Molecular Mechanism of Congenital Heart Disease and Pulmonary Hypertension.

Saved in:
Bibliographic Details
:
TeilnehmendeR:
Place / Publishing House:Singapore : : Springer Singapore Pte. Limited,, 2020.
©2020.
Year of Publication:2020
Edition:1st ed.
Language:English
Online Access:
Physical Description:1 online resource (374 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Intro
  • Preface
  • Contents
  • Part I: Basic Science of Pulmonary Development and Pulmonary Arterial Disease
  • 1: Perspective for Part I
  • 2: The Alveolar Stem Cell Niche of the Mammalian Lung
  • 2.1 Introduction: The Alveolar Type 2 Epithelial Stem Cell Niche
  • 2.2 Evidence for Heterogeneity in the AT2 Population
  • 2.3 Signaling Pathways in the Stem Cell Niche
  • 2.4 The Role of Immune Cells and Stromal Cells in Alveolar Repair and Regeneration
  • 2.5 Future Directions and Clinical Implications
  • References
  • 3: Lung Development and Notch Signaling
  • 3.1 Introduction
  • 3.2 Morphogenesis and Epithelial Progenitors
  • 3.3 Notch Signaling Controls Both Epithelial Cell Fates and Distributions
  • 3.4 Development of NE Cell Clusters on Bifurcating Area of Branching Airways
  • 3.5 Notch-Hes1 Signaling Is Required for Restricted Differentiation of Solitary NE Cells
  • 3.6 Directional Migration of NE Cells Toward Bifurcation Points Creates Nodal NEBs
  • References
  • 4: Specialized Smooth Muscle Cell Progenitors in Pulmonary Hypertension
  • 4.1 Introduction
  • 4.2 Hypoxia-Induced Distal Pulmonary Arteriole SMCs Derive from Specialized SMC Progenitors
  • 4.3 Stereotyped Program of Distal Muscularization
  • 4.4 Monoclonal Expansion of SMCs in PH
  • 4.5 Signaling Pathways Regulating Primed Cells
  • 4.6 Future Direction and Clinical Implications
  • References
  • 5: Diverse Pharmacology of Prostacyclin Mimetics: Implications for Pulmonary Hypertension
  • 5.1 Introduction
  • 5.2 Development of Prostacyclin Mimetics and Their Diverse Pharmacology
  • 5.3 Prostanoid Synthesis and Receptor Expression
  • 5.3.1 Bronchial Smooth Muscle
  • 5.3.2 Pulmonary Blood Vessels
  • 5.3.2.1 Endothelium
  • 5.3.2.2 Pulmonary Artery
  • 5.3.2.3 Differential Prostanoid Expression in Distal Pulmonary Artery and Veins
  • 5.3.2.4 Distal Pulmonary Veins.
  • 5.3.3 Prostanoid Receptor Expression in PAH
  • 5.3.3.1 Downregulation of IP Receptors in PAH
  • 5.3.3.2 Robust Expression of EP2 and EP4 Receptors in PAH: Key Anti-Fibrotic Targets
  • 5.3.3.3 EP3 Receptors May Contribute to Disease Pathology in PAH
  • 5.3.3.4 Role of the Veins in PAH and Other Classified Groups of PH
  • 5.4 BMPR2 and TGF-β Signalling in PAH and Impact of Prostacyclin Analogues
  • 5.5 Regulation of TASK-1 By Prostacyclin Mimetics: Implications in PAH
  • 5.6 Prostacyclin Effects on Vascular Remodelling In Vivo: Outstanding Issues
  • 5.7 Future Work and Clinical Implications
  • References
  • 6: Endothelial-to-Mesenchymal Transition in Pulmonary Hypertension
  • 6.1 Pulmonary Hypertension
  • 6.2 Endothelial-to-Mesenchymal Transition
  • 6.3 EndoMT in PAH Pathogenesis
  • 6.3.1 EndoMT in PAH Vascular Remodeling
  • 6.3.2 Molecular Pathways of EndoMT in PAH
  • 6.4 Conclusion
  • 6.5 Future Direction and Clinical Implications
  • References
  • 7: Extracellular Vesicles, MicroRNAs, and Pulmonary Hypertension
  • 7.1 Extracellular Vesicles (EV)
  • 7.2 EV in Pulmonary Hypertension (PH)
  • 7.3 MicroRNA Transfer Through EV in PH
  • 7.4 Future Direction and Clinical Implications
  • References
  • 8: Roles of Tbx4 in the Lung Mesenchyme for Airway and Vascular Development
  • References
  • 9: A lacZ Reporter Transgenic Mouse Line Revealing the Development of Pulmonary Artery
  • References
  • 10: Roles of Stem Cell Antigen-1 in the Pulmonary Endothelium
  • References
  • 11: Morphological Characterization of Pulmonary Microvascular Disease in Bronchopulmonary Dysplasia Caused by Hyperoxia in Newborn Mice
  • References
  • 12: Involvement of CXCR4 and Stem Cells in a Rat Model of Pulmonary Arterial Hypertension
  • References.
  • 13: Ca2+ Signal Through Inositol Trisphosphate Receptors for Cardiovascular Development and Pathophysiology of Pulmonary Arterial Hypertension
  • References
  • Part II: Abnormal Pulmonary Circulation in the Developing Lung and Heart
  • 14: Perspective for Part II
  • 14.1 Idiopathic Pulmonary Arterial Hypertension (IPAH)
  • 14.2 Pulmonary Hypertension with Congenital Heart Disease
  • 14.3 Pulmonary Circulation in Patients with Congenital Heart Disease
  • References
  • 15: Pathophysiology of Pulmonary Circulation in Congenital Heart Disease
  • 15.1 Introduction
  • 15.2 Comprehensive Assessment of Integrated Pulmonary Circulation
  • 15.2.1 Physiologic Components of Pulmonary Circulation
  • 15.2.2 Impedance Analysis
  • 15.3 Pathophysiological Characteristics of Pulmonary Circulation in Congenital Heart Disease
  • 15.3.1 Abnormal Resistance Is the Main Pathophysiology
  • 15.3.2 Right Ventricular Function and Coupling to PA Load
  • 15.3.3 Abnormalities of Compliance Is the Main Pathophysiology
  • 15.3.4 Non-pulsatile Pulmonary Flow Is the Main Pathophysiology
  • References
  • 16: Development of Novel Therapies for Pulmonary Hypertension by Clinical Application of Basic Research
  • 16.1 Introduction
  • 16.2 Endothelial Function in the Development of PAH
  • 16.3 PASMCs in the Development of PAH
  • 16.4 Selenoprotein P in the Development of PAH
  • 16.5 Conclusion
  • References
  • 17: Using Patient-Specific Induced Pluripotent Stem Cells to Understand and Treat Pulmonary Arterial Hypertension
  • 17.1 Introduction
  • 17.2 Patient-Specific iPSC-Derived Endothelial Cells to Model PAH
  • 17.2.1 iPSC-EC Recapitulates Native Pulmonary Arterial Endothelial Cell (PAEC)
  • 17.2.2 Patient-Specific Drug Response in IPSC-EC and PAEC
  • 17.3 Modeling Reduced Penetrance of BMPR2 Mutation in PAH.
  • 17.3.1 Preserved EC Function in Unaffected BMPR2 Mutation Carrier (UMC)
  • 17.3.2 Preserved pP38 Signaling Pathway in Unaffected BMPR2 Mutation Carrier
  • 17.4 Gene Editing in PAH IPSCs
  • 17.4.1 Correction of the BMPR2 Mutation in PAH iPSCs
  • 17.4.2 Generation of iPSC Line with BMPR2 Mutation
  • 17.5 Future Directions and Clinical Implications
  • References
  • 18: Modeling Pulmonary Arterial Hypertension Using Induced Pluripotent Stem Cells
  • 18.1 Heritable Pulmonary Arterial Hypertension
  • 18.1.1 Insights into the Pathobiology of PAH
  • 18.1.2 Reduced Penetrance of BMPR2 in PAH
  • 18.2 Modeling Pulmonary Arterial Hypertension with Induced Pluripotent Stem Cells
  • 18.2.1 Embryological Origins of the Pulmonary Vasculature
  • 18.2.2 Current iPSC Models of PAH
  • 18.3 Future Direction and Clinical Implications
  • References
  • 19: Dysfunction and Restoration of Endothelial Cell Communications in Pulmonary Arterial Hypertension: Therapeutic Implications
  • 19.1 Introduction
  • 19.2 Pulmonary Endothelial Dysfunction and the Pathobiology of PAH
  • 19.3 Current Promising Strategies for Restoring Pulmonary Endothelial Dysfunction and Cell-Cell Communications
  • 19.3.1 Restoring the Balance of Vasodilation and Vasoconstriction
  • 19.3.2 Restitution of the Defective BMPR-2 Signaling System
  • 19.3.3 Targeting Cell Proliferation and Cell accumulation
  • 19.3.4 Restitution of an Adapted Extracellular Matrix (ECM) Remodeling
  • 19.3.5 Targeting Metabolic Changes
  • 19.3.6 Targeting the Vicious Cycle Between Endothelial Dysfunction and Immune Dysregulation
  • 19.4 Future Directions and Clinical Implications
  • References
  • 20: Inflammatory Cytokines in the Pathogenesis of Pulmonary Arterial Hypertension
  • 20.1 Background
  • 20.2 IL-6 in the Pathogenesis of HPH
  • 20.3 IL-21 in the Pathogenesis of HPH.
  • 20.4 Increased Expression of IL-21 and M2 Macrophage Markers in the Lungs of IPAH Patients
  • References
  • 21: Genotypes and Phenotypes of Chinese Pediatric Patients with Idiopathic and Heritable Pulmonary Arterial Hypertension: Experiences from a Single Center
  • 21.1 Introduction
  • 21.2 Methods
  • 21.3 Selection of Patients
  • 21.4 Genetic Studies
  • 21.5 Statistical Analysis
  • 21.6 Results
  • 21.6.1 Clinical Characteristics
  • 21.6.2 Targeted Drug Therapy
  • 21.6.3 Outcome of Patients
  • 21.7 Discussion
  • References
  • 22: Fundamental Insight into Pulmonary Vascular Disease: Perspectives from Pediatric PAH in Japan
  • 22.1 Early Detection and Early Treatment of PAH: Mechanistic Insights
  • 22.2 Pathological Basis of Atypical CHD-PAH: Clinical and Mechanistic Implications
  • 23: Risk Stratification in Paediatric Pulmonary Arterial Hypertension
  • 23.1 Why Risk Stratify?
  • 23.2 Multidimensional Risk Stratification
  • 23.3 Factors to Consider in Multidimensional Risk Stratification of children with Pulmonary Arterial Hypertension
  • 23.4 Cause of Pulmonary Hypertension
  • 23.5 Vascular Burden
  • 23.6 Ventricular Function
  • 23.7 Impact on the Patient
  • 23.8 Summary
  • References
  • 24: The Adaptive Right Ventricle in Eisenmenger Syndrome: Potential Therapeutic Targets for Pulmonary Hypertension?
  • 24.1 Introduction
  • 24.2 Improved Survival in Eisenmenger Syndrome
  • 24.3 Preserved Fetal Morphology in Eisenmenger Syndrome
  • 24.4 Fetal Phenotype in Ovine CHD Model
  • 24.5 The Adaptive RV Response to Acute Afterload-RV Anrep Effect
  • 24.6 Potential Mechanisms of RV Anrep Effect
  • 24.7 Future Directions and Clinical Implications
  • References
  • 25: Impaired Right Coronary Vasodilator Function in Pulmonary Hypertensive Rats Assessed by In Vivo Synchrotron Microangiography
  • References.
  • 26: Relationship Between Mutations in ENG and ALK1 Genes and the Affected Organs in Hereditary Hemorrhagic Telangiectasia.