What Is Climate? -- 13.2 Key Features of a Climate Model -- 13.3 Components of the Climate System -- 13.3.1 The Atmosphere -- 13.3.2 The Ocean -- 13.3.3 Terrestrial Systems -- 13.3.4 Coupled Components -- 13.4 Evaluation and Uncertainty -- 13.4.1 Evaluation -- 13.4.2 Uncertainty -- 13.5 What We Know (and Do not Know) -- 13.6 The Future of Climate Modeling -- 13.6.1 Increasing Resolution -- 13.6.2 New and Improved Processes -- 13.6.3 Challenges -- 13.7 Final Thoughts -- Climate Modeling Text Glossary -- Index.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic books.
Rood, Richard B.
Print version: Gettelman, Andrew Demystifying Climate Models Berlin, Heidelberg : Springer Berlin / Heidelberg,c2016 9783662489574
ProQuest (Firm)
Earth Systems Data and Models Series
https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6381169 Click to View
language English
format eBook
author Gettelman, Andrew.
spellingShingle Gettelman, Andrew.
Demystifying Climate Models : A Users Guide to Earth System Models.
Earth Systems Data and Models Series ;
Intro -- Acknowledgments -- Contents -- About the Authors -- Introduction -- Part I Basic Principles and the Problem of Climate Forecasts -- 1 Key Concepts in Climate Modeling -- 1.1 What Is Climate? -- 1.2 What Is a Model? -- 1.3 Uncertainty -- 1.3.1 Model Uncertainty -- 1.3.2 Scenario Uncertainty -- 1.3.3 Initial Condition Uncertainty -- 1.3.4 Total Uncertainty -- 1.4 Summary -- 2 Components of the Climate System -- 2.1 Components of the Earth System -- 2.1.1 The Atmosphere -- 2.1.2 The Ocean and Sea Ice -- 2.1.3 Terrestrial Systems -- 2.2 Timescales and Interactions -- 2.3 Summary -- 3 Climate Change and Global Warming -- 3.1 Coupling of the Pieces -- 3.2 Forcing the Climate System -- 3.3 Climate History -- 3.4 Understanding Where the Energy Goes -- 3.5 Summary -- 4 Essence of a Climate Model -- 4.1 Scientific Principles in Climate Models -- 4.2 Basic Formulation and Constraints -- 4.2.1 Finite Pieces -- 4.2.2 Processes -- 4.2.3 Marching Forward in Time -- 4.2.4 Examples of Finite Element Models -- 4.3 Coupled Models -- 4.4 A Brief History of Climate Models -- 4.5 Computational Aspects of Climate Modeling -- 4.5.1 The Computer Program -- 4.5.2 Running a Model -- 4.6 Summary -- Part II Model Mechanics -- 5 Simulating the Atmosphere -- 5.1 Role of the Atmosphere in Climate -- 5.2 Types of Atmospheric Models -- 5.3 General Circulation -- 5.4 Parts of an Atmosphere Model -- 5.4.1 Clouds -- 5.4.2 Radiative Energy -- 5.4.3 Chemistry -- 5.5 Weather Models Versus Climate Models -- 5.6 Challenges for Atmospheric Models -- 5.6.1 Uncertain and Unknown Processes -- 5.6.2 Scales -- 5.6.3 Feedbacks -- 5.6.4 Cloud Feedback -- 5.7 Applications: Impacts of Tropical Cyclones -- 5.8 Summary -- 6 Simulating the Ocean and Sea Ice -- 6.1 Understanding the Ocean -- 6.1.1 Structure of the Ocean -- 6.1.2 Forcing of the Ocean -- 6.2 "Limited" Ocean Models.
6.3 Ocean General Circulation Models -- 6.3.1 Topography and Grids -- 6.3.2 Deep Ocean -- 6.3.3 Eddies in the Ocean -- 6.3.4 Surface Ocean -- 6.3.5 Structure of an Ocean Model -- 6.3.6 Ocean Versus Atmosphere Models -- 6.4 Sea-Ice Modeling -- 6.5 The Ocean Carbon Cycle -- 6.6 Challenges -- 6.6.1 Challenges in Ocean Modeling -- 6.6.2 Challenges in Sea Ice Modeling -- 6.7 Applications: Sea-Level Rise, Norfolk, Virginia -- 6.8 Summary -- 7 Simulating Terrestrial Systems -- 7.1 Role of the Land Surface in Climate -- 7.1.1 Precipitation and the Water Cycle -- 7.1.2 Vegetation -- 7.1.3 Ice and Snow -- 7.1.4 Human Impacts -- 7.2 Building a Land Surface Simulation -- 7.2.1 Evolution of a Terrestrial System Model -- 7.2.2 Biogeophysics: Surface Fluxes and Heat -- 7.2.3 Biogeophysics: Hydrology -- 7.2.4 Ecosystem Dynamics (Vegetation and Land Cover/Use Change) -- 7.2.5 Summary: Structure of a Land Model -- 7.3 Biogeochemistry: Carbon and Other Nutrient Cycles -- 7.4 Land-Atmosphere Interactions -- 7.5 Land Ice -- 7.6 Humans -- 7.7 Integrated Assessment Models -- 7.8 Challenges in Terrestrial System Modeling -- 7.8.1 Ice Sheet Modeling -- 7.8.2 Surface Albedo Feedback -- 7.8.3 Carbon Feedback -- 7.9 Applications: Wolf and Moose Ecosystem, Isle Royale National Park -- 7.10 Summary -- 8 Bringing the System Together: Coupling and Complexity -- 8.1 Types of Coupled Models -- 8.1.1 Regional Models -- 8.1.2 Statistical Models and Downscaling -- 8.1.3 Integrated Assessment Models -- 8.2 Coupling Models Together: Common Threads -- 8.3 Key Interactions in Climate Models -- 8.3.1 Intermixing of the Feedback Loops -- 8.3.2 Water Feedbacks -- 8.3.3 Albedo Feedbacks -- 8.3.4 Ocean Feedbacks -- 8.3.5 Sea-Level Change -- 8.4 Coupled Modes of Climate Variability -- 8.4.1 Tropical Cyclones -- 8.4.2 Monsoons -- 8.4.3 El Niño -- 8.4.4 Precipitation and the Land Surface.
8.4.5 Carbon Cycle and Climate -- 8.5 Challenges -- 8.6 Applications: Integrated Assessment of Water Resources -- 8.7 Summary -- Part III Using Models -- 9 Model Evaluation -- 9.1 Evaluation Versus Validation -- 9.1.1 Evaluation and Missing Information -- 9.1.2 Observations -- 9.1.3 Model Improvement -- 9.2 Climate Model Evaluation -- 9.2.1 Types of Comparisons -- 9.2.2 Model Simulations -- 9.2.3 Using Model Evaluation to Guide Further Observations -- 9.3 Predicting the Future: Forecasts Versus Projections -- 9.3.1 Forecasts -- 9.3.2 Projections -- 9.4 Applications of Climate Model Evaluation: Ozone Assessment -- 9.5 Summary -- 10 Predictability -- 10.1 Knowledge and Key Uncertainties -- 10.1.1 Physics of the System -- 10.1.2 Variability -- 10.1.3 Sensitivity to Changes -- 10.2 Types of Uncertainty and Timescales -- 10.2.1 Predicting the Near Term: Initial Condition Uncertainty -- 10.2.2 Predicting the Next 30-50 Years: Scenario Uncertainty -- 10.2.3 Predicting the Long Term: Model Uncertainty Versus Scenario Uncertainty -- 10.3 Ensembles: Multiple Models and Simulations -- 10.4 Applications: Developing and Using Scenarios -- 10.5 Summary -- 11 Results of Current Models -- 11.1 Organization of Climate Model Results -- 11.2 Prediction and Uncertainty -- 11.2.1 Goals of Prediction -- 11.2.2 Uncertainty -- 11.2.3 Why Models? -- 11.3 What Is the Confidence in Predictions? -- 11.3.1 Confident Predictions -- 11.3.1.1 Temperature -- 11.3.1.2 Precipitation -- 11.3.2 Uncertain Predictions: Where to Be Cautious -- 11.3.3 Bad Predictions -- 11.3.4 How Do We Predict Extreme Events? -- 11.4 Climate Impacts and Extremes -- 11.4.1 Tropical Cyclones -- 11.4.2 Stream Flow and Extreme Events -- 11.4.3 Electricity Demand and Extreme Events -- 11.5 Application: Climate Model Impacts in Colorado -- 11.6 Summary.
12 Usability of Climate Model Projections by Practitioners -- 12.1 Knowledge Systems -- 12.2 Interpretation and Translation -- 12.2.1 Barriers to the Use of Climate Model Projections -- 12.2.2 Downscaled Datasets -- 12.2.3 Climate Assessments -- 12.2.4 Expert Analysis -- 12.3 Uncertainty -- 12.3.1 Ensembles -- 12.3.2 Uncertainty in Assessment Reports -- 12.4 Framing Uncertainty -- 12.5 Summary -- 13 Summary and Final Thoughts -- 13.1 What Is Climate? -- 13.2 Key Features of a Climate Model -- 13.3 Components of the Climate System -- 13.3.1 The Atmosphere -- 13.3.2 The Ocean -- 13.3.3 Terrestrial Systems -- 13.3.4 Coupled Components -- 13.4 Evaluation and Uncertainty -- 13.4.1 Evaluation -- 13.4.2 Uncertainty -- 13.5 What We Know (and Do not Know) -- 13.6 The Future of Climate Modeling -- 13.6.1 Increasing Resolution -- 13.6.2 New and Improved Processes -- 13.6.3 Challenges -- 13.7 Final Thoughts -- Climate Modeling Text Glossary -- Index.
author_facet Gettelman, Andrew.
Rood, Richard B.
author_variant a g ag
author2 Rood, Richard B.
author2_variant r b r rb rbr
author2_role TeilnehmendeR
author_sort Gettelman, Andrew.
title Demystifying Climate Models : A Users Guide to Earth System Models.
title_sub A Users Guide to Earth System Models.
title_full Demystifying Climate Models : A Users Guide to Earth System Models.
title_fullStr Demystifying Climate Models : A Users Guide to Earth System Models.
title_full_unstemmed Demystifying Climate Models : A Users Guide to Earth System Models.
title_auth Demystifying Climate Models : A Users Guide to Earth System Models.
title_new Demystifying Climate Models :
title_sort demystifying climate models : a users guide to earth system models.
series Earth Systems Data and Models Series ;
series2 Earth Systems Data and Models Series ;
publisher Springer Berlin / Heidelberg,
publishDate 2016
physical 1 online resource (282 pages)
edition 1st ed.
contents Intro -- Acknowledgments -- Contents -- About the Authors -- Introduction -- Part I Basic Principles and the Problem of Climate Forecasts -- 1 Key Concepts in Climate Modeling -- 1.1 What Is Climate? -- 1.2 What Is a Model? -- 1.3 Uncertainty -- 1.3.1 Model Uncertainty -- 1.3.2 Scenario Uncertainty -- 1.3.3 Initial Condition Uncertainty -- 1.3.4 Total Uncertainty -- 1.4 Summary -- 2 Components of the Climate System -- 2.1 Components of the Earth System -- 2.1.1 The Atmosphere -- 2.1.2 The Ocean and Sea Ice -- 2.1.3 Terrestrial Systems -- 2.2 Timescales and Interactions -- 2.3 Summary -- 3 Climate Change and Global Warming -- 3.1 Coupling of the Pieces -- 3.2 Forcing the Climate System -- 3.3 Climate History -- 3.4 Understanding Where the Energy Goes -- 3.5 Summary -- 4 Essence of a Climate Model -- 4.1 Scientific Principles in Climate Models -- 4.2 Basic Formulation and Constraints -- 4.2.1 Finite Pieces -- 4.2.2 Processes -- 4.2.3 Marching Forward in Time -- 4.2.4 Examples of Finite Element Models -- 4.3 Coupled Models -- 4.4 A Brief History of Climate Models -- 4.5 Computational Aspects of Climate Modeling -- 4.5.1 The Computer Program -- 4.5.2 Running a Model -- 4.6 Summary -- Part II Model Mechanics -- 5 Simulating the Atmosphere -- 5.1 Role of the Atmosphere in Climate -- 5.2 Types of Atmospheric Models -- 5.3 General Circulation -- 5.4 Parts of an Atmosphere Model -- 5.4.1 Clouds -- 5.4.2 Radiative Energy -- 5.4.3 Chemistry -- 5.5 Weather Models Versus Climate Models -- 5.6 Challenges for Atmospheric Models -- 5.6.1 Uncertain and Unknown Processes -- 5.6.2 Scales -- 5.6.3 Feedbacks -- 5.6.4 Cloud Feedback -- 5.7 Applications: Impacts of Tropical Cyclones -- 5.8 Summary -- 6 Simulating the Ocean and Sea Ice -- 6.1 Understanding the Ocean -- 6.1.1 Structure of the Ocean -- 6.1.2 Forcing of the Ocean -- 6.2 "Limited" Ocean Models.
6.3 Ocean General Circulation Models -- 6.3.1 Topography and Grids -- 6.3.2 Deep Ocean -- 6.3.3 Eddies in the Ocean -- 6.3.4 Surface Ocean -- 6.3.5 Structure of an Ocean Model -- 6.3.6 Ocean Versus Atmosphere Models -- 6.4 Sea-Ice Modeling -- 6.5 The Ocean Carbon Cycle -- 6.6 Challenges -- 6.6.1 Challenges in Ocean Modeling -- 6.6.2 Challenges in Sea Ice Modeling -- 6.7 Applications: Sea-Level Rise, Norfolk, Virginia -- 6.8 Summary -- 7 Simulating Terrestrial Systems -- 7.1 Role of the Land Surface in Climate -- 7.1.1 Precipitation and the Water Cycle -- 7.1.2 Vegetation -- 7.1.3 Ice and Snow -- 7.1.4 Human Impacts -- 7.2 Building a Land Surface Simulation -- 7.2.1 Evolution of a Terrestrial System Model -- 7.2.2 Biogeophysics: Surface Fluxes and Heat -- 7.2.3 Biogeophysics: Hydrology -- 7.2.4 Ecosystem Dynamics (Vegetation and Land Cover/Use Change) -- 7.2.5 Summary: Structure of a Land Model -- 7.3 Biogeochemistry: Carbon and Other Nutrient Cycles -- 7.4 Land-Atmosphere Interactions -- 7.5 Land Ice -- 7.6 Humans -- 7.7 Integrated Assessment Models -- 7.8 Challenges in Terrestrial System Modeling -- 7.8.1 Ice Sheet Modeling -- 7.8.2 Surface Albedo Feedback -- 7.8.3 Carbon Feedback -- 7.9 Applications: Wolf and Moose Ecosystem, Isle Royale National Park -- 7.10 Summary -- 8 Bringing the System Together: Coupling and Complexity -- 8.1 Types of Coupled Models -- 8.1.1 Regional Models -- 8.1.2 Statistical Models and Downscaling -- 8.1.3 Integrated Assessment Models -- 8.2 Coupling Models Together: Common Threads -- 8.3 Key Interactions in Climate Models -- 8.3.1 Intermixing of the Feedback Loops -- 8.3.2 Water Feedbacks -- 8.3.3 Albedo Feedbacks -- 8.3.4 Ocean Feedbacks -- 8.3.5 Sea-Level Change -- 8.4 Coupled Modes of Climate Variability -- 8.4.1 Tropical Cyclones -- 8.4.2 Monsoons -- 8.4.3 El Niño -- 8.4.4 Precipitation and the Land Surface.
8.4.5 Carbon Cycle and Climate -- 8.5 Challenges -- 8.6 Applications: Integrated Assessment of Water Resources -- 8.7 Summary -- Part III Using Models -- 9 Model Evaluation -- 9.1 Evaluation Versus Validation -- 9.1.1 Evaluation and Missing Information -- 9.1.2 Observations -- 9.1.3 Model Improvement -- 9.2 Climate Model Evaluation -- 9.2.1 Types of Comparisons -- 9.2.2 Model Simulations -- 9.2.3 Using Model Evaluation to Guide Further Observations -- 9.3 Predicting the Future: Forecasts Versus Projections -- 9.3.1 Forecasts -- 9.3.2 Projections -- 9.4 Applications of Climate Model Evaluation: Ozone Assessment -- 9.5 Summary -- 10 Predictability -- 10.1 Knowledge and Key Uncertainties -- 10.1.1 Physics of the System -- 10.1.2 Variability -- 10.1.3 Sensitivity to Changes -- 10.2 Types of Uncertainty and Timescales -- 10.2.1 Predicting the Near Term: Initial Condition Uncertainty -- 10.2.2 Predicting the Next 30-50 Years: Scenario Uncertainty -- 10.2.3 Predicting the Long Term: Model Uncertainty Versus Scenario Uncertainty -- 10.3 Ensembles: Multiple Models and Simulations -- 10.4 Applications: Developing and Using Scenarios -- 10.5 Summary -- 11 Results of Current Models -- 11.1 Organization of Climate Model Results -- 11.2 Prediction and Uncertainty -- 11.2.1 Goals of Prediction -- 11.2.2 Uncertainty -- 11.2.3 Why Models? -- 11.3 What Is the Confidence in Predictions? -- 11.3.1 Confident Predictions -- 11.3.1.1 Temperature -- 11.3.1.2 Precipitation -- 11.3.2 Uncertain Predictions: Where to Be Cautious -- 11.3.3 Bad Predictions -- 11.3.4 How Do We Predict Extreme Events? -- 11.4 Climate Impacts and Extremes -- 11.4.1 Tropical Cyclones -- 11.4.2 Stream Flow and Extreme Events -- 11.4.3 Electricity Demand and Extreme Events -- 11.5 Application: Climate Model Impacts in Colorado -- 11.6 Summary.
12 Usability of Climate Model Projections by Practitioners -- 12.1 Knowledge Systems -- 12.2 Interpretation and Translation -- 12.2.1 Barriers to the Use of Climate Model Projections -- 12.2.2 Downscaled Datasets -- 12.2.3 Climate Assessments -- 12.2.4 Expert Analysis -- 12.3 Uncertainty -- 12.3.1 Ensembles -- 12.3.2 Uncertainty in Assessment Reports -- 12.4 Framing Uncertainty -- 12.5 Summary -- 13 Summary and Final Thoughts -- 13.1 What Is Climate? -- 13.2 Key Features of a Climate Model -- 13.3 Components of the Climate System -- 13.3.1 The Atmosphere -- 13.3.2 The Ocean -- 13.3.3 Terrestrial Systems -- 13.3.4 Coupled Components -- 13.4 Evaluation and Uncertainty -- 13.4.1 Evaluation -- 13.4.2 Uncertainty -- 13.5 What We Know (and Do not Know) -- 13.6 The Future of Climate Modeling -- 13.6.1 Increasing Resolution -- 13.6.2 New and Improved Processes -- 13.6.3 Challenges -- 13.7 Final Thoughts -- Climate Modeling Text Glossary -- Index.
isbn 9783662489598
9783662489574
callnumber-first T - Technology
callnumber-subject TA - General and Civil Engineering
callnumber-label TA1-2040
callnumber-sort TA 11 42040
genre Electronic books.
genre_facet Electronic books.
url https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6381169
illustrated Not Illustrated
dewey-hundreds 500 - Science
dewey-tens 550 - Earth sciences & geology
dewey-ones 551 - Geology, hydrology & meteorology
dewey-full 551.6011
dewey-sort 3551.6011
dewey-raw 551.6011
dewey-search 551.6011
oclc_num 1291318249
work_keys_str_mv AT gettelmanandrew demystifyingclimatemodelsausersguidetoearthsystemmodels
AT roodrichardb demystifyingclimatemodelsausersguidetoearthsystemmodels
status_str n
ids_txt_mv (MiAaPQ)5006381169
(Au-PeEL)EBL6381169
(OCoLC)1291318249
carrierType_str_mv cr
hierarchy_parent_title Earth Systems Data and Models Series ; v.2
is_hierarchy_title Demystifying Climate Models : A Users Guide to Earth System Models.
container_title Earth Systems Data and Models Series ; v.2
author2_original_writing_str_mv noLinkedField
marc_error Info : MARC8 translation shorter than ISO-8859-1, choosing MARC8. --- [ 856 : z ]
_version_ 1792331056919085056
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>08231nam a22004573i 4500</leader><controlfield tag="001">5006381169</controlfield><controlfield tag="003">MiAaPQ</controlfield><controlfield tag="005">20240229073836.0</controlfield><controlfield tag="006">m o d | </controlfield><controlfield tag="007">cr cnu||||||||</controlfield><controlfield tag="008">240229s2016 xx o ||||0 eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662489598</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783662489574</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(MiAaPQ)5006381169</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(Au-PeEL)EBL6381169</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1291318249</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">MiAaPQ</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">MiAaPQ</subfield><subfield code="d">MiAaPQ</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">551.6011</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gettelman, Andrew.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Demystifying Climate Models :</subfield><subfield code="b">A Users Guide to Earth System Models.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg :</subfield><subfield code="b">Springer Berlin / Heidelberg,</subfield><subfield code="c">2016.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2016.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (282 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Earth Systems Data and Models Series ;</subfield><subfield code="v">v.2</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Intro -- Acknowledgments -- Contents -- About the Authors -- Introduction -- Part I Basic Principles and the Problem of Climate Forecasts -- 1 Key Concepts in Climate Modeling -- 1.1 What Is Climate? -- 1.2 What Is a Model? -- 1.3 Uncertainty -- 1.3.1 Model Uncertainty -- 1.3.2 Scenario Uncertainty -- 1.3.3 Initial Condition Uncertainty -- 1.3.4 Total Uncertainty -- 1.4 Summary -- 2 Components of the Climate System -- 2.1 Components of the Earth System -- 2.1.1 The Atmosphere -- 2.1.2 The Ocean and Sea Ice -- 2.1.3 Terrestrial Systems -- 2.2 Timescales and Interactions -- 2.3 Summary -- 3 Climate Change and Global Warming -- 3.1 Coupling of the Pieces -- 3.2 Forcing the Climate System -- 3.3 Climate History -- 3.4 Understanding Where the Energy Goes -- 3.5 Summary -- 4 Essence of a Climate Model -- 4.1 Scientific Principles in Climate Models -- 4.2 Basic Formulation and Constraints -- 4.2.1 Finite Pieces -- 4.2.2 Processes -- 4.2.3 Marching Forward in Time -- 4.2.4 Examples of Finite Element Models -- 4.3 Coupled Models -- 4.4 A Brief History of Climate Models -- 4.5 Computational Aspects of Climate Modeling -- 4.5.1 The Computer Program -- 4.5.2 Running a Model -- 4.6 Summary -- Part II Model Mechanics -- 5 Simulating the Atmosphere -- 5.1 Role of the Atmosphere in Climate -- 5.2 Types of Atmospheric Models -- 5.3 General Circulation -- 5.4 Parts of an Atmosphere Model -- 5.4.1 Clouds -- 5.4.2 Radiative Energy -- 5.4.3 Chemistry -- 5.5 Weather Models Versus Climate Models -- 5.6 Challenges for Atmospheric Models -- 5.6.1 Uncertain and Unknown Processes -- 5.6.2 Scales -- 5.6.3 Feedbacks -- 5.6.4 Cloud Feedback -- 5.7 Applications: Impacts of Tropical Cyclones -- 5.8 Summary -- 6 Simulating the Ocean and Sea Ice -- 6.1 Understanding the Ocean -- 6.1.1 Structure of the Ocean -- 6.1.2 Forcing of the Ocean -- 6.2 "Limited" Ocean Models.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.3 Ocean General Circulation Models -- 6.3.1 Topography and Grids -- 6.3.2 Deep Ocean -- 6.3.3 Eddies in the Ocean -- 6.3.4 Surface Ocean -- 6.3.5 Structure of an Ocean Model -- 6.3.6 Ocean Versus Atmosphere Models -- 6.4 Sea-Ice Modeling -- 6.5 The Ocean Carbon Cycle -- 6.6 Challenges -- 6.6.1 Challenges in Ocean Modeling -- 6.6.2 Challenges in Sea Ice Modeling -- 6.7 Applications: Sea-Level Rise, Norfolk, Virginia -- 6.8 Summary -- 7 Simulating Terrestrial Systems -- 7.1 Role of the Land Surface in Climate -- 7.1.1 Precipitation and the Water Cycle -- 7.1.2 Vegetation -- 7.1.3 Ice and Snow -- 7.1.4 Human Impacts -- 7.2 Building a Land Surface Simulation -- 7.2.1 Evolution of a Terrestrial System Model -- 7.2.2 Biogeophysics: Surface Fluxes and Heat -- 7.2.3 Biogeophysics: Hydrology -- 7.2.4 Ecosystem Dynamics (Vegetation and Land Cover/Use Change) -- 7.2.5 Summary: Structure of a Land Model -- 7.3 Biogeochemistry: Carbon and Other Nutrient Cycles -- 7.4 Land-Atmosphere Interactions -- 7.5 Land Ice -- 7.6 Humans -- 7.7 Integrated Assessment Models -- 7.8 Challenges in Terrestrial System Modeling -- 7.8.1 Ice Sheet Modeling -- 7.8.2 Surface Albedo Feedback -- 7.8.3 Carbon Feedback -- 7.9 Applications: Wolf and Moose Ecosystem, Isle Royale National Park -- 7.10 Summary -- 8 Bringing the System Together: Coupling and Complexity -- 8.1 Types of Coupled Models -- 8.1.1 Regional Models -- 8.1.2 Statistical Models and Downscaling -- 8.1.3 Integrated Assessment Models -- 8.2 Coupling Models Together: Common Threads -- 8.3 Key Interactions in Climate Models -- 8.3.1 Intermixing of the Feedback Loops -- 8.3.2 Water Feedbacks -- 8.3.3 Albedo Feedbacks -- 8.3.4 Ocean Feedbacks -- 8.3.5 Sea-Level Change -- 8.4 Coupled Modes of Climate Variability -- 8.4.1 Tropical Cyclones -- 8.4.2 Monsoons -- 8.4.3 El Niño -- 8.4.4 Precipitation and the Land Surface.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">8.4.5 Carbon Cycle and Climate -- 8.5 Challenges -- 8.6 Applications: Integrated Assessment of Water Resources -- 8.7 Summary -- Part III Using Models -- 9 Model Evaluation -- 9.1 Evaluation Versus Validation -- 9.1.1 Evaluation and Missing Information -- 9.1.2 Observations -- 9.1.3 Model Improvement -- 9.2 Climate Model Evaluation -- 9.2.1 Types of Comparisons -- 9.2.2 Model Simulations -- 9.2.3 Using Model Evaluation to Guide Further Observations -- 9.3 Predicting the Future: Forecasts Versus Projections -- 9.3.1 Forecasts -- 9.3.2 Projections -- 9.4 Applications of Climate Model Evaluation: Ozone Assessment -- 9.5 Summary -- 10 Predictability -- 10.1 Knowledge and Key Uncertainties -- 10.1.1 Physics of the System -- 10.1.2 Variability -- 10.1.3 Sensitivity to Changes -- 10.2 Types of Uncertainty and Timescales -- 10.2.1 Predicting the Near Term: Initial Condition Uncertainty -- 10.2.2 Predicting the Next 30-50 Years: Scenario Uncertainty -- 10.2.3 Predicting the Long Term: Model Uncertainty Versus Scenario Uncertainty -- 10.3 Ensembles: Multiple Models and Simulations -- 10.4 Applications: Developing and Using Scenarios -- 10.5 Summary -- 11 Results of Current Models -- 11.1 Organization of Climate Model Results -- 11.2 Prediction and Uncertainty -- 11.2.1 Goals of Prediction -- 11.2.2 Uncertainty -- 11.2.3 Why Models? -- 11.3 What Is the Confidence in Predictions? -- 11.3.1 Confident Predictions -- 11.3.1.1 Temperature -- 11.3.1.2 Precipitation -- 11.3.2 Uncertain Predictions: Where to Be Cautious -- 11.3.3 Bad Predictions -- 11.3.4 How Do We Predict Extreme Events? -- 11.4 Climate Impacts and Extremes -- 11.4.1 Tropical Cyclones -- 11.4.2 Stream Flow and Extreme Events -- 11.4.3 Electricity Demand and Extreme Events -- 11.5 Application: Climate Model Impacts in Colorado -- 11.6 Summary.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">12 Usability of Climate Model Projections by Practitioners -- 12.1 Knowledge Systems -- 12.2 Interpretation and Translation -- 12.2.1 Barriers to the Use of Climate Model Projections -- 12.2.2 Downscaled Datasets -- 12.2.3 Climate Assessments -- 12.2.4 Expert Analysis -- 12.3 Uncertainty -- 12.3.1 Ensembles -- 12.3.2 Uncertainty in Assessment Reports -- 12.4 Framing Uncertainty -- 12.5 Summary -- 13 Summary and Final Thoughts -- 13.1 What Is Climate? -- 13.2 Key Features of a Climate Model -- 13.3 Components of the Climate System -- 13.3.1 The Atmosphere -- 13.3.2 The Ocean -- 13.3.3 Terrestrial Systems -- 13.3.4 Coupled Components -- 13.4 Evaluation and Uncertainty -- 13.4.1 Evaluation -- 13.4.2 Uncertainty -- 13.5 What We Know (and Do not Know) -- 13.6 The Future of Climate Modeling -- 13.6.1 Increasing Resolution -- 13.6.2 New and Improved Processes -- 13.6.3 Challenges -- 13.7 Final Thoughts -- Climate Modeling Text Glossary -- Index.</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources.</subfield></datafield><datafield tag="590" ind1=" " ind2=" "><subfield code="a">Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. </subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rood, Richard B.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Gettelman, Andrew</subfield><subfield code="t">Demystifying Climate Models</subfield><subfield code="d">Berlin, Heidelberg : Springer Berlin / Heidelberg,c2016</subfield><subfield code="z">9783662489574</subfield></datafield><datafield tag="797" ind1="2" ind2=" "><subfield code="a">ProQuest (Firm)</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Earth Systems Data and Models Series</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6381169</subfield><subfield code="z">Click to View</subfield></datafield></record></collection>