Molecular Mechanism of Congenital Heart Disease and Pulmonary Hypertension.

Saved in:
Bibliographic Details
:
TeilnehmendeR:
Place / Publishing House:Singapore : : Springer Singapore Pte. Limited,, 2020.
©2020.
Year of Publication:2020
Edition:1st ed.
Language:English
Online Access:
Physical Description:1 online resource (374 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 5006126459
ctrlnum (MiAaPQ)5006126459
(Au-PeEL)EBL6126459
(OCoLC)1145554994
collection bib_alma
record_format marc
spelling Nakanishi, Toshio.
Molecular Mechanism of Congenital Heart Disease and Pulmonary Hypertension.
1st ed.
Singapore : Springer Singapore Pte. Limited, 2020.
©2020.
1 online resource (374 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Intro -- Preface -- Contents -- Part I: Basic Science of Pulmonary Development and Pulmonary Arterial Disease -- 1: Perspective for Part I -- 2: The Alveolar Stem Cell Niche of the Mammalian Lung -- 2.1 Introduction: The Alveolar Type 2 Epithelial Stem Cell Niche -- 2.2 Evidence for Heterogeneity in the AT2 Population -- 2.3 Signaling Pathways in the Stem Cell Niche -- 2.4 The Role of Immune Cells and Stromal Cells in Alveolar Repair and Regeneration -- 2.5 Future Directions and Clinical Implications -- References -- 3: Lung Development and Notch Signaling -- 3.1 Introduction -- 3.2 Morphogenesis and Epithelial Progenitors -- 3.3 Notch Signaling Controls Both Epithelial Cell Fates and Distributions -- 3.4 Development of NE Cell Clusters on Bifurcating Area of Branching Airways -- 3.5 Notch-Hes1 Signaling Is Required for Restricted Differentiation of Solitary NE Cells -- 3.6 Directional Migration of NE Cells Toward Bifurcation Points Creates Nodal NEBs -- References -- 4: Specialized Smooth Muscle Cell Progenitors in Pulmonary Hypertension -- 4.1 Introduction -- 4.2 Hypoxia-Induced Distal Pulmonary Arteriole SMCs Derive from Specialized SMC Progenitors -- 4.3 Stereotyped Program of Distal Muscularization -- 4.4 Monoclonal Expansion of SMCs in PH -- 4.5 Signaling Pathways Regulating Primed Cells -- 4.6 Future Direction and Clinical Implications -- References -- 5: Diverse Pharmacology of Prostacyclin Mimetics: Implications for Pulmonary Hypertension -- 5.1 Introduction -- 5.2 Development of Prostacyclin Mimetics and Their Diverse Pharmacology -- 5.3 Prostanoid Synthesis and Receptor Expression -- 5.3.1 Bronchial Smooth Muscle -- 5.3.2 Pulmonary Blood Vessels -- 5.3.2.1 Endothelium -- 5.3.2.2 Pulmonary Artery -- 5.3.2.3 Differential Prostanoid Expression in Distal Pulmonary Artery and Veins -- 5.3.2.4 Distal Pulmonary Veins.
5.3.3 Prostanoid Receptor Expression in PAH -- 5.3.3.1 Downregulation of IP Receptors in PAH -- 5.3.3.2 Robust Expression of EP2 and EP4 Receptors in PAH: Key Anti-Fibrotic Targets -- 5.3.3.3 EP3 Receptors May Contribute to Disease Pathology in PAH -- 5.3.3.4 Role of the Veins in PAH and Other Classified Groups of PH -- 5.4 BMPR2 and TGF-β Signalling in PAH and Impact of Prostacyclin Analogues -- 5.5 Regulation of TASK-1 By Prostacyclin Mimetics: Implications in PAH -- 5.6 Prostacyclin Effects on Vascular Remodelling In Vivo: Outstanding Issues -- 5.7 Future Work and Clinical Implications -- References -- 6: Endothelial-to-Mesenchymal Transition in Pulmonary Hypertension -- 6.1 Pulmonary Hypertension -- 6.2 Endothelial-to-Mesenchymal Transition -- 6.3 EndoMT in PAH Pathogenesis -- 6.3.1 EndoMT in PAH Vascular Remodeling -- 6.3.2 Molecular Pathways of EndoMT in PAH -- 6.4 Conclusion -- 6.5 Future Direction and Clinical Implications -- References -- 7: Extracellular Vesicles, MicroRNAs, and Pulmonary Hypertension -- 7.1 Extracellular Vesicles (EV) -- 7.2 EV in Pulmonary Hypertension (PH) -- 7.3 MicroRNA Transfer Through EV in PH -- 7.4 Future Direction and Clinical Implications -- References -- 8: Roles of Tbx4 in the Lung Mesenchyme for Airway and Vascular Development -- References -- 9: A lacZ Reporter Transgenic Mouse Line Revealing the Development of Pulmonary Artery -- References -- 10: Roles of Stem Cell Antigen-1 in the Pulmonary Endothelium -- References -- 11: Morphological Characterization of Pulmonary Microvascular Disease in Bronchopulmonary Dysplasia Caused by Hyperoxia in Newborn Mice -- References -- 12: Involvement of CXCR4 and Stem Cells in a Rat Model of Pulmonary Arterial Hypertension -- References.
13: Ca2+ Signal Through Inositol Trisphosphate Receptors for Cardiovascular Development and Pathophysiology of Pulmonary Arterial Hypertension -- References -- Part II: Abnormal Pulmonary Circulation in the Developing Lung and Heart -- 14: Perspective for Part II -- 14.1 Idiopathic Pulmonary Arterial Hypertension (IPAH) -- 14.2 Pulmonary Hypertension with Congenital Heart Disease -- 14.3 Pulmonary Circulation in Patients with Congenital Heart Disease -- References -- 15: Pathophysiology of Pulmonary Circulation in Congenital Heart Disease -- 15.1 Introduction -- 15.2 Comprehensive Assessment of Integrated Pulmonary Circulation -- 15.2.1 Physiologic Components of Pulmonary Circulation -- 15.2.2 Impedance Analysis -- 15.3 Pathophysiological Characteristics of Pulmonary Circulation in Congenital Heart Disease -- 15.3.1 Abnormal Resistance Is the Main Pathophysiology -- 15.3.2 Right Ventricular Function and Coupling to PA Load -- 15.3.3 Abnormalities of Compliance Is the Main Pathophysiology -- 15.3.4 Non-pulsatile Pulmonary Flow Is the Main Pathophysiology -- References -- 16: Development of Novel Therapies for Pulmonary Hypertension by Clinical Application of Basic Research -- 16.1 Introduction -- 16.2 Endothelial Function in the Development of PAH -- 16.3 PASMCs in the Development of PAH -- 16.4 Selenoprotein P in the Development of PAH -- 16.5 Conclusion -- References -- 17: Using Patient-Specific Induced Pluripotent Stem Cells to Understand and Treat Pulmonary Arterial Hypertension -- 17.1 Introduction -- 17.2 Patient-Specific iPSC-Derived Endothelial Cells to Model PAH -- 17.2.1 iPSC-EC Recapitulates Native Pulmonary Arterial Endothelial Cell (PAEC) -- 17.2.2 Patient-Specific Drug Response in IPSC-EC and PAEC -- 17.3 Modeling Reduced Penetrance of BMPR2 Mutation in PAH.
17.3.1 Preserved EC Function in Unaffected BMPR2 Mutation Carrier (UMC) -- 17.3.2 Preserved pP38 Signaling Pathway in Unaffected BMPR2 Mutation Carrier -- 17.4 Gene Editing in PAH IPSCs -- 17.4.1 Correction of the BMPR2 Mutation in PAH iPSCs -- 17.4.2 Generation of iPSC Line with BMPR2 Mutation -- 17.5 Future Directions and Clinical Implications -- References -- 18: Modeling Pulmonary Arterial Hypertension Using Induced Pluripotent Stem Cells -- 18.1 Heritable Pulmonary Arterial Hypertension -- 18.1.1 Insights into the Pathobiology of PAH -- 18.1.2 Reduced Penetrance of BMPR2 in PAH -- 18.2 Modeling Pulmonary Arterial Hypertension with Induced Pluripotent Stem Cells -- 18.2.1 Embryological Origins of the Pulmonary Vasculature -- 18.2.2 Current iPSC Models of PAH -- 18.3 Future Direction and Clinical Implications -- References -- 19: Dysfunction and Restoration of Endothelial Cell Communications in Pulmonary Arterial Hypertension: Therapeutic Implications -- 19.1 Introduction -- 19.2 Pulmonary Endothelial Dysfunction and the Pathobiology of PAH -- 19.3 Current Promising Strategies for Restoring Pulmonary Endothelial Dysfunction and Cell-Cell Communications -- 19.3.1 Restoring the Balance of Vasodilation and Vasoconstriction -- 19.3.2 Restitution of the Defective BMPR-2 Signaling System -- 19.3.3 Targeting Cell Proliferation and Cell accumulation -- 19.3.4 Restitution of an Adapted Extracellular Matrix (ECM) Remodeling -- 19.3.5 Targeting Metabolic Changes -- 19.3.6 Targeting the Vicious Cycle Between Endothelial Dysfunction and Immune Dysregulation -- 19.4 Future Directions and Clinical Implications -- References -- 20: Inflammatory Cytokines in the Pathogenesis of Pulmonary Arterial Hypertension -- 20.1 Background -- 20.2 IL-6 in the Pathogenesis of HPH -- 20.3 IL-21 in the Pathogenesis of HPH.
20.4 Increased Expression of IL-21 and M2 Macrophage Markers in the Lungs of IPAH Patients -- References -- 21: Genotypes and Phenotypes of Chinese Pediatric Patients with Idiopathic and Heritable Pulmonary Arterial Hypertension: Experiences from a Single Center -- 21.1 Introduction -- 21.2 Methods -- 21.3 Selection of Patients -- 21.4 Genetic Studies -- 21.5 Statistical Analysis -- 21.6 Results -- 21.6.1 Clinical Characteristics -- 21.6.2 Targeted Drug Therapy -- 21.6.3 Outcome of Patients -- 21.7 Discussion -- References -- 22: Fundamental Insight into Pulmonary Vascular Disease: Perspectives from Pediatric PAH in Japan -- 22.1 Early Detection and Early Treatment of PAH: Mechanistic Insights -- 22.2 Pathological Basis of Atypical CHD-PAH: Clinical and Mechanistic Implications -- 23: Risk Stratification in Paediatric Pulmonary Arterial Hypertension -- 23.1 Why Risk Stratify? -- 23.2 Multidimensional Risk Stratification -- 23.3 Factors to Consider in Multidimensional Risk Stratification of children with Pulmonary Arterial Hypertension -- 23.4 Cause of Pulmonary Hypertension -- 23.5 Vascular Burden -- 23.6 Ventricular Function -- 23.7 Impact on the Patient -- 23.8 Summary -- References -- 24: The Adaptive Right Ventricle in Eisenmenger Syndrome: Potential Therapeutic Targets for Pulmonary Hypertension? -- 24.1 Introduction -- 24.2 Improved Survival in Eisenmenger Syndrome -- 24.3 Preserved Fetal Morphology in Eisenmenger Syndrome -- 24.4 Fetal Phenotype in Ovine CHD Model -- 24.5 The Adaptive RV Response to Acute Afterload-RV Anrep Effect -- 24.6 Potential Mechanisms of RV Anrep Effect -- 24.7 Future Directions and Clinical Implications -- References -- 25: Impaired Right Coronary Vasodilator Function in Pulmonary Hypertensive Rats Assessed by In Vivo Synchrotron Microangiography -- References.
26: Relationship Between Mutations in ENG and ALK1 Genes and the Affected Organs in Hereditary Hemorrhagic Telangiectasia.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic books.
Baldwin, H. Scott.
Fineman, Jeffrey R.
Yamagishi, Hiroyuki.
Print version: Nakanishi, Toshio Molecular Mechanism of Congenital Heart Disease and Pulmonary Hypertension Singapore : Springer Singapore Pte. Limited,c2020 9789811511844
ProQuest (Firm)
https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6126459 Click to View
language English
format eBook
author Nakanishi, Toshio.
spellingShingle Nakanishi, Toshio.
Molecular Mechanism of Congenital Heart Disease and Pulmonary Hypertension.
Intro -- Preface -- Contents -- Part I: Basic Science of Pulmonary Development and Pulmonary Arterial Disease -- 1: Perspective for Part I -- 2: The Alveolar Stem Cell Niche of the Mammalian Lung -- 2.1 Introduction: The Alveolar Type 2 Epithelial Stem Cell Niche -- 2.2 Evidence for Heterogeneity in the AT2 Population -- 2.3 Signaling Pathways in the Stem Cell Niche -- 2.4 The Role of Immune Cells and Stromal Cells in Alveolar Repair and Regeneration -- 2.5 Future Directions and Clinical Implications -- References -- 3: Lung Development and Notch Signaling -- 3.1 Introduction -- 3.2 Morphogenesis and Epithelial Progenitors -- 3.3 Notch Signaling Controls Both Epithelial Cell Fates and Distributions -- 3.4 Development of NE Cell Clusters on Bifurcating Area of Branching Airways -- 3.5 Notch-Hes1 Signaling Is Required for Restricted Differentiation of Solitary NE Cells -- 3.6 Directional Migration of NE Cells Toward Bifurcation Points Creates Nodal NEBs -- References -- 4: Specialized Smooth Muscle Cell Progenitors in Pulmonary Hypertension -- 4.1 Introduction -- 4.2 Hypoxia-Induced Distal Pulmonary Arteriole SMCs Derive from Specialized SMC Progenitors -- 4.3 Stereotyped Program of Distal Muscularization -- 4.4 Monoclonal Expansion of SMCs in PH -- 4.5 Signaling Pathways Regulating Primed Cells -- 4.6 Future Direction and Clinical Implications -- References -- 5: Diverse Pharmacology of Prostacyclin Mimetics: Implications for Pulmonary Hypertension -- 5.1 Introduction -- 5.2 Development of Prostacyclin Mimetics and Their Diverse Pharmacology -- 5.3 Prostanoid Synthesis and Receptor Expression -- 5.3.1 Bronchial Smooth Muscle -- 5.3.2 Pulmonary Blood Vessels -- 5.3.2.1 Endothelium -- 5.3.2.2 Pulmonary Artery -- 5.3.2.3 Differential Prostanoid Expression in Distal Pulmonary Artery and Veins -- 5.3.2.4 Distal Pulmonary Veins.
5.3.3 Prostanoid Receptor Expression in PAH -- 5.3.3.1 Downregulation of IP Receptors in PAH -- 5.3.3.2 Robust Expression of EP2 and EP4 Receptors in PAH: Key Anti-Fibrotic Targets -- 5.3.3.3 EP3 Receptors May Contribute to Disease Pathology in PAH -- 5.3.3.4 Role of the Veins in PAH and Other Classified Groups of PH -- 5.4 BMPR2 and TGF-β Signalling in PAH and Impact of Prostacyclin Analogues -- 5.5 Regulation of TASK-1 By Prostacyclin Mimetics: Implications in PAH -- 5.6 Prostacyclin Effects on Vascular Remodelling In Vivo: Outstanding Issues -- 5.7 Future Work and Clinical Implications -- References -- 6: Endothelial-to-Mesenchymal Transition in Pulmonary Hypertension -- 6.1 Pulmonary Hypertension -- 6.2 Endothelial-to-Mesenchymal Transition -- 6.3 EndoMT in PAH Pathogenesis -- 6.3.1 EndoMT in PAH Vascular Remodeling -- 6.3.2 Molecular Pathways of EndoMT in PAH -- 6.4 Conclusion -- 6.5 Future Direction and Clinical Implications -- References -- 7: Extracellular Vesicles, MicroRNAs, and Pulmonary Hypertension -- 7.1 Extracellular Vesicles (EV) -- 7.2 EV in Pulmonary Hypertension (PH) -- 7.3 MicroRNA Transfer Through EV in PH -- 7.4 Future Direction and Clinical Implications -- References -- 8: Roles of Tbx4 in the Lung Mesenchyme for Airway and Vascular Development -- References -- 9: A lacZ Reporter Transgenic Mouse Line Revealing the Development of Pulmonary Artery -- References -- 10: Roles of Stem Cell Antigen-1 in the Pulmonary Endothelium -- References -- 11: Morphological Characterization of Pulmonary Microvascular Disease in Bronchopulmonary Dysplasia Caused by Hyperoxia in Newborn Mice -- References -- 12: Involvement of CXCR4 and Stem Cells in a Rat Model of Pulmonary Arterial Hypertension -- References.
13: Ca2+ Signal Through Inositol Trisphosphate Receptors for Cardiovascular Development and Pathophysiology of Pulmonary Arterial Hypertension -- References -- Part II: Abnormal Pulmonary Circulation in the Developing Lung and Heart -- 14: Perspective for Part II -- 14.1 Idiopathic Pulmonary Arterial Hypertension (IPAH) -- 14.2 Pulmonary Hypertension with Congenital Heart Disease -- 14.3 Pulmonary Circulation in Patients with Congenital Heart Disease -- References -- 15: Pathophysiology of Pulmonary Circulation in Congenital Heart Disease -- 15.1 Introduction -- 15.2 Comprehensive Assessment of Integrated Pulmonary Circulation -- 15.2.1 Physiologic Components of Pulmonary Circulation -- 15.2.2 Impedance Analysis -- 15.3 Pathophysiological Characteristics of Pulmonary Circulation in Congenital Heart Disease -- 15.3.1 Abnormal Resistance Is the Main Pathophysiology -- 15.3.2 Right Ventricular Function and Coupling to PA Load -- 15.3.3 Abnormalities of Compliance Is the Main Pathophysiology -- 15.3.4 Non-pulsatile Pulmonary Flow Is the Main Pathophysiology -- References -- 16: Development of Novel Therapies for Pulmonary Hypertension by Clinical Application of Basic Research -- 16.1 Introduction -- 16.2 Endothelial Function in the Development of PAH -- 16.3 PASMCs in the Development of PAH -- 16.4 Selenoprotein P in the Development of PAH -- 16.5 Conclusion -- References -- 17: Using Patient-Specific Induced Pluripotent Stem Cells to Understand and Treat Pulmonary Arterial Hypertension -- 17.1 Introduction -- 17.2 Patient-Specific iPSC-Derived Endothelial Cells to Model PAH -- 17.2.1 iPSC-EC Recapitulates Native Pulmonary Arterial Endothelial Cell (PAEC) -- 17.2.2 Patient-Specific Drug Response in IPSC-EC and PAEC -- 17.3 Modeling Reduced Penetrance of BMPR2 Mutation in PAH.
17.3.1 Preserved EC Function in Unaffected BMPR2 Mutation Carrier (UMC) -- 17.3.2 Preserved pP38 Signaling Pathway in Unaffected BMPR2 Mutation Carrier -- 17.4 Gene Editing in PAH IPSCs -- 17.4.1 Correction of the BMPR2 Mutation in PAH iPSCs -- 17.4.2 Generation of iPSC Line with BMPR2 Mutation -- 17.5 Future Directions and Clinical Implications -- References -- 18: Modeling Pulmonary Arterial Hypertension Using Induced Pluripotent Stem Cells -- 18.1 Heritable Pulmonary Arterial Hypertension -- 18.1.1 Insights into the Pathobiology of PAH -- 18.1.2 Reduced Penetrance of BMPR2 in PAH -- 18.2 Modeling Pulmonary Arterial Hypertension with Induced Pluripotent Stem Cells -- 18.2.1 Embryological Origins of the Pulmonary Vasculature -- 18.2.2 Current iPSC Models of PAH -- 18.3 Future Direction and Clinical Implications -- References -- 19: Dysfunction and Restoration of Endothelial Cell Communications in Pulmonary Arterial Hypertension: Therapeutic Implications -- 19.1 Introduction -- 19.2 Pulmonary Endothelial Dysfunction and the Pathobiology of PAH -- 19.3 Current Promising Strategies for Restoring Pulmonary Endothelial Dysfunction and Cell-Cell Communications -- 19.3.1 Restoring the Balance of Vasodilation and Vasoconstriction -- 19.3.2 Restitution of the Defective BMPR-2 Signaling System -- 19.3.3 Targeting Cell Proliferation and Cell accumulation -- 19.3.4 Restitution of an Adapted Extracellular Matrix (ECM) Remodeling -- 19.3.5 Targeting Metabolic Changes -- 19.3.6 Targeting the Vicious Cycle Between Endothelial Dysfunction and Immune Dysregulation -- 19.4 Future Directions and Clinical Implications -- References -- 20: Inflammatory Cytokines in the Pathogenesis of Pulmonary Arterial Hypertension -- 20.1 Background -- 20.2 IL-6 in the Pathogenesis of HPH -- 20.3 IL-21 in the Pathogenesis of HPH.
20.4 Increased Expression of IL-21 and M2 Macrophage Markers in the Lungs of IPAH Patients -- References -- 21: Genotypes and Phenotypes of Chinese Pediatric Patients with Idiopathic and Heritable Pulmonary Arterial Hypertension: Experiences from a Single Center -- 21.1 Introduction -- 21.2 Methods -- 21.3 Selection of Patients -- 21.4 Genetic Studies -- 21.5 Statistical Analysis -- 21.6 Results -- 21.6.1 Clinical Characteristics -- 21.6.2 Targeted Drug Therapy -- 21.6.3 Outcome of Patients -- 21.7 Discussion -- References -- 22: Fundamental Insight into Pulmonary Vascular Disease: Perspectives from Pediatric PAH in Japan -- 22.1 Early Detection and Early Treatment of PAH: Mechanistic Insights -- 22.2 Pathological Basis of Atypical CHD-PAH: Clinical and Mechanistic Implications -- 23: Risk Stratification in Paediatric Pulmonary Arterial Hypertension -- 23.1 Why Risk Stratify? -- 23.2 Multidimensional Risk Stratification -- 23.3 Factors to Consider in Multidimensional Risk Stratification of children with Pulmonary Arterial Hypertension -- 23.4 Cause of Pulmonary Hypertension -- 23.5 Vascular Burden -- 23.6 Ventricular Function -- 23.7 Impact on the Patient -- 23.8 Summary -- References -- 24: The Adaptive Right Ventricle in Eisenmenger Syndrome: Potential Therapeutic Targets for Pulmonary Hypertension? -- 24.1 Introduction -- 24.2 Improved Survival in Eisenmenger Syndrome -- 24.3 Preserved Fetal Morphology in Eisenmenger Syndrome -- 24.4 Fetal Phenotype in Ovine CHD Model -- 24.5 The Adaptive RV Response to Acute Afterload-RV Anrep Effect -- 24.6 Potential Mechanisms of RV Anrep Effect -- 24.7 Future Directions and Clinical Implications -- References -- 25: Impaired Right Coronary Vasodilator Function in Pulmonary Hypertensive Rats Assessed by In Vivo Synchrotron Microangiography -- References.
26: Relationship Between Mutations in ENG and ALK1 Genes and the Affected Organs in Hereditary Hemorrhagic Telangiectasia.
author_facet Nakanishi, Toshio.
Baldwin, H. Scott.
Fineman, Jeffrey R.
Yamagishi, Hiroyuki.
author_variant t n tn
author2 Baldwin, H. Scott.
Fineman, Jeffrey R.
Yamagishi, Hiroyuki.
author2_variant h s b hs hsb
j r f jr jrf
h y hy
author2_role TeilnehmendeR
TeilnehmendeR
TeilnehmendeR
author_sort Nakanishi, Toshio.
title Molecular Mechanism of Congenital Heart Disease and Pulmonary Hypertension.
title_full Molecular Mechanism of Congenital Heart Disease and Pulmonary Hypertension.
title_fullStr Molecular Mechanism of Congenital Heart Disease and Pulmonary Hypertension.
title_full_unstemmed Molecular Mechanism of Congenital Heart Disease and Pulmonary Hypertension.
title_auth Molecular Mechanism of Congenital Heart Disease and Pulmonary Hypertension.
title_new Molecular Mechanism of Congenital Heart Disease and Pulmonary Hypertension.
title_sort molecular mechanism of congenital heart disease and pulmonary hypertension.
publisher Springer Singapore Pte. Limited,
publishDate 2020
physical 1 online resource (374 pages)
edition 1st ed.
contents Intro -- Preface -- Contents -- Part I: Basic Science of Pulmonary Development and Pulmonary Arterial Disease -- 1: Perspective for Part I -- 2: The Alveolar Stem Cell Niche of the Mammalian Lung -- 2.1 Introduction: The Alveolar Type 2 Epithelial Stem Cell Niche -- 2.2 Evidence for Heterogeneity in the AT2 Population -- 2.3 Signaling Pathways in the Stem Cell Niche -- 2.4 The Role of Immune Cells and Stromal Cells in Alveolar Repair and Regeneration -- 2.5 Future Directions and Clinical Implications -- References -- 3: Lung Development and Notch Signaling -- 3.1 Introduction -- 3.2 Morphogenesis and Epithelial Progenitors -- 3.3 Notch Signaling Controls Both Epithelial Cell Fates and Distributions -- 3.4 Development of NE Cell Clusters on Bifurcating Area of Branching Airways -- 3.5 Notch-Hes1 Signaling Is Required for Restricted Differentiation of Solitary NE Cells -- 3.6 Directional Migration of NE Cells Toward Bifurcation Points Creates Nodal NEBs -- References -- 4: Specialized Smooth Muscle Cell Progenitors in Pulmonary Hypertension -- 4.1 Introduction -- 4.2 Hypoxia-Induced Distal Pulmonary Arteriole SMCs Derive from Specialized SMC Progenitors -- 4.3 Stereotyped Program of Distal Muscularization -- 4.4 Monoclonal Expansion of SMCs in PH -- 4.5 Signaling Pathways Regulating Primed Cells -- 4.6 Future Direction and Clinical Implications -- References -- 5: Diverse Pharmacology of Prostacyclin Mimetics: Implications for Pulmonary Hypertension -- 5.1 Introduction -- 5.2 Development of Prostacyclin Mimetics and Their Diverse Pharmacology -- 5.3 Prostanoid Synthesis and Receptor Expression -- 5.3.1 Bronchial Smooth Muscle -- 5.3.2 Pulmonary Blood Vessels -- 5.3.2.1 Endothelium -- 5.3.2.2 Pulmonary Artery -- 5.3.2.3 Differential Prostanoid Expression in Distal Pulmonary Artery and Veins -- 5.3.2.4 Distal Pulmonary Veins.
5.3.3 Prostanoid Receptor Expression in PAH -- 5.3.3.1 Downregulation of IP Receptors in PAH -- 5.3.3.2 Robust Expression of EP2 and EP4 Receptors in PAH: Key Anti-Fibrotic Targets -- 5.3.3.3 EP3 Receptors May Contribute to Disease Pathology in PAH -- 5.3.3.4 Role of the Veins in PAH and Other Classified Groups of PH -- 5.4 BMPR2 and TGF-β Signalling in PAH and Impact of Prostacyclin Analogues -- 5.5 Regulation of TASK-1 By Prostacyclin Mimetics: Implications in PAH -- 5.6 Prostacyclin Effects on Vascular Remodelling In Vivo: Outstanding Issues -- 5.7 Future Work and Clinical Implications -- References -- 6: Endothelial-to-Mesenchymal Transition in Pulmonary Hypertension -- 6.1 Pulmonary Hypertension -- 6.2 Endothelial-to-Mesenchymal Transition -- 6.3 EndoMT in PAH Pathogenesis -- 6.3.1 EndoMT in PAH Vascular Remodeling -- 6.3.2 Molecular Pathways of EndoMT in PAH -- 6.4 Conclusion -- 6.5 Future Direction and Clinical Implications -- References -- 7: Extracellular Vesicles, MicroRNAs, and Pulmonary Hypertension -- 7.1 Extracellular Vesicles (EV) -- 7.2 EV in Pulmonary Hypertension (PH) -- 7.3 MicroRNA Transfer Through EV in PH -- 7.4 Future Direction and Clinical Implications -- References -- 8: Roles of Tbx4 in the Lung Mesenchyme for Airway and Vascular Development -- References -- 9: A lacZ Reporter Transgenic Mouse Line Revealing the Development of Pulmonary Artery -- References -- 10: Roles of Stem Cell Antigen-1 in the Pulmonary Endothelium -- References -- 11: Morphological Characterization of Pulmonary Microvascular Disease in Bronchopulmonary Dysplasia Caused by Hyperoxia in Newborn Mice -- References -- 12: Involvement of CXCR4 and Stem Cells in a Rat Model of Pulmonary Arterial Hypertension -- References.
13: Ca2+ Signal Through Inositol Trisphosphate Receptors for Cardiovascular Development and Pathophysiology of Pulmonary Arterial Hypertension -- References -- Part II: Abnormal Pulmonary Circulation in the Developing Lung and Heart -- 14: Perspective for Part II -- 14.1 Idiopathic Pulmonary Arterial Hypertension (IPAH) -- 14.2 Pulmonary Hypertension with Congenital Heart Disease -- 14.3 Pulmonary Circulation in Patients with Congenital Heart Disease -- References -- 15: Pathophysiology of Pulmonary Circulation in Congenital Heart Disease -- 15.1 Introduction -- 15.2 Comprehensive Assessment of Integrated Pulmonary Circulation -- 15.2.1 Physiologic Components of Pulmonary Circulation -- 15.2.2 Impedance Analysis -- 15.3 Pathophysiological Characteristics of Pulmonary Circulation in Congenital Heart Disease -- 15.3.1 Abnormal Resistance Is the Main Pathophysiology -- 15.3.2 Right Ventricular Function and Coupling to PA Load -- 15.3.3 Abnormalities of Compliance Is the Main Pathophysiology -- 15.3.4 Non-pulsatile Pulmonary Flow Is the Main Pathophysiology -- References -- 16: Development of Novel Therapies for Pulmonary Hypertension by Clinical Application of Basic Research -- 16.1 Introduction -- 16.2 Endothelial Function in the Development of PAH -- 16.3 PASMCs in the Development of PAH -- 16.4 Selenoprotein P in the Development of PAH -- 16.5 Conclusion -- References -- 17: Using Patient-Specific Induced Pluripotent Stem Cells to Understand and Treat Pulmonary Arterial Hypertension -- 17.1 Introduction -- 17.2 Patient-Specific iPSC-Derived Endothelial Cells to Model PAH -- 17.2.1 iPSC-EC Recapitulates Native Pulmonary Arterial Endothelial Cell (PAEC) -- 17.2.2 Patient-Specific Drug Response in IPSC-EC and PAEC -- 17.3 Modeling Reduced Penetrance of BMPR2 Mutation in PAH.
17.3.1 Preserved EC Function in Unaffected BMPR2 Mutation Carrier (UMC) -- 17.3.2 Preserved pP38 Signaling Pathway in Unaffected BMPR2 Mutation Carrier -- 17.4 Gene Editing in PAH IPSCs -- 17.4.1 Correction of the BMPR2 Mutation in PAH iPSCs -- 17.4.2 Generation of iPSC Line with BMPR2 Mutation -- 17.5 Future Directions and Clinical Implications -- References -- 18: Modeling Pulmonary Arterial Hypertension Using Induced Pluripotent Stem Cells -- 18.1 Heritable Pulmonary Arterial Hypertension -- 18.1.1 Insights into the Pathobiology of PAH -- 18.1.2 Reduced Penetrance of BMPR2 in PAH -- 18.2 Modeling Pulmonary Arterial Hypertension with Induced Pluripotent Stem Cells -- 18.2.1 Embryological Origins of the Pulmonary Vasculature -- 18.2.2 Current iPSC Models of PAH -- 18.3 Future Direction and Clinical Implications -- References -- 19: Dysfunction and Restoration of Endothelial Cell Communications in Pulmonary Arterial Hypertension: Therapeutic Implications -- 19.1 Introduction -- 19.2 Pulmonary Endothelial Dysfunction and the Pathobiology of PAH -- 19.3 Current Promising Strategies for Restoring Pulmonary Endothelial Dysfunction and Cell-Cell Communications -- 19.3.1 Restoring the Balance of Vasodilation and Vasoconstriction -- 19.3.2 Restitution of the Defective BMPR-2 Signaling System -- 19.3.3 Targeting Cell Proliferation and Cell accumulation -- 19.3.4 Restitution of an Adapted Extracellular Matrix (ECM) Remodeling -- 19.3.5 Targeting Metabolic Changes -- 19.3.6 Targeting the Vicious Cycle Between Endothelial Dysfunction and Immune Dysregulation -- 19.4 Future Directions and Clinical Implications -- References -- 20: Inflammatory Cytokines in the Pathogenesis of Pulmonary Arterial Hypertension -- 20.1 Background -- 20.2 IL-6 in the Pathogenesis of HPH -- 20.3 IL-21 in the Pathogenesis of HPH.
20.4 Increased Expression of IL-21 and M2 Macrophage Markers in the Lungs of IPAH Patients -- References -- 21: Genotypes and Phenotypes of Chinese Pediatric Patients with Idiopathic and Heritable Pulmonary Arterial Hypertension: Experiences from a Single Center -- 21.1 Introduction -- 21.2 Methods -- 21.3 Selection of Patients -- 21.4 Genetic Studies -- 21.5 Statistical Analysis -- 21.6 Results -- 21.6.1 Clinical Characteristics -- 21.6.2 Targeted Drug Therapy -- 21.6.3 Outcome of Patients -- 21.7 Discussion -- References -- 22: Fundamental Insight into Pulmonary Vascular Disease: Perspectives from Pediatric PAH in Japan -- 22.1 Early Detection and Early Treatment of PAH: Mechanistic Insights -- 22.2 Pathological Basis of Atypical CHD-PAH: Clinical and Mechanistic Implications -- 23: Risk Stratification in Paediatric Pulmonary Arterial Hypertension -- 23.1 Why Risk Stratify? -- 23.2 Multidimensional Risk Stratification -- 23.3 Factors to Consider in Multidimensional Risk Stratification of children with Pulmonary Arterial Hypertension -- 23.4 Cause of Pulmonary Hypertension -- 23.5 Vascular Burden -- 23.6 Ventricular Function -- 23.7 Impact on the Patient -- 23.8 Summary -- References -- 24: The Adaptive Right Ventricle in Eisenmenger Syndrome: Potential Therapeutic Targets for Pulmonary Hypertension? -- 24.1 Introduction -- 24.2 Improved Survival in Eisenmenger Syndrome -- 24.3 Preserved Fetal Morphology in Eisenmenger Syndrome -- 24.4 Fetal Phenotype in Ovine CHD Model -- 24.5 The Adaptive RV Response to Acute Afterload-RV Anrep Effect -- 24.6 Potential Mechanisms of RV Anrep Effect -- 24.7 Future Directions and Clinical Implications -- References -- 25: Impaired Right Coronary Vasodilator Function in Pulmonary Hypertensive Rats Assessed by In Vivo Synchrotron Microangiography -- References.
26: Relationship Between Mutations in ENG and ALK1 Genes and the Affected Organs in Hereditary Hemorrhagic Telangiectasia.
isbn 9789811511851
9789811511844
callnumber-first R - Medicine
callnumber-subject RC - Internal Medicine
callnumber-label RC666-701
callnumber-sort RC 3666 3701.2
genre Electronic books.
genre_facet Electronic books.
url https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6126459
illustrated Not Illustrated
oclc_num 1145554994
work_keys_str_mv AT nakanishitoshio molecularmechanismofcongenitalheartdiseaseandpulmonaryhypertension
AT baldwinhscott molecularmechanismofcongenitalheartdiseaseandpulmonaryhypertension
AT finemanjeffreyr molecularmechanismofcongenitalheartdiseaseandpulmonaryhypertension
AT yamagishihiroyuki molecularmechanismofcongenitalheartdiseaseandpulmonaryhypertension
status_str n
ids_txt_mv (MiAaPQ)5006126459
(Au-PeEL)EBL6126459
(OCoLC)1145554994
carrierType_str_mv cr
is_hierarchy_title Molecular Mechanism of Congenital Heart Disease and Pulmonary Hypertension.
author2_original_writing_str_mv noLinkedField
noLinkedField
noLinkedField
_version_ 1792331055797108737
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>12094nam a22004693i 4500</leader><controlfield tag="001">5006126459</controlfield><controlfield tag="003">MiAaPQ</controlfield><controlfield tag="005">20240229073834.0</controlfield><controlfield tag="006">m o d | </controlfield><controlfield tag="007">cr cnu||||||||</controlfield><controlfield tag="008">240229s2020 xx o ||||0 eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789811511851</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789811511844</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(MiAaPQ)5006126459</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(Au-PeEL)EBL6126459</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1145554994</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">MiAaPQ</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">MiAaPQ</subfield><subfield code="d">MiAaPQ</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">RC666-701.2</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nakanishi, Toshio.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Molecular Mechanism of Congenital Heart Disease and Pulmonary Hypertension.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore :</subfield><subfield code="b">Springer Singapore Pte. Limited,</subfield><subfield code="c">2020.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2020.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (374 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Intro -- Preface -- Contents -- Part I: Basic Science of Pulmonary Development and Pulmonary Arterial Disease -- 1: Perspective for Part I -- 2: The Alveolar Stem Cell Niche of the Mammalian Lung -- 2.1 Introduction: The Alveolar Type 2 Epithelial Stem Cell Niche -- 2.2 Evidence for Heterogeneity in the AT2 Population -- 2.3 Signaling Pathways in the Stem Cell Niche -- 2.4 The Role of Immune Cells and Stromal Cells in Alveolar Repair and Regeneration -- 2.5 Future Directions and Clinical Implications -- References -- 3: Lung Development and Notch Signaling -- 3.1 Introduction -- 3.2 Morphogenesis and Epithelial Progenitors -- 3.3 Notch Signaling Controls Both Epithelial Cell Fates and Distributions -- 3.4 Development of NE Cell Clusters on Bifurcating Area of Branching Airways -- 3.5 Notch-Hes1 Signaling Is Required for Restricted Differentiation of Solitary NE Cells -- 3.6 Directional Migration of NE Cells Toward Bifurcation Points Creates Nodal NEBs -- References -- 4: Specialized Smooth Muscle Cell Progenitors in Pulmonary Hypertension -- 4.1 Introduction -- 4.2 Hypoxia-Induced Distal Pulmonary Arteriole SMCs Derive from Specialized SMC Progenitors -- 4.3 Stereotyped Program of Distal Muscularization -- 4.4 Monoclonal Expansion of SMCs in PH -- 4.5 Signaling Pathways Regulating Primed Cells -- 4.6 Future Direction and Clinical Implications -- References -- 5: Diverse Pharmacology of Prostacyclin Mimetics: Implications for Pulmonary Hypertension -- 5.1 Introduction -- 5.2 Development of Prostacyclin Mimetics and Their Diverse Pharmacology -- 5.3 Prostanoid Synthesis and Receptor Expression -- 5.3.1 Bronchial Smooth Muscle -- 5.3.2 Pulmonary Blood Vessels -- 5.3.2.1 Endothelium -- 5.3.2.2 Pulmonary Artery -- 5.3.2.3 Differential Prostanoid Expression in Distal Pulmonary Artery and Veins -- 5.3.2.4 Distal Pulmonary Veins.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.3.3 Prostanoid Receptor Expression in PAH -- 5.3.3.1 Downregulation of IP Receptors in PAH -- 5.3.3.2 Robust Expression of EP2 and EP4 Receptors in PAH: Key Anti-Fibrotic Targets -- 5.3.3.3 EP3 Receptors May Contribute to Disease Pathology in PAH -- 5.3.3.4 Role of the Veins in PAH and Other Classified Groups of PH -- 5.4 BMPR2 and TGF-β Signalling in PAH and Impact of Prostacyclin Analogues -- 5.5 Regulation of TASK-1 By Prostacyclin Mimetics: Implications in PAH -- 5.6 Prostacyclin Effects on Vascular Remodelling In Vivo: Outstanding Issues -- 5.7 Future Work and Clinical Implications -- References -- 6: Endothelial-to-Mesenchymal Transition in Pulmonary Hypertension -- 6.1 Pulmonary Hypertension -- 6.2 Endothelial-to-Mesenchymal Transition -- 6.3 EndoMT in PAH Pathogenesis -- 6.3.1 EndoMT in PAH Vascular Remodeling -- 6.3.2 Molecular Pathways of EndoMT in PAH -- 6.4 Conclusion -- 6.5 Future Direction and Clinical Implications -- References -- 7: Extracellular Vesicles, MicroRNAs, and Pulmonary Hypertension -- 7.1 Extracellular Vesicles (EV) -- 7.2 EV in Pulmonary Hypertension (PH) -- 7.3 MicroRNA Transfer Through EV in PH -- 7.4 Future Direction and Clinical Implications -- References -- 8: Roles of Tbx4 in the Lung Mesenchyme for Airway and Vascular Development -- References -- 9: A lacZ Reporter Transgenic Mouse Line Revealing the Development of Pulmonary Artery -- References -- 10: Roles of Stem Cell Antigen-1 in the Pulmonary Endothelium -- References -- 11: Morphological Characterization of Pulmonary Microvascular Disease in Bronchopulmonary Dysplasia Caused by Hyperoxia in Newborn Mice -- References -- 12: Involvement of CXCR4 and Stem Cells in a Rat Model of Pulmonary Arterial Hypertension -- References.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">13: Ca2+ Signal Through Inositol Trisphosphate Receptors for Cardiovascular Development and Pathophysiology of Pulmonary Arterial Hypertension -- References -- Part II: Abnormal Pulmonary Circulation in the Developing Lung and Heart -- 14: Perspective for Part II -- 14.1 Idiopathic Pulmonary Arterial Hypertension (IPAH) -- 14.2 Pulmonary Hypertension with Congenital Heart Disease -- 14.3 Pulmonary Circulation in Patients with Congenital Heart Disease -- References -- 15: Pathophysiology of Pulmonary Circulation in Congenital Heart Disease -- 15.1 Introduction -- 15.2 Comprehensive Assessment of Integrated Pulmonary Circulation -- 15.2.1 Physiologic Components of Pulmonary Circulation -- 15.2.2 Impedance Analysis -- 15.3 Pathophysiological Characteristics of Pulmonary Circulation in Congenital Heart Disease -- 15.3.1 Abnormal Resistance Is the Main Pathophysiology -- 15.3.2 Right Ventricular Function and Coupling to PA Load -- 15.3.3 Abnormalities of Compliance Is the Main Pathophysiology -- 15.3.4 Non-pulsatile Pulmonary Flow Is the Main Pathophysiology -- References -- 16: Development of Novel Therapies for Pulmonary Hypertension by Clinical Application of Basic Research -- 16.1 Introduction -- 16.2 Endothelial Function in the Development of PAH -- 16.3 PASMCs in the Development of PAH -- 16.4 Selenoprotein P in the Development of PAH -- 16.5 Conclusion -- References -- 17: Using Patient-Specific Induced Pluripotent Stem Cells to Understand and Treat Pulmonary Arterial Hypertension -- 17.1 Introduction -- 17.2 Patient-Specific iPSC-Derived Endothelial Cells to Model PAH -- 17.2.1 iPSC-EC Recapitulates Native Pulmonary Arterial Endothelial Cell (PAEC) -- 17.2.2 Patient-Specific Drug Response in IPSC-EC and PAEC -- 17.3 Modeling Reduced Penetrance of BMPR2 Mutation in PAH.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">17.3.1 Preserved EC Function in Unaffected BMPR2 Mutation Carrier (UMC) -- 17.3.2 Preserved pP38 Signaling Pathway in Unaffected BMPR2 Mutation Carrier -- 17.4 Gene Editing in PAH IPSCs -- 17.4.1 Correction of the BMPR2 Mutation in PAH iPSCs -- 17.4.2 Generation of iPSC Line with BMPR2 Mutation -- 17.5 Future Directions and Clinical Implications -- References -- 18: Modeling Pulmonary Arterial Hypertension Using Induced Pluripotent Stem Cells -- 18.1 Heritable Pulmonary Arterial Hypertension -- 18.1.1 Insights into the Pathobiology of PAH -- 18.1.2 Reduced Penetrance of BMPR2 in PAH -- 18.2 Modeling Pulmonary Arterial Hypertension with Induced Pluripotent Stem Cells -- 18.2.1 Embryological Origins of the Pulmonary Vasculature -- 18.2.2 Current iPSC Models of PAH -- 18.3 Future Direction and Clinical Implications -- References -- 19: Dysfunction and Restoration of Endothelial Cell Communications in Pulmonary Arterial Hypertension: Therapeutic Implications -- 19.1 Introduction -- 19.2 Pulmonary Endothelial Dysfunction and the Pathobiology of PAH -- 19.3 Current Promising Strategies for Restoring Pulmonary Endothelial Dysfunction and Cell-Cell Communications -- 19.3.1 Restoring the Balance of Vasodilation and Vasoconstriction -- 19.3.2 Restitution of the Defective BMPR-2 Signaling System -- 19.3.3 Targeting Cell Proliferation and Cell accumulation -- 19.3.4 Restitution of an Adapted Extracellular Matrix (ECM) Remodeling -- 19.3.5 Targeting Metabolic Changes -- 19.3.6 Targeting the Vicious Cycle Between Endothelial Dysfunction and Immune Dysregulation -- 19.4 Future Directions and Clinical Implications -- References -- 20: Inflammatory Cytokines in the Pathogenesis of Pulmonary Arterial Hypertension -- 20.1 Background -- 20.2 IL-6 in the Pathogenesis of HPH -- 20.3 IL-21 in the Pathogenesis of HPH.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">20.4 Increased Expression of IL-21 and M2 Macrophage Markers in the Lungs of IPAH Patients -- References -- 21: Genotypes and Phenotypes of Chinese Pediatric Patients with Idiopathic and Heritable Pulmonary Arterial Hypertension: Experiences from a Single Center -- 21.1 Introduction -- 21.2 Methods -- 21.3 Selection of Patients -- 21.4 Genetic Studies -- 21.5 Statistical Analysis -- 21.6 Results -- 21.6.1 Clinical Characteristics -- 21.6.2 Targeted Drug Therapy -- 21.6.3 Outcome of Patients -- 21.7 Discussion -- References -- 22: Fundamental Insight into Pulmonary Vascular Disease: Perspectives from Pediatric PAH in Japan -- 22.1 Early Detection and Early Treatment of PAH: Mechanistic Insights -- 22.2 Pathological Basis of Atypical CHD-PAH: Clinical and Mechanistic Implications -- 23: Risk Stratification in Paediatric Pulmonary Arterial Hypertension -- 23.1 Why Risk Stratify? -- 23.2 Multidimensional Risk Stratification -- 23.3 Factors to Consider in Multidimensional Risk Stratification of children with Pulmonary Arterial Hypertension -- 23.4 Cause of Pulmonary Hypertension -- 23.5 Vascular Burden -- 23.6 Ventricular Function -- 23.7 Impact on the Patient -- 23.8 Summary -- References -- 24: The Adaptive Right Ventricle in Eisenmenger Syndrome: Potential Therapeutic Targets for Pulmonary Hypertension? -- 24.1 Introduction -- 24.2 Improved Survival in Eisenmenger Syndrome -- 24.3 Preserved Fetal Morphology in Eisenmenger Syndrome -- 24.4 Fetal Phenotype in Ovine CHD Model -- 24.5 The Adaptive RV Response to Acute Afterload-RV Anrep Effect -- 24.6 Potential Mechanisms of RV Anrep Effect -- 24.7 Future Directions and Clinical Implications -- References -- 25: Impaired Right Coronary Vasodilator Function in Pulmonary Hypertensive Rats Assessed by In Vivo Synchrotron Microangiography -- References.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">26: Relationship Between Mutations in ENG and ALK1 Genes and the Affected Organs in Hereditary Hemorrhagic Telangiectasia.</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources.</subfield></datafield><datafield tag="590" ind1=" " ind2=" "><subfield code="a">Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. </subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Baldwin, H. Scott.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fineman, Jeffrey R.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yamagishi, Hiroyuki.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Nakanishi, Toshio</subfield><subfield code="t">Molecular Mechanism of Congenital Heart Disease and Pulmonary Hypertension</subfield><subfield code="d">Singapore : Springer Singapore Pte. Limited,c2020</subfield><subfield code="z">9789811511844</subfield></datafield><datafield tag="797" ind1="2" ind2=" "><subfield code="a">ProQuest (Firm)</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6126459</subfield><subfield code="z">Click to View</subfield></datafield></record></collection>