Manual of Digital Earth.

Saved in:
Bibliographic Details
:
TeilnehmendeR:
Place / Publishing House:Singapore : : Springer Singapore Pte. Limited,, 2019.
©2020.
Year of Publication:2019
Edition:1st ed.
Language:English
Online Access:
Physical Description:1 online resource (846 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Intro
  • Preface
  • Acknowledgements
  • List of Editors
  • Editors-in-Chief
  • Managing Editors
  • Contents
  • About the Editors-in-Chief
  • Digital Earth Technologies
  • 2 Digital Earth Platforms
  • 2.1 Introduction
  • 2.2 Discrete Global Grid Systems
  • 2.2.1 Initial Domain
  • 2.2.2 Cell Type
  • 2.2.3 Refinement
  • 2.2.4 Projection
  • 2.2.5 Indexing
  • 2.3 Scientific Digital Earths
  • 2.4 Public and Commercial Digital Earth Platforms
  • 2.4.1 Latitude/Longitude Grids
  • 2.4.2 Geodesic DGGSs
  • 2.4.3 Installations: DESP
  • 2.5 Discrete Global Grid System Standards
  • 2.5.1 Standardization of Discrete Global Grid Systems
  • 2.5.2 Core Requirements of the OGC DGGS Abstract Specification
  • 2.5.3 The Future of the DGGS Standard
  • 2.5.4 Linkages Between DGGS and Other Standards Activities
  • References
  • 3 Remote Sensing Satellites for Digital Earth
  • 3.1 Development of Remote Sensing
  • 3.1.1 Overview of Remote Sensing
  • 3.1.2 Development of Remote Sensing Satellites
  • 3.2 Land Observation Satellites
  • 3.2.1 US Land Observation Satellites
  • 3.2.2 European Land Observation Satellites
  • 3.2.3 China's Land Observation Satellites
  • 3.2.4 Other Land Observation Satellites
  • 3.3 Ocean Observation Satellites
  • 3.3.1 US Ocean Observation Satellites
  • 3.3.2 European Ocean Observation Satellites
  • 3.3.3 China's Ocean Observation Satellites
  • 3.3.4 Other Ocean Observation Satellites
  • 3.4 Meteorological Observation Satellites
  • 3.4.1 US Meteorological Observation Satellites
  • 3.4.2 European Meteorological Observation Satellites
  • 3.4.3 China's Meteorological Observation Satellites
  • 3.4.4 Other Meteorological Observation Satellites
  • 3.5 Trends in Remote Sensing for Digital Earth
  • References
  • 4 Satellite Navigation for Digital Earth
  • 4.1 Introduction
  • 4.2 Global Navigation Satellite System
  • 4.2.1 BDS
  • 4.2.2 GPS
  • 4.2.3 GLONASS.
  • 4.2.4 Galileo
  • 4.3 GNSS Augmentation Systems
  • 4.3.1 Wide-Area Differential Augmentation System
  • 4.3.2 Global Differential Precise Positioning System
  • 4.3.3 Local Area Differential Augmentation System
  • 4.3.4 Local Area Precise Positioning System
  • 4.4 Applications in Digital Earth Case Studies
  • 4.4.1 Terrestrial Reference System
  • 4.4.2 Time System
  • 4.4.3 High-Precision Positioning
  • 4.4.4 Location-Based Service
  • References
  • 5 Geospatial Information Infrastructures
  • 5.1 Introduction
  • 5.2 A Brief History of Geospatial Information Infrastructures
  • 5.2.1 Geospatial Information Infrastructure Milestones
  • 5.2.2 Architectural Evolutions in Geospatial Information Infrastructure Development
  • 5.3 Geospatial Information Infrastructures Today
  • 5.3.1 The Evolution of Geospatial Information on the Web
  • 5.3.2 Geospatial Information Infrastructures Champion Openness
  • 5.3.3 Capacity Building and Learning for Geospatial Information Infrastructures
  • 5.4 Recent Challenges and Potential for Improvement
  • 5.4.1 Strengthened Role of Semantics
  • 5.4.2 Is Spatial Still Special?
  • 5.5 Conclusion and Outlook
  • References
  • 6 Geospatial Information Processing Technologies
  • 6.1 Introduction
  • 6.2 High-Performance Computing
  • 6.2.1 The Concept of High-Performance Computing: What and Why
  • 6.2.2 High-Performance Computing Platforms
  • 6.2.3 Spatial Database Management Systems and Spatial Data Mining
  • 6.2.4 Applications Supporting Digital Earth
  • 6.2.5 Research Challenges and Future Directions
  • 6.3 Online Geospatial Information Processing
  • 6.3.1 Web Service-Based Online Geoprocessing
  • 6.3.2 Web (Coverage) Processing Services
  • 6.3.3 Online Geoprocessing Applications in the Context of Digital Earth
  • 6.3.4 Research Challenges and Future Directions
  • 6.4 Distributed Geospatial Information Processing.
  • 6.4.1 The Concept of Distributed Geospatial Information Processing: What and Why
  • 6.4.2 Fundamental Concepts and Techniques
  • 6.4.3 Application Supporting Digital Earth
  • 6.4.4 Research Challenges and Future Directions
  • 6.5 Discussion and Conclusion
  • References
  • 7 Geospatial Information Visualization and Extended Reality Displays
  • 7.1 Introduction
  • 7.2 Visualizing Geospatial Information: An Overview
  • 7.2.1 Representation
  • 7.2.2 User Interaction and Interfaces
  • 7.3 Understanding Users: Cognition, Perception, and User-Centered Design Approaches for Visualization
  • 7.3.1 Making Visualizations Work for Digital Earth Users
  • 7.4 Geovisual Analytics
  • 7.4.1 Progress in Geovisual Analytics
  • 7.4.2 Big Data, Digital Earth, and Geovisual Analytics
  • 7.5 Visualizing Movement
  • 7.5.1 Trajectory Maps: The Individual Journey
  • 7.5.2 Flow Maps: Aggregated Flows Between Places
  • 7.5.3 Origin-Destination (OD) Maps
  • 7.5.4 In-Flow, Out-Flow and Density of Moving Objects
  • 7.6 Immersive Technologies-From Augmented to Virtual Reality
  • 7.6.1 Essential Concepts for Immersive Technologies
  • 7.6.2 Augmented Reality
  • 7.6.3 Mixed Reality
  • 7.7 Virtual Reality
  • 7.7.1 Virtual Geographic Environments
  • 7.7.2 Foundational Structures of VGEs
  • 7.8 Dashboards
  • 7.9 Conclusions
  • References
  • 8 Transformation in Scale for Continuous Zooming
  • 8.1 Continuous Zooming and Transformation in Scale: An Introduction
  • 8.1.1 Continuous Zooming: Foundation of the Digital Earth
  • 8.1.2 Transformation in Scale: Foundation of Continuous Zooming
  • 8.1.3 Transformation in Scale: A Fundamental Issue in Disciplines Related to Digital Earth
  • 8.2 Theories of Transformation in Scale
  • 8.2.1 Transformation in Scale: Multiscale Versus Variable Scale
  • 8.2.2 Transformations in Scale: Euclidean Versus Geographical Space.
  • 8.2.3 Theoretical Foundation for Transformation in Scale: The Natural Principle
  • 8.3 Models for Transformations in Scale
  • 8.3.1 Data Models for Feature Representation: Space-Primary Versus Feature-Primary
  • 8.3.2 Space-Primary Hierarchical Models for Transformation in Scale
  • 8.3.3 Feature-Primary Hierarchical Models for Transformation in Scale
  • 8.3.4 Models of Transformation in Scale for Irregular Triangulation Networks
  • 8.3.5 Models for Geometric Transformation of Map Data in Scale
  • 8.3.6 Models for Transformation in Scale of 3D City Representations
  • 8.4 Mathematical Solutions for Transformations in Scale
  • 8.4.1 Mathematical Solutions for Upscaling Raster Data: Numerical and Categorical
  • 8.4.2 Mathematical Solutions for Downscaling Raster Data
  • 8.4.3 Mathematical Solutions for Transformation (in Scale) of Point Set Data
  • 8.4.4 Mathematical Solution for Transformation (in Scale) of Individual Lines
  • 8.4.5 Mathematical Solutions for Transformation (in Scale) of Line Networks
  • 8.4.6 Mathematical Solutions for Transformation of a Class of Area Features
  • 8.4.7 Mathematical Solutions for Transformation (in Scale) of Spherical and 3D Features
  • 8.5 Transformation in Scale: Final Remarks
  • References
  • 9 Big Data and Cloud Computing
  • 9.1 Introduction
  • 9.2 Big Data Sources
  • 9.3 Big Data Analysis Methods
  • 9.3.1 Data Preprocessing
  • 9.3.2 Statistical Analysis
  • 9.3.3 Nonstatistical Analysis
  • 9.4 Architecture for Big Data Analysis
  • 9.4.1 Data Storage Layer
  • 9.4.2 Data Query Layer
  • 9.4.3 Data Processing Layer
  • 9.5 Cloud Computing for Big Data
  • 9.5.1 Cloud Computing and Other Related Computing Paradigms
  • 9.5.2 Introduction to Cloud Computing
  • 9.5.3 Cloud Computing to Support Big Data
  • 9.6 Case Study: EarthCube/DataCube
  • 9.6.1 EarthCube
  • 9.6.2 Data Cube
  • 9.7 Conclusion
  • References.
  • 10 Artificial Intelligence
  • 10.1 Introduction
  • 10.2 Traditional and Statistical Machine Learning
  • 10.2.1 Supervised Learning
  • 10.2.2 Unsupervised Learning
  • 10.2.3 Dimension Reduction
  • 10.3 Deep Learning
  • 10.3.1 Convolutional Networks
  • 10.3.2 Recurrent Neural Networks
  • 10.3.3 Variational Autoencoder
  • 10.3.4 Generative Adversarial Networks (GANs)
  • 10.3.5 Dictionary-Based Approaches
  • 10.3.6 Reinforcement Learning
  • 10.4 Discussion
  • 10.4.1 Reproducibility
  • 10.4.2 Ownership and Fairness
  • 10.4.3 Accountability
  • 10.5 Conclusion
  • References
  • 11 Internet of Things
  • 11.1 Introduction
  • 11.2 Definitions and status quo of the IoT
  • 11.2.1 One Concept, Many Definitions
  • 11.2.2 Our Definition
  • 11.2.3 Early Works on the Interplay Between DE and the IoT
  • 11.2.4 IoT Standards Initiatives from DE
  • 11.3 Interplay Between the IoT and DE
  • 11.3.1 Discoverability, Acquisition and Communication of Spatial Information
  • 11.3.2 Spatial Understanding of Objects and Their Relationships
  • 11.3.3 Taking Informed Actions and Acting Over the Environment (ACT)
  • 11.4 Case Studies on Smart Scenarios
  • 11.5 Frictions and Synergies Between the IoT and DE
  • 11.5.1 Discoverability, Acquisition and Communication of Spatial Information
  • 11.5.2 Spatial Understanding of Objects and Their Relationships
  • 11.5.3 Taking Informed Actions and Acting Over the Environment
  • 11.6 Conclusion and Outlook for the Future of the IoT in Support of DE
  • References
  • 12 Social Media and Social Awareness
  • 12.1 Introduction: Electronic Footprints on Digital Earth
  • 12.2 Multifaceted Implications of Social Media
  • 12.3 Opportunities: Human Dynamics Prediction
  • 12.3.1 Public Health
  • 12.3.2 Emergency Response
  • 12.3.3 Decision Making
  • 12.3.4 Social Equity Promotion
  • 12.4 Challenges: Fake Electronic Footprints
  • 12.4.1 Rumors.
  • 12.4.2 Location Spoofing.