Vegetable Grafting : : Principles and Practices.

This book provides comprehensive and current scientific and practical knowledge on vegetable grafting, a method gaining considerable interest as an alternative to the use of fumigants to protect crops from soil-borne diseases.

Saved in:
Bibliographic Details
:
TeilnehmendeR:
Place / Publishing House:Oxford : : CAB International,, 2017.
©2017.
Year of Publication:2017
Edition:1st ed.
Language:English
Online Access:
Physical Description:1 online resource (418 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 5006371484
ctrlnum (MiAaPQ)5006371484
(Au-PeEL)EBL6371484
(OCoLC)994874680
collection bib_alma
record_format marc
spelling Colla, Giuseppe.
Vegetable Grafting : Principles and Practices.
1st ed.
Oxford : CAB International, 2017.
©2017.
1 online resource (418 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Intro -- Half Title -- Title -- Copyright -- Contents -- Contributors -- Preface -- Acknowledgements -- 1 Introduction to Vegetable Grafting -- 1.1 Importance and Use of Vegetable Grafting -- 1.1.1 Historical perspective -- 1.1.2 Purpose and scope -- 1.1.3 Growing areas and plantlet production -- 1.2 The Process of Vegetable Grafting -- 1.2.1 Selection of rootstock and scion cultivars -- 1.2.2 Overview of grafting methods -- 1.2.3 Preference of grafting method for different species -- 1.2.4 Post-graft healing environment -- 1.3 Problems Associated with Vegetable Grafting -- 1.4 Conclusions -- References -- 2 Genetic Resources for Rootstock Breeding -- 2.1 Genetic Diversity -- 2.1.1 Diversity in the Cucurbitaceae family -- 2.1.2 Diversity in the Solanaceae family -- 2.2 Gene Bank Collections -- 2.2.1 Cucurbitaceae -- 2.2.2 Solanaceae -- 2.3 Current Usage of Genetic Material in Rootstocks -- 2.3.1 Rootstocks for cucurbit production -- 2.3.2 Rootstocks for production of solanaceous crops -- 2.4 Germplasm Collections and Grafting in Other Plant Families -- 2.4.1 Cynara gafting -- 2.4.2 Phaseolous grafting -- 2.5 Conclusions -- Acknowledgements -- References -- 3 Rootstock Breeding: Current Practices and Future Technologies -- 3.1 Introduction -- 3.2 Stacking Traits: Meiosis or Grafting or Both? -- 3.3 Developing Stable Core Collections of Germplasm for Breeding -- 3.4 Deploying Genetic Diversity for Rootstocks -- 3.4.1 General principles -- 3.4.2 Use of Cucurbita F1 hybrids -- 3.4.3 Use of Solanum F1 hybrids -- 3.4.4 Interspecific hybrids and hybridization barriers -- 3.5 Grafting as a Tool for Genetic Hybridization and Chimera Production -- 3.5.1 Genetic hybridization: transfer of nuclear and organellar DNA between cells of the graft union -- 3.5.2 Use of grafting to generate chimeras -- 3.6 Selection of Improved Rootstocks.
3.6.1 Phenotypic selection -- 3.6.2 Marker-assisted Selection -- 3.7 Transgenic Rootstocks -- 3.8 Rootstock Registration and Commercialization -- Acknowledgements -- References -- 4 Rootstock-scion Signalling: Key Factors Mediating Scion Performance -- 4.1 Introduction -- 4.2 Current Knowledge of Ionic and Chemical Signalling Between Rootstock and Scion -- 4.2.1 Ionic signalling -- 4.2.2 Plant hormone signalling -- 4.2.3 Metabolite profile of the xylem sap: xylomics -- 4.2.4 Physical signalling -- 4.2.5 Proteins -- 4.2.6 Small RNAs -- 4.3 Conclusions -- References -- 5 Physiological and Molecular Mechanisms Underlying Graft Compatibility -- 5.1 Introduction -- 5.2 Anatomical and Physiological Steps During Graft Union Development -- 5.2.1 Graft establishment between compatible and incompatible combinations -- 5.2.2 Translocation between grafted partners -- 5.3 Role of Secondary Metabolites at the Interface in Graft Incompatibility -- 5.4 Cell-to-cell Communication Between Graft Partners -- 5.4.1 Plant growth regulator and graft union formation -- 5.4.2 Cell-to-cell communication at the graft interface -- 5.5 Understanding the Molecular Mechanisms Involved in Graft Union Formation and Compatibility -- 5.5.1 Genes differentially expressed during graft union formation -- 5.5.2 Genes differentially expressed between compatible and incompatible graft combinations -- 5.6 Methods for Examining Graft Union Development and Compatibility -- 5.6.1 In vitro techniques -- 5.6.2 Histological studies -- 5.6.3 Chlorophyll fluorescence imaging as a diagnostic technique -- 5.7 Conclusions -- References -- 6 Grafting as Agrotechnology for Reducing Disease Damage -- 6.1 Introduction -- 6.2 First Step: Managing Diseases in the Nursery -- 6.2.1 Tobamovirus management: grafted cucurbits and cucumber green mottle mosaic virus: an example of risk and a solution.
6.2.2 Bacterial canker management: grafted tomatoes and an old nemesis -- 6.3 Disease Spread from the Nursery to the Field: the Example of Powdery Mildew of Watermelons -- 6.4 Intra- and Interspecific Grafting and their Relationship to Diseases -- 6.5 Biotic or Abiotic Stress? Different Responses of Grafted Plants to Environmental Conditions: the Case of 'Physiological Wilt' -- 6.6 Response of Grafted Plants to Nematodes -- 6.7 Commercial Rootstocks and Unknown Genetics -- 6.8 Different Mechanisms Involved in Disease Resistance Induced by Grafting -- 6.9 Conclusions -- References -- 7 Grafting as a Tool for Tolerance of Abiotic Stress -- 7.1 Introduction -- 7.2 Temperature Stress -- 7.2.1 Diminishing temperature constraints for vegetable production -- 7.2.2 Contribution of rootstocks to improved low- and high-temperature tolerance -- 7.2.3 Rootstock selection for improved temperature-stress tolerance -- 7.2.4 Cold- and heat-tolerant Cucurbitaceae and Solanaceae rootstocks -- 7.3 Salinity Stress -- 7.4 Nutrient Stress -- 7.4.1 Excessive nutrient availability -- 7.4.2 Deficient nutrient availability -- 7.5 Stress Induced by Metalloids and Heavy Metals -- 7.5.1 Boron -- 7.5.2 Heavy metals -- 7.6 Stress by Adverse Soil pH -- 7.7 Drought and Flood Stresses -- 7.7.1 Drought -- 7.7.2 Flooding and waterlogging -- 7.8 Conclusions -- Acknowledgements -- References -- 8 Quality of Grafted Vegetables -- 8.1 What is Quality? -- 8.2 Rootstock Effects on Fruit Quality -- 8.2.1 Appearance -- 8.2.2 Texture -- 8.2.3 Organoleptic compounds and relationship to sensory properties -- 8.2.4 Health-promoting substances -- 8.2.5 Contaminants -- 8.3 Effects of Grafting on Ripening and Postharvest Behaviour -- 8.4 Biophysiological Processes Affecting Fruit Quality -- 8.5 Conclusions -- References -- 9 Practical Applications and Speciality Crops.
9.1 Establishment of Grafted Transplants under Mediterranean Climate Conditions -- 9.1.1 Factors affecting the establishment of grafted plants -- 9.1.2 Abiotic stress -- 9.1.3 Biotic stress -- 9.2 Recommendations for the Use of Grafted Plants in Greenhouses: the Case of The Netherlands -- 9.2.1 The grafting process -- 9.2.2 Cultivation system of grafted plants -- 9.2.3 Start of cultivation -- 9.2.4 Later phases in cultivation -- 9.3 Role of Grafting in Speciality Crops -- 9.3.1 Globe artichoke -- 9.3.2 Green bean -- 9.4 Conclusions and Future Perspectives on Vegetable Grafting -- Acknowledgements -- References -- Index -- Plates -- Back Cover.
This book provides comprehensive and current scientific and practical knowledge on vegetable grafting, a method gaining considerable interest as an alternative to the use of fumigants to protect crops from soil-borne diseases.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic books.
Pérez-Alfocea, Francisco.
Schwarz, Dietmar.
Albacete, Alfonso.
Nawaz, M. A.
Bebeli, Penelope J.
Ben-Hur, Meni.
Bie, Zhilong.
Calatayud, Angeles.
Cohen, Roni.
Print version: Colla, Giuseppe Vegetable Grafting Oxford : CAB International,c2017 9781780648972
ProQuest (Firm)
https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6371484 Click to View
language English
format eBook
author Colla, Giuseppe.
spellingShingle Colla, Giuseppe.
Vegetable Grafting : Principles and Practices.
Intro -- Half Title -- Title -- Copyright -- Contents -- Contributors -- Preface -- Acknowledgements -- 1 Introduction to Vegetable Grafting -- 1.1 Importance and Use of Vegetable Grafting -- 1.1.1 Historical perspective -- 1.1.2 Purpose and scope -- 1.1.3 Growing areas and plantlet production -- 1.2 The Process of Vegetable Grafting -- 1.2.1 Selection of rootstock and scion cultivars -- 1.2.2 Overview of grafting methods -- 1.2.3 Preference of grafting method for different species -- 1.2.4 Post-graft healing environment -- 1.3 Problems Associated with Vegetable Grafting -- 1.4 Conclusions -- References -- 2 Genetic Resources for Rootstock Breeding -- 2.1 Genetic Diversity -- 2.1.1 Diversity in the Cucurbitaceae family -- 2.1.2 Diversity in the Solanaceae family -- 2.2 Gene Bank Collections -- 2.2.1 Cucurbitaceae -- 2.2.2 Solanaceae -- 2.3 Current Usage of Genetic Material in Rootstocks -- 2.3.1 Rootstocks for cucurbit production -- 2.3.2 Rootstocks for production of solanaceous crops -- 2.4 Germplasm Collections and Grafting in Other Plant Families -- 2.4.1 Cynara gafting -- 2.4.2 Phaseolous grafting -- 2.5 Conclusions -- Acknowledgements -- References -- 3 Rootstock Breeding: Current Practices and Future Technologies -- 3.1 Introduction -- 3.2 Stacking Traits: Meiosis or Grafting or Both? -- 3.3 Developing Stable Core Collections of Germplasm for Breeding -- 3.4 Deploying Genetic Diversity for Rootstocks -- 3.4.1 General principles -- 3.4.2 Use of Cucurbita F1 hybrids -- 3.4.3 Use of Solanum F1 hybrids -- 3.4.4 Interspecific hybrids and hybridization barriers -- 3.5 Grafting as a Tool for Genetic Hybridization and Chimera Production -- 3.5.1 Genetic hybridization: transfer of nuclear and organellar DNA between cells of the graft union -- 3.5.2 Use of grafting to generate chimeras -- 3.6 Selection of Improved Rootstocks.
3.6.1 Phenotypic selection -- 3.6.2 Marker-assisted Selection -- 3.7 Transgenic Rootstocks -- 3.8 Rootstock Registration and Commercialization -- Acknowledgements -- References -- 4 Rootstock-scion Signalling: Key Factors Mediating Scion Performance -- 4.1 Introduction -- 4.2 Current Knowledge of Ionic and Chemical Signalling Between Rootstock and Scion -- 4.2.1 Ionic signalling -- 4.2.2 Plant hormone signalling -- 4.2.3 Metabolite profile of the xylem sap: xylomics -- 4.2.4 Physical signalling -- 4.2.5 Proteins -- 4.2.6 Small RNAs -- 4.3 Conclusions -- References -- 5 Physiological and Molecular Mechanisms Underlying Graft Compatibility -- 5.1 Introduction -- 5.2 Anatomical and Physiological Steps During Graft Union Development -- 5.2.1 Graft establishment between compatible and incompatible combinations -- 5.2.2 Translocation between grafted partners -- 5.3 Role of Secondary Metabolites at the Interface in Graft Incompatibility -- 5.4 Cell-to-cell Communication Between Graft Partners -- 5.4.1 Plant growth regulator and graft union formation -- 5.4.2 Cell-to-cell communication at the graft interface -- 5.5 Understanding the Molecular Mechanisms Involved in Graft Union Formation and Compatibility -- 5.5.1 Genes differentially expressed during graft union formation -- 5.5.2 Genes differentially expressed between compatible and incompatible graft combinations -- 5.6 Methods for Examining Graft Union Development and Compatibility -- 5.6.1 In vitro techniques -- 5.6.2 Histological studies -- 5.6.3 Chlorophyll fluorescence imaging as a diagnostic technique -- 5.7 Conclusions -- References -- 6 Grafting as Agrotechnology for Reducing Disease Damage -- 6.1 Introduction -- 6.2 First Step: Managing Diseases in the Nursery -- 6.2.1 Tobamovirus management: grafted cucurbits and cucumber green mottle mosaic virus: an example of risk and a solution.
6.2.2 Bacterial canker management: grafted tomatoes and an old nemesis -- 6.3 Disease Spread from the Nursery to the Field: the Example of Powdery Mildew of Watermelons -- 6.4 Intra- and Interspecific Grafting and their Relationship to Diseases -- 6.5 Biotic or Abiotic Stress? Different Responses of Grafted Plants to Environmental Conditions: the Case of 'Physiological Wilt' -- 6.6 Response of Grafted Plants to Nematodes -- 6.7 Commercial Rootstocks and Unknown Genetics -- 6.8 Different Mechanisms Involved in Disease Resistance Induced by Grafting -- 6.9 Conclusions -- References -- 7 Grafting as a Tool for Tolerance of Abiotic Stress -- 7.1 Introduction -- 7.2 Temperature Stress -- 7.2.1 Diminishing temperature constraints for vegetable production -- 7.2.2 Contribution of rootstocks to improved low- and high-temperature tolerance -- 7.2.3 Rootstock selection for improved temperature-stress tolerance -- 7.2.4 Cold- and heat-tolerant Cucurbitaceae and Solanaceae rootstocks -- 7.3 Salinity Stress -- 7.4 Nutrient Stress -- 7.4.1 Excessive nutrient availability -- 7.4.2 Deficient nutrient availability -- 7.5 Stress Induced by Metalloids and Heavy Metals -- 7.5.1 Boron -- 7.5.2 Heavy metals -- 7.6 Stress by Adverse Soil pH -- 7.7 Drought and Flood Stresses -- 7.7.1 Drought -- 7.7.2 Flooding and waterlogging -- 7.8 Conclusions -- Acknowledgements -- References -- 8 Quality of Grafted Vegetables -- 8.1 What is Quality? -- 8.2 Rootstock Effects on Fruit Quality -- 8.2.1 Appearance -- 8.2.2 Texture -- 8.2.3 Organoleptic compounds and relationship to sensory properties -- 8.2.4 Health-promoting substances -- 8.2.5 Contaminants -- 8.3 Effects of Grafting on Ripening and Postharvest Behaviour -- 8.4 Biophysiological Processes Affecting Fruit Quality -- 8.5 Conclusions -- References -- 9 Practical Applications and Speciality Crops.
9.1 Establishment of Grafted Transplants under Mediterranean Climate Conditions -- 9.1.1 Factors affecting the establishment of grafted plants -- 9.1.2 Abiotic stress -- 9.1.3 Biotic stress -- 9.2 Recommendations for the Use of Grafted Plants in Greenhouses: the Case of The Netherlands -- 9.2.1 The grafting process -- 9.2.2 Cultivation system of grafted plants -- 9.2.3 Start of cultivation -- 9.2.4 Later phases in cultivation -- 9.3 Role of Grafting in Speciality Crops -- 9.3.1 Globe artichoke -- 9.3.2 Green bean -- 9.4 Conclusions and Future Perspectives on Vegetable Grafting -- Acknowledgements -- References -- Index -- Plates -- Back Cover.
author_facet Colla, Giuseppe.
Pérez-Alfocea, Francisco.
Schwarz, Dietmar.
Albacete, Alfonso.
Nawaz, M. A.
Bebeli, Penelope J.
Ben-Hur, Meni.
Bie, Zhilong.
Calatayud, Angeles.
Cohen, Roni.
author_variant g c gc
author2 Pérez-Alfocea, Francisco.
Schwarz, Dietmar.
Albacete, Alfonso.
Nawaz, M. A.
Bebeli, Penelope J.
Ben-Hur, Meni.
Bie, Zhilong.
Calatayud, Angeles.
Cohen, Roni.
author2_variant f p a fpa
d s ds
a a aa
m a n ma man
p j b pj pjb
m b h mbh
z b zb
a c ac
r c rc
author2_role TeilnehmendeR
TeilnehmendeR
TeilnehmendeR
TeilnehmendeR
TeilnehmendeR
TeilnehmendeR
TeilnehmendeR
TeilnehmendeR
TeilnehmendeR
author_sort Colla, Giuseppe.
title Vegetable Grafting : Principles and Practices.
title_sub Principles and Practices.
title_full Vegetable Grafting : Principles and Practices.
title_fullStr Vegetable Grafting : Principles and Practices.
title_full_unstemmed Vegetable Grafting : Principles and Practices.
title_auth Vegetable Grafting : Principles and Practices.
title_new Vegetable Grafting :
title_sort vegetable grafting : principles and practices.
publisher CAB International,
publishDate 2017
physical 1 online resource (418 pages)
edition 1st ed.
contents Intro -- Half Title -- Title -- Copyright -- Contents -- Contributors -- Preface -- Acknowledgements -- 1 Introduction to Vegetable Grafting -- 1.1 Importance and Use of Vegetable Grafting -- 1.1.1 Historical perspective -- 1.1.2 Purpose and scope -- 1.1.3 Growing areas and plantlet production -- 1.2 The Process of Vegetable Grafting -- 1.2.1 Selection of rootstock and scion cultivars -- 1.2.2 Overview of grafting methods -- 1.2.3 Preference of grafting method for different species -- 1.2.4 Post-graft healing environment -- 1.3 Problems Associated with Vegetable Grafting -- 1.4 Conclusions -- References -- 2 Genetic Resources for Rootstock Breeding -- 2.1 Genetic Diversity -- 2.1.1 Diversity in the Cucurbitaceae family -- 2.1.2 Diversity in the Solanaceae family -- 2.2 Gene Bank Collections -- 2.2.1 Cucurbitaceae -- 2.2.2 Solanaceae -- 2.3 Current Usage of Genetic Material in Rootstocks -- 2.3.1 Rootstocks for cucurbit production -- 2.3.2 Rootstocks for production of solanaceous crops -- 2.4 Germplasm Collections and Grafting in Other Plant Families -- 2.4.1 Cynara gafting -- 2.4.2 Phaseolous grafting -- 2.5 Conclusions -- Acknowledgements -- References -- 3 Rootstock Breeding: Current Practices and Future Technologies -- 3.1 Introduction -- 3.2 Stacking Traits: Meiosis or Grafting or Both? -- 3.3 Developing Stable Core Collections of Germplasm for Breeding -- 3.4 Deploying Genetic Diversity for Rootstocks -- 3.4.1 General principles -- 3.4.2 Use of Cucurbita F1 hybrids -- 3.4.3 Use of Solanum F1 hybrids -- 3.4.4 Interspecific hybrids and hybridization barriers -- 3.5 Grafting as a Tool for Genetic Hybridization and Chimera Production -- 3.5.1 Genetic hybridization: transfer of nuclear and organellar DNA between cells of the graft union -- 3.5.2 Use of grafting to generate chimeras -- 3.6 Selection of Improved Rootstocks.
3.6.1 Phenotypic selection -- 3.6.2 Marker-assisted Selection -- 3.7 Transgenic Rootstocks -- 3.8 Rootstock Registration and Commercialization -- Acknowledgements -- References -- 4 Rootstock-scion Signalling: Key Factors Mediating Scion Performance -- 4.1 Introduction -- 4.2 Current Knowledge of Ionic and Chemical Signalling Between Rootstock and Scion -- 4.2.1 Ionic signalling -- 4.2.2 Plant hormone signalling -- 4.2.3 Metabolite profile of the xylem sap: xylomics -- 4.2.4 Physical signalling -- 4.2.5 Proteins -- 4.2.6 Small RNAs -- 4.3 Conclusions -- References -- 5 Physiological and Molecular Mechanisms Underlying Graft Compatibility -- 5.1 Introduction -- 5.2 Anatomical and Physiological Steps During Graft Union Development -- 5.2.1 Graft establishment between compatible and incompatible combinations -- 5.2.2 Translocation between grafted partners -- 5.3 Role of Secondary Metabolites at the Interface in Graft Incompatibility -- 5.4 Cell-to-cell Communication Between Graft Partners -- 5.4.1 Plant growth regulator and graft union formation -- 5.4.2 Cell-to-cell communication at the graft interface -- 5.5 Understanding the Molecular Mechanisms Involved in Graft Union Formation and Compatibility -- 5.5.1 Genes differentially expressed during graft union formation -- 5.5.2 Genes differentially expressed between compatible and incompatible graft combinations -- 5.6 Methods for Examining Graft Union Development and Compatibility -- 5.6.1 In vitro techniques -- 5.6.2 Histological studies -- 5.6.3 Chlorophyll fluorescence imaging as a diagnostic technique -- 5.7 Conclusions -- References -- 6 Grafting as Agrotechnology for Reducing Disease Damage -- 6.1 Introduction -- 6.2 First Step: Managing Diseases in the Nursery -- 6.2.1 Tobamovirus management: grafted cucurbits and cucumber green mottle mosaic virus: an example of risk and a solution.
6.2.2 Bacterial canker management: grafted tomatoes and an old nemesis -- 6.3 Disease Spread from the Nursery to the Field: the Example of Powdery Mildew of Watermelons -- 6.4 Intra- and Interspecific Grafting and their Relationship to Diseases -- 6.5 Biotic or Abiotic Stress? Different Responses of Grafted Plants to Environmental Conditions: the Case of 'Physiological Wilt' -- 6.6 Response of Grafted Plants to Nematodes -- 6.7 Commercial Rootstocks and Unknown Genetics -- 6.8 Different Mechanisms Involved in Disease Resistance Induced by Grafting -- 6.9 Conclusions -- References -- 7 Grafting as a Tool for Tolerance of Abiotic Stress -- 7.1 Introduction -- 7.2 Temperature Stress -- 7.2.1 Diminishing temperature constraints for vegetable production -- 7.2.2 Contribution of rootstocks to improved low- and high-temperature tolerance -- 7.2.3 Rootstock selection for improved temperature-stress tolerance -- 7.2.4 Cold- and heat-tolerant Cucurbitaceae and Solanaceae rootstocks -- 7.3 Salinity Stress -- 7.4 Nutrient Stress -- 7.4.1 Excessive nutrient availability -- 7.4.2 Deficient nutrient availability -- 7.5 Stress Induced by Metalloids and Heavy Metals -- 7.5.1 Boron -- 7.5.2 Heavy metals -- 7.6 Stress by Adverse Soil pH -- 7.7 Drought and Flood Stresses -- 7.7.1 Drought -- 7.7.2 Flooding and waterlogging -- 7.8 Conclusions -- Acknowledgements -- References -- 8 Quality of Grafted Vegetables -- 8.1 What is Quality? -- 8.2 Rootstock Effects on Fruit Quality -- 8.2.1 Appearance -- 8.2.2 Texture -- 8.2.3 Organoleptic compounds and relationship to sensory properties -- 8.2.4 Health-promoting substances -- 8.2.5 Contaminants -- 8.3 Effects of Grafting on Ripening and Postharvest Behaviour -- 8.4 Biophysiological Processes Affecting Fruit Quality -- 8.5 Conclusions -- References -- 9 Practical Applications and Speciality Crops.
9.1 Establishment of Grafted Transplants under Mediterranean Climate Conditions -- 9.1.1 Factors affecting the establishment of grafted plants -- 9.1.2 Abiotic stress -- 9.1.3 Biotic stress -- 9.2 Recommendations for the Use of Grafted Plants in Greenhouses: the Case of The Netherlands -- 9.2.1 The grafting process -- 9.2.2 Cultivation system of grafted plants -- 9.2.3 Start of cultivation -- 9.2.4 Later phases in cultivation -- 9.3 Role of Grafting in Speciality Crops -- 9.3.1 Globe artichoke -- 9.3.2 Green bean -- 9.4 Conclusions and Future Perspectives on Vegetable Grafting -- Acknowledgements -- References -- Index -- Plates -- Back Cover.
isbn 9781780648996
9781780648972
genre Electronic books.
genre_facet Electronic books.
url https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6371484
illustrated Not Illustrated
dewey-hundreds 600 - Technology
dewey-tens 630 - Agriculture
dewey-ones 635 - Garden crops (Horticulture)
dewey-full 635
dewey-sort 3635
dewey-raw 635
dewey-search 635
oclc_num 994874680
work_keys_str_mv AT collagiuseppe vegetablegraftingprinciplesandpractices
AT perezalfoceafrancisco vegetablegraftingprinciplesandpractices
AT schwarzdietmar vegetablegraftingprinciplesandpractices
AT albacetealfonso vegetablegraftingprinciplesandpractices
AT nawazma vegetablegraftingprinciplesandpractices
AT bebelipenelopej vegetablegraftingprinciplesandpractices
AT benhurmeni vegetablegraftingprinciplesandpractices
AT biezhilong vegetablegraftingprinciplesandpractices
AT calatayudangeles vegetablegraftingprinciplesandpractices
AT cohenroni vegetablegraftingprinciplesandpractices
status_str n
ids_txt_mv (MiAaPQ)5006371484
(Au-PeEL)EBL6371484
(OCoLC)994874680
carrierType_str_mv cr
is_hierarchy_title Vegetable Grafting : Principles and Practices.
author2_original_writing_str_mv noLinkedField
noLinkedField
noLinkedField
noLinkedField
noLinkedField
noLinkedField
noLinkedField
noLinkedField
noLinkedField
marc_error Info : MARC8 translation shorter than ISO-8859-1, choosing MARC8. --- [ 856 : z ]
_version_ 1792331056824713216
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>08230nam a22005293i 4500</leader><controlfield tag="001">5006371484</controlfield><controlfield tag="003">MiAaPQ</controlfield><controlfield tag="005">20240229073836.0</controlfield><controlfield tag="006">m o d | </controlfield><controlfield tag="007">cr cnu||||||||</controlfield><controlfield tag="008">240229s2017 xx o ||||0 eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781780648996</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781780648972</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(MiAaPQ)5006371484</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(Au-PeEL)EBL6371484</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)994874680</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">MiAaPQ</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">MiAaPQ</subfield><subfield code="d">MiAaPQ</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">635</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Colla, Giuseppe.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Vegetable Grafting :</subfield><subfield code="b">Principles and Practices.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford :</subfield><subfield code="b">CAB International,</subfield><subfield code="c">2017.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2017.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (418 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Intro -- Half Title -- Title -- Copyright -- Contents -- Contributors -- Preface -- Acknowledgements -- 1 Introduction to Vegetable Grafting -- 1.1 Importance and Use of Vegetable Grafting -- 1.1.1 Historical perspective -- 1.1.2 Purpose and scope -- 1.1.3 Growing areas and plantlet production -- 1.2 The Process of Vegetable Grafting -- 1.2.1 Selection of rootstock and scion cultivars -- 1.2.2 Overview of grafting methods -- 1.2.3 Preference of grafting method for different species -- 1.2.4 Post-graft healing environment -- 1.3 Problems Associated with Vegetable Grafting -- 1.4 Conclusions -- References -- 2 Genetic Resources for Rootstock Breeding -- 2.1 Genetic Diversity -- 2.1.1 Diversity in the Cucurbitaceae family -- 2.1.2 Diversity in the Solanaceae family -- 2.2 Gene Bank Collections -- 2.2.1 Cucurbitaceae -- 2.2.2 Solanaceae -- 2.3 Current Usage of Genetic Material in Rootstocks -- 2.3.1 Rootstocks for cucurbit production -- 2.3.2 Rootstocks for production of solanaceous crops -- 2.4 Germplasm Collections and Grafting in Other Plant Families -- 2.4.1 Cynara gafting -- 2.4.2 Phaseolous grafting -- 2.5 Conclusions -- Acknowledgements -- References -- 3 Rootstock Breeding: Current Practices and Future Technologies -- 3.1 Introduction -- 3.2 Stacking Traits: Meiosis or Grafting or Both? -- 3.3 Developing Stable Core Collections of Germplasm for Breeding -- 3.4 Deploying Genetic Diversity for Rootstocks -- 3.4.1 General principles -- 3.4.2 Use of Cucurbita F1 hybrids -- 3.4.3 Use of Solanum F1 hybrids -- 3.4.4 Interspecific hybrids and hybridization barriers -- 3.5 Grafting as a Tool for Genetic Hybridization and Chimera Production -- 3.5.1 Genetic hybridization: transfer of nuclear and organellar DNA between cells of the graft union -- 3.5.2 Use of grafting to generate chimeras -- 3.6 Selection of Improved Rootstocks.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.6.1 Phenotypic selection -- 3.6.2 Marker-assisted Selection -- 3.7 Transgenic Rootstocks -- 3.8 Rootstock Registration and Commercialization -- Acknowledgements -- References -- 4 Rootstock-scion Signalling: Key Factors Mediating Scion Performance -- 4.1 Introduction -- 4.2 Current Knowledge of Ionic and Chemical Signalling Between Rootstock and Scion -- 4.2.1 Ionic signalling -- 4.2.2 Plant hormone signalling -- 4.2.3 Metabolite profile of the xylem sap: xylomics -- 4.2.4 Physical signalling -- 4.2.5 Proteins -- 4.2.6 Small RNAs -- 4.3 Conclusions -- References -- 5 Physiological and Molecular Mechanisms Underlying Graft Compatibility -- 5.1 Introduction -- 5.2 Anatomical and Physiological Steps During Graft Union Development -- 5.2.1 Graft establishment between compatible and incompatible combinations -- 5.2.2 Translocation between grafted partners -- 5.3 Role of Secondary Metabolites at the Interface in Graft Incompatibility -- 5.4 Cell-to-cell Communication Between Graft Partners -- 5.4.1 Plant growth regulator and graft union formation -- 5.4.2 Cell-to-cell communication at the graft interface -- 5.5 Understanding the Molecular Mechanisms Involved in Graft Union Formation and Compatibility -- 5.5.1 Genes differentially expressed during graft union formation -- 5.5.2 Genes differentially expressed between compatible and incompatible graft combinations -- 5.6 Methods for Examining Graft Union Development and Compatibility -- 5.6.1 In vitro techniques -- 5.6.2 Histological studies -- 5.6.3 Chlorophyll fluorescence imaging as a diagnostic technique -- 5.7 Conclusions -- References -- 6 Grafting as Agrotechnology for Reducing Disease Damage -- 6.1 Introduction -- 6.2 First Step: Managing Diseases in the Nursery -- 6.2.1 Tobamovirus management: grafted cucurbits and cucumber green mottle mosaic virus: an example of risk and a solution.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.2.2 Bacterial canker management: grafted tomatoes and an old nemesis -- 6.3 Disease Spread from the Nursery to the Field: the Example of Powdery Mildew of Watermelons -- 6.4 Intra- and Interspecific Grafting and their Relationship to Diseases -- 6.5 Biotic or Abiotic Stress? Different Responses of Grafted Plants to Environmental Conditions: the Case of 'Physiological Wilt' -- 6.6 Response of Grafted Plants to Nematodes -- 6.7 Commercial Rootstocks and Unknown Genetics -- 6.8 Different Mechanisms Involved in Disease Resistance Induced by Grafting -- 6.9 Conclusions -- References -- 7 Grafting as a Tool for Tolerance of Abiotic Stress -- 7.1 Introduction -- 7.2 Temperature Stress -- 7.2.1 Diminishing temperature constraints for vegetable production -- 7.2.2 Contribution of rootstocks to improved low- and high-temperature tolerance -- 7.2.3 Rootstock selection for improved temperature-stress tolerance -- 7.2.4 Cold- and heat-tolerant Cucurbitaceae and Solanaceae rootstocks -- 7.3 Salinity Stress -- 7.4 Nutrient Stress -- 7.4.1 Excessive nutrient availability -- 7.4.2 Deficient nutrient availability -- 7.5 Stress Induced by Metalloids and Heavy Metals -- 7.5.1 Boron -- 7.5.2 Heavy metals -- 7.6 Stress by Adverse Soil pH -- 7.7 Drought and Flood Stresses -- 7.7.1 Drought -- 7.7.2 Flooding and waterlogging -- 7.8 Conclusions -- Acknowledgements -- References -- 8 Quality of Grafted Vegetables -- 8.1 What is Quality? -- 8.2 Rootstock Effects on Fruit Quality -- 8.2.1 Appearance -- 8.2.2 Texture -- 8.2.3 Organoleptic compounds and relationship to sensory properties -- 8.2.4 Health-promoting substances -- 8.2.5 Contaminants -- 8.3 Effects of Grafting on Ripening and Postharvest Behaviour -- 8.4 Biophysiological Processes Affecting Fruit Quality -- 8.5 Conclusions -- References -- 9 Practical Applications and Speciality Crops.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">9.1 Establishment of Grafted Transplants under Mediterranean Climate Conditions -- 9.1.1 Factors affecting the establishment of grafted plants -- 9.1.2 Abiotic stress -- 9.1.3 Biotic stress -- 9.2 Recommendations for the Use of Grafted Plants in Greenhouses: the Case of The Netherlands -- 9.2.1 The grafting process -- 9.2.2 Cultivation system of grafted plants -- 9.2.3 Start of cultivation -- 9.2.4 Later phases in cultivation -- 9.3 Role of Grafting in Speciality Crops -- 9.3.1 Globe artichoke -- 9.3.2 Green bean -- 9.4 Conclusions and Future Perspectives on Vegetable Grafting -- Acknowledgements -- References -- Index -- Plates -- Back Cover.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book provides comprehensive and current scientific and practical knowledge on vegetable grafting, a method gaining considerable interest as an alternative to the use of fumigants to protect crops from soil-borne diseases.</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources.</subfield></datafield><datafield tag="590" ind1=" " ind2=" "><subfield code="a">Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. </subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pérez-Alfocea, Francisco.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schwarz, Dietmar.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Albacete, Alfonso.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nawaz, M. A.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bebeli, Penelope J.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ben-Hur, Meni.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bie, Zhilong.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Calatayud, Angeles.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cohen, Roni.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Colla, Giuseppe</subfield><subfield code="t">Vegetable Grafting</subfield><subfield code="d">Oxford : CAB International,c2017</subfield><subfield code="z">9781780648972</subfield></datafield><datafield tag="797" ind1="2" ind2=" "><subfield code="a">ProQuest (Firm)</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6371484</subfield><subfield code="z">Click to View</subfield></datafield></record></collection>