Particle Physics Reference Library : : Volume 1: Theory and Experiments.

Saved in:
Bibliographic Details
:
Place / Publishing House:Cham : : Springer International Publishing AG,, 2020.
©2020.
Year of Publication:2020
Edition:1st ed.
Language:English
Online Access:
Physical Description:1 online resource (631 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Intro
  • Preface
  • Contents
  • About the Editor
  • 1 Introduction
  • 2 Gauge Theories and the Standard Model
  • 2.1 Introduction to Chaps. 2, 3 and 4
  • 2.2 Introduction
  • 2.3 Overview of the Standard Model
  • 2.4 The Formalism of Gauge Theories
  • 2.5 Application to QCD
  • 2.6 Quantization of a Gauge Theory
  • 2.7 Spontaneous Symmetry Breaking in Gauge Theories
  • 2.8 Quantization of Spontaneously Broken Gauge Theories: Rξ Gauges
  • References
  • 3 The Standard Model of Electroweak Interactions
  • 3.1 Introduction
  • 3.2 The Gauge Sector
  • 3.3 Couplings of Gauge Bosons to Fermions
  • 3.4 Gauge Boson Self-interactions
  • 3.5 The Higgs Sector
  • 3.6 The CKM Matrix
  • 3.7 Neutrino Masses
  • 3.8 Renormalization of the Electroweak Theory
  • 3.9 QED Tests: Lepton Anomalous Magnetic Moments
  • 3.10 Large Radiative Corrections to Electroweak Processes
  • 3.11 Electroweak Precision Tests in the SM and Beyond
  • 3.12 Results of the SM Analysis of Precision Tests
  • 3.13 Phenomenology of the SM Higgs
  • 3.13.1 Theoretical Bounds on the SM Higgs Mass
  • 3.13.2 SM Higgs Decays
  • 3.14 Limitations of the Standard Model
  • References
  • 4 QCD: The Theory of Strong Interactions
  • 4.1 Introduction
  • 4.2 Massless QCD and Scale Invariance
  • 4.3 The Renormalisation Group and Asymptotic Freedom
  • 4.4 More on the Running Coupling
  • 4.5 Application to Hard Processes
  • 4.5.1 Re+e- and Related Processes
  • 4.5.2 The Final State in e+e- Annihilation
  • 4.5.3 Deep Inelastic Scattering
  • 4.5.3.1 Resummation for Deep Inelastic Structure Functions
  • 4.5.3.2 Polarized Deep Inelastic Scattering
  • 4.5.4 Factorisation and the QCD Improved Parton Model
  • 4.6 Measurements of αs
  • 4.6.1 αs from e+e- Colliders
  • 4.6.2 αs from Deep Inelastic Scattering
  • 4.6.3 Summary on αs
  • 4.7 Conclusion
  • References
  • 5 QCD on the Lattice
  • 5.1 Introduction and Outline.
  • 5.1.1 Historical Perspective
  • 5.1.2 Outline
  • 5.2 The Lattice Approach to QCD
  • 5.2.1 Euclidean Quantization
  • 5.2.2 Lattice Actions for QCD
  • 5.2.3 Functional Integral and Observables
  • 5.2.4 Continuum Limit, Scale Setting and Renormalization
  • 5.2.5 Limitations and Systematic Effects
  • 5.2.6 Simulations with Dynamical Quarks
  • 5.3 Hadron Spectroscopy
  • 5.3.1 Light Hadron Spectrum
  • 5.3.2 Glueballs
  • 5.4 Confinement and String Breaking
  • 5.5 Fundamental Parameters of QCD
  • 5.5.1 Non-perturbative Renormalization
  • 5.5.2 Finite Volume Scheme: The Schrödinger Functional
  • 5.5.3 Regularization-Independent Momentum Subtraction Scheme
  • 5.5.4 Mean-Field Improved Perturbation Theory
  • 5.5.5 The Running Coupling from the Lattice
  • 5.5.6 Light Quark Masses
  • 5.6 Spontaneous Chiral Symmetry Breaking
  • 5.6.1 Chiral Perturbation Theory
  • 5.6.2 Lattice Calculations of the Quark Condensate
  • 5.7 Hadronic Weak Matrix Elements
  • 5.7.1 Weak Matrix Elements in the Kaon Sector
  • 5.7.2 Weak Matrix Elements in the Heavy Quark Sector
  • 5.8 Concluding Remarks
  • 5.9 Addendum: QCD on the Lattice
  • 5.9.1 Introduction
  • 5.9.2 Hadron Spectroscopy
  • 5.9.3 Parameters of the Standard Model
  • 5.9.4 Nucleon Matrix Elements
  • 5.9.5 Hadronic Contributions to the Muon Anomalous Magnetic Moment
  • 5.9.6 Concluding Remarks
  • References
  • 6 The Discovery of the Higgs Boson at the LHC
  • 6.1 Introduction and the Standard Model
  • 6.2 The SM Higgs Boson
  • 6.2.1 Higgs Boson: Production and Decay
  • 6.3 The Large Hadron Collider
  • 6.3.1 The Road to the LHC
  • 6.3.2 The Challenges of the LHC Accelerator
  • 6.4 The ATLAS and CMS Experiments
  • 6.4.1 The Challenges for ATLAS and CMS Experiments
  • 6.4.2 The ATLAS Detector
  • 6.4.3 The CMS Detector
  • 6.4.4 Installation and Commissioning
  • 6.5 Experiment Software and LHC Worldwide Computing Grid.
  • 6.6 Operation of the LHC: The Start of Data Taking
  • 6.6.1 Measurement of SM Processes to Verify Experiment Performance
  • 6.7 The Discovery and Properties of a Higgs Boson
  • 6.7.1 Event and Physics Objects Reconstruction and Analysis Techniques
  • 6.7.2 The Discovery: Results from the 2011 and Partial 2012 Datasets
  • 6.7.2.1 The H =→ γγ Decay Mode
  • 6.7.2.2 The H =→ ZZ() =→ 4 l Decay Mode
  • 6.7.2.3 Combinations
  • 6.7.3 Results from the Data Recorded Subsequent to the Discovery
  • 6.7.3.1 The H =→ γγ
  • 6.7.3.2 H =→ ZZ() =→ 4 l Decay Mode
  • 6.7.3.3 H =→ WW() =→ 2 l 2 Decay Mode
  • 6.7.3.4 The H =→ ττ Decay Mode
  • 6.7.3.5 H=→ bb Decay Mode
  • 6.7.3.6 H =→ Decay Mode
  • 6.7.3.7 ttbar H Production Mode
  • 6.7.4 Combining the Results
  • 6.7.4.1 Mass of the Observed State
  • 6.7.4.2 Compatibility of the Observed State with the SM Higgs Boson Hypothesis: Signal Strength
  • 6.7.4.3 Compatibility of the Observed State with the SM Higgs Boson Hypothesis: Couplings
  • 6.7.4.4 Compatibility of the Observed State with the SM Higgs Boson Hypothesis: Quantum Numbers
  • 6.8 Conclusions and Outlook
  • References
  • 7 Relativistic Nucleus-Nucleus Collisions and the QCD Matter Phase Diagram
  • 7.1 Introduction
  • 7.1.1 Overview
  • 7.1.2 History
  • 7.2 Bulk Hadron Production in A+A Collisions
  • 7.2.1 Particle Multiplicity and Transverse Energy Density
  • 7.2.2 Rapidity Distributions
  • 7.2.3 Dependence on System Size
  • 7.2.4 Gluon Saturation in A+A Collisions
  • 7.2.5 Transverse Phase Space: Equilibrium and the QGP State
  • 7.2.6 Bulk Hadron Transverse Spectra and Radial Expansion Flow
  • 7.3 Hadronization and Hadronic Freeze-Out in A+A Collisions
  • 7.3.1 Hadronic Freeze-Out from Expansion Flow
  • 7.3.2 Grand Canonical Strangeness Enhancement
  • 7.3.3 Origin of Hadro-Chemical Equilibrium
  • 7.3.4 Hadronization vs. Rapidity and s
  • 7.4 Elliptic Flow.
  • 7.5 In-medium Attenuation of High pT Hadronand Jet Production
  • 7.5.1 High pT Inclusive Hadron Production Quenching
  • 7.5.2 Energy Loss in a QCD Medium
  • 7.5.3 Di-jet Production and Attenuation in A+A Collisions
  • 7.6 Vector Meson and Direct Photon Production: Penetrating Probes
  • 7.6.1 Charmonium Suppression
  • 7.6.2 Direct Photons
  • 7.6.3 Low Mass Dilepton Spectra: Vector Mesons In-medium
  • 7.7 Fluctuation and Correlation Signals
  • 7.7.1 Elliptic Flow Fluctuation
  • 7.7.2 Critical Point: Fluctuations from Diverging Susceptibilities
  • 7.7.3 Critical Fluctuation of the Sigma-Field, and Related Pionic Observables
  • 7.7.4 Bose-Einstein-Correlation
  • 7.8 Summary
  • 7.9 Postscript
  • 7.9.1 Progress of the Field
  • 7.9.2 Reaction Dynamics
  • 7.9.3 Energy Loss in a QCD Medium: Hadron Suppression and Jet Quenching
  • 7.9.4 Charmonium
  • 7.9.5 Hadronization and the QCD Phase Diagram
  • 7.9.6 New Topics
  • 7.9.6.1 Proton Induced Collisions
  • 7.9.6.2 Lambda Polarization and Fireball Vorticity
  • 7.9.6.3 EOS from Neutron Star Mergers
  • 7.9.6.4 Production of Light Nuclei in A+A Collisions
  • References
  • 8 Beyond the Standard Model
  • 8.1 Introduction
  • 8.2 Super Symmetry [1]
  • 8.2.1 Elementary Particles in SUSY Models: Algebraic Structure
  • 8.2.2 Supersymmetric Lagrangians
  • 8.2.2.1 Superspace, Chiral Fields and Lagrangians for Spin Zero and One-half Particles
  • 8.2.2.2 Global Symmetries
  • 8.2.2.3 Lagrangians for SUSY Gauge Theories
  • 8.2.3 Supersymmetrical Particle Spectrum in Nature?
  • 8.2.4 Spontaneous SUSY Breaking: Perturbative Analysis
  • 8.2.4.1 F-terms
  • 8.2.4.2 SUSY Breaking in Theories with Scalars and Spin One Half Particles by F Terms
  • 8.2.4.3 SUSY Breaking in Supersymmetric Gauge Theories
  • 8.2.5 Dynamics of SUSY Gauge Theories and SUSY Breaking
  • 8.2.5.1 Phases of Gauge Theories
  • 8.2.5.2 SUSY QCD: The Setup.
  • 8.2.5.3 The Moduli Space
  • 8.2.5.4 Quantum Moduli Spaces/Dynamical SUSY Breaking
  • 8.2.5.5 Infra-red Duality
  • 8.2.5.6 More General Matter Composition of SUSY Gauge Theories
  • 8.2.6 Dynamics of SUSY Gauge Theories with N &gt
  • 1 SUSY
  • 8.2.6.1 N == 4 Supersymmetry
  • 8.2.7 Gauging Supersymmetry
  • 8.2.8 The Hierarchy Problem
  • 8.2.9 Effective Theories
  • 8.2.10 MSSM Lagrangian
  • 8.3 Unification
  • 8.3.1 Gauge Group Unification [2]
  • 8.3.2 Extra Dimensions and Unification [3]
  • 8.4 String Theory [4]
  • 8.4.1 No NOH Principle
  • 8.4.2 Why Change a Winning Team: Extended Constituents Are Called Upon to Replace Point-like Ones
  • 8.4.3 New Questions
  • 8.4.4 The One and Only?
  • 8.4.5 Successes: Black Holes, Holography and All That …
  • 8.4.6 Magic
  • 8.4.7 Human Effort and Closing Remarks
  • 8.5 Hindsight from 2018
  • 8.6 References for 8
  • 9 Symmetry Violations and Quark Flavour Physics
  • 9.1 Introduction
  • 9.1.1 Matter-Antimatter Asymmetry in the Universe
  • 9.2 Discrete Symmetries
  • 9.2.1 Discrete Symmetries in Classical Physics
  • 9.2.1.1 Parity P
  • 9.2.1.2 Time Reversal T
  • 9.2.1.3 Dipole Moments
  • 9.2.2 Discrete Symmetries in Quantum Systems
  • 9.2.2.1 Particle-Antiparticle Conjugation
  • 9.2.2.2 Violation of Mirror Symmetry: Parity Violation in Weak Interactions
  • 9.2.2.3 Violation of C Symmetry, and CP Invariance
  • 9.2.2.4 CP Invariance and Neutral K Mesons
  • 9.2.2.5 Discovery of CP Violation
  • 9.2.3 Discrete Symmetries in Quantum Mechanics
  • 9.3 Mixing and Decay of Neutral Flavoured Mesons
  • 9.3.1 Particle-Antiparticle Mixing
  • 9.3.2 Decays of Neutral Mesons
  • 9.3.2.1 Time-Dependent Schrödinger Equation
  • 9.3.2.2 Decay Asymmetries and CP
  • 9.4 Models of CP Violation
  • 9.5 The Neutral K Meson System
  • 9.5.1 Mass Eigenstates and CP Eigenstates
  • 9.5.2 Isospin Decomposition.
  • 9.5.3 Interference Between Decay Amplitudes of KL and KS.