Manual of Digital Earth.

Saved in:
Bibliographic Details
:
TeilnehmendeR:
Place / Publishing House:Singapore : : Springer Singapore Pte. Limited,, 2019.
©2020.
Year of Publication:2019
Edition:1st ed.
Language:English
Online Access:
Physical Description:1 online resource (846 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 5005979933
ctrlnum (MiAaPQ)5005979933
(Au-PeEL)EBL5979933
(OCoLC)1129168894
collection bib_alma
record_format marc
spelling Guo, Huadong.
Manual of Digital Earth.
1st ed.
Singapore : Springer Singapore Pte. Limited, 2019.
©2020.
1 online resource (846 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Intro -- Preface -- Acknowledgements -- List of Editors -- Editors-in-Chief -- Managing Editors -- Contents -- About the Editors-in-Chief -- Digital Earth Technologies -- 2 Digital Earth Platforms -- 2.1 Introduction -- 2.2 Discrete Global Grid Systems -- 2.2.1 Initial Domain -- 2.2.2 Cell Type -- 2.2.3 Refinement -- 2.2.4 Projection -- 2.2.5 Indexing -- 2.3 Scientific Digital Earths -- 2.4 Public and Commercial Digital Earth Platforms -- 2.4.1 Latitude/Longitude Grids -- 2.4.2 Geodesic DGGSs -- 2.4.3 Installations: DESP -- 2.5 Discrete Global Grid System Standards -- 2.5.1 Standardization of Discrete Global Grid Systems -- 2.5.2 Core Requirements of the OGC DGGS Abstract Specification -- 2.5.3 The Future of the DGGS Standard -- 2.5.4 Linkages Between DGGS and Other Standards Activities -- References -- 3 Remote Sensing Satellites for Digital Earth -- 3.1 Development of Remote Sensing -- 3.1.1 Overview of Remote Sensing -- 3.1.2 Development of Remote Sensing Satellites -- 3.2 Land Observation Satellites -- 3.2.1 US Land Observation Satellites -- 3.2.2 European Land Observation Satellites -- 3.2.3 China's Land Observation Satellites -- 3.2.4 Other Land Observation Satellites -- 3.3 Ocean Observation Satellites -- 3.3.1 US Ocean Observation Satellites -- 3.3.2 European Ocean Observation Satellites -- 3.3.3 China's Ocean Observation Satellites -- 3.3.4 Other Ocean Observation Satellites -- 3.4 Meteorological Observation Satellites -- 3.4.1 US Meteorological Observation Satellites -- 3.4.2 European Meteorological Observation Satellites -- 3.4.3 China's Meteorological Observation Satellites -- 3.4.4 Other Meteorological Observation Satellites -- 3.5 Trends in Remote Sensing for Digital Earth -- References -- 4 Satellite Navigation for Digital Earth -- 4.1 Introduction -- 4.2 Global Navigation Satellite System -- 4.2.1 BDS -- 4.2.2 GPS -- 4.2.3 GLONASS.
4.2.4 Galileo -- 4.3 GNSS Augmentation Systems -- 4.3.1 Wide-Area Differential Augmentation System -- 4.3.2 Global Differential Precise Positioning System -- 4.3.3 Local Area Differential Augmentation System -- 4.3.4 Local Area Precise Positioning System -- 4.4 Applications in Digital Earth Case Studies -- 4.4.1 Terrestrial Reference System -- 4.4.2 Time System -- 4.4.3 High-Precision Positioning -- 4.4.4 Location-Based Service -- References -- 5 Geospatial Information Infrastructures -- 5.1 Introduction -- 5.2 A Brief History of Geospatial Information Infrastructures -- 5.2.1 Geospatial Information Infrastructure Milestones -- 5.2.2 Architectural Evolutions in Geospatial Information Infrastructure Development -- 5.3 Geospatial Information Infrastructures Today -- 5.3.1 The Evolution of Geospatial Information on the Web -- 5.3.2 Geospatial Information Infrastructures Champion Openness -- 5.3.3 Capacity Building and Learning for Geospatial Information Infrastructures -- 5.4 Recent Challenges and Potential for Improvement -- 5.4.1 Strengthened Role of Semantics -- 5.4.2 Is Spatial Still Special? -- 5.5 Conclusion and Outlook -- References -- 6 Geospatial Information Processing Technologies -- 6.1 Introduction -- 6.2 High-Performance Computing -- 6.2.1 The Concept of High-Performance Computing: What and Why -- 6.2.2 High-Performance Computing Platforms -- 6.2.3 Spatial Database Management Systems and Spatial Data Mining -- 6.2.4 Applications Supporting Digital Earth -- 6.2.5 Research Challenges and Future Directions -- 6.3 Online Geospatial Information Processing -- 6.3.1 Web Service-Based Online Geoprocessing -- 6.3.2 Web (Coverage) Processing Services -- 6.3.3 Online Geoprocessing Applications in the Context of Digital Earth -- 6.3.4 Research Challenges and Future Directions -- 6.4 Distributed Geospatial Information Processing.
6.4.1 The Concept of Distributed Geospatial Information Processing: What and Why -- 6.4.2 Fundamental Concepts and Techniques -- 6.4.3 Application Supporting Digital Earth -- 6.4.4 Research Challenges and Future Directions -- 6.5 Discussion and Conclusion -- References -- 7 Geospatial Information Visualization and Extended Reality Displays -- 7.1 Introduction -- 7.2 Visualizing Geospatial Information: An Overview -- 7.2.1 Representation -- 7.2.2 User Interaction and Interfaces -- 7.3 Understanding Users: Cognition, Perception, and User-Centered Design Approaches for Visualization -- 7.3.1 Making Visualizations Work for Digital Earth Users -- 7.4 Geovisual Analytics -- 7.4.1 Progress in Geovisual Analytics -- 7.4.2 Big Data, Digital Earth, and Geovisual Analytics -- 7.5 Visualizing Movement -- 7.5.1 Trajectory Maps: The Individual Journey -- 7.5.2 Flow Maps: Aggregated Flows Between Places -- 7.5.3 Origin-Destination (OD) Maps -- 7.5.4 In-Flow, Out-Flow and Density of Moving Objects -- 7.6 Immersive Technologies-From Augmented to Virtual Reality -- 7.6.1 Essential Concepts for Immersive Technologies -- 7.6.2 Augmented Reality -- 7.6.3 Mixed Reality -- 7.7 Virtual Reality -- 7.7.1 Virtual Geographic Environments -- 7.7.2 Foundational Structures of VGEs -- 7.8 Dashboards -- 7.9 Conclusions -- References -- 8 Transformation in Scale for Continuous Zooming -- 8.1 Continuous Zooming and Transformation in Scale: An Introduction -- 8.1.1 Continuous Zooming: Foundation of the Digital Earth -- 8.1.2 Transformation in Scale: Foundation of Continuous Zooming -- 8.1.3 Transformation in Scale: A Fundamental Issue in Disciplines Related to Digital Earth -- 8.2 Theories of Transformation in Scale -- 8.2.1 Transformation in Scale: Multiscale Versus Variable Scale -- 8.2.2 Transformations in Scale: Euclidean Versus Geographical Space.
8.2.3 Theoretical Foundation for Transformation in Scale: The Natural Principle -- 8.3 Models for Transformations in Scale -- 8.3.1 Data Models for Feature Representation: Space-Primary Versus Feature-Primary -- 8.3.2 Space-Primary Hierarchical Models for Transformation in Scale -- 8.3.3 Feature-Primary Hierarchical Models for Transformation in Scale -- 8.3.4 Models of Transformation in Scale for Irregular Triangulation Networks -- 8.3.5 Models for Geometric Transformation of Map Data in Scale -- 8.3.6 Models for Transformation in Scale of 3D City Representations -- 8.4 Mathematical Solutions for Transformations in Scale -- 8.4.1 Mathematical Solutions for Upscaling Raster Data: Numerical and Categorical -- 8.4.2 Mathematical Solutions for Downscaling Raster Data -- 8.4.3 Mathematical Solutions for Transformation (in Scale) of Point Set Data -- 8.4.4 Mathematical Solution for Transformation (in Scale) of Individual Lines -- 8.4.5 Mathematical Solutions for Transformation (in Scale) of Line Networks -- 8.4.6 Mathematical Solutions for Transformation of a Class of Area Features -- 8.4.7 Mathematical Solutions for Transformation (in Scale) of Spherical and 3D Features -- 8.5 Transformation in Scale: Final Remarks -- References -- 9 Big Data and Cloud Computing -- 9.1 Introduction -- 9.2 Big Data Sources -- 9.3 Big Data Analysis Methods -- 9.3.1 Data Preprocessing -- 9.3.2 Statistical Analysis -- 9.3.3 Nonstatistical Analysis -- 9.4 Architecture for Big Data Analysis -- 9.4.1 Data Storage Layer -- 9.4.2 Data Query Layer -- 9.4.3 Data Processing Layer -- 9.5 Cloud Computing for Big Data -- 9.5.1 Cloud Computing and Other Related Computing Paradigms -- 9.5.2 Introduction to Cloud Computing -- 9.5.3 Cloud Computing to Support Big Data -- 9.6 Case Study: EarthCube/DataCube -- 9.6.1 EarthCube -- 9.6.2 Data Cube -- 9.7 Conclusion -- References.
10 Artificial Intelligence -- 10.1 Introduction -- 10.2 Traditional and Statistical Machine Learning -- 10.2.1 Supervised Learning -- 10.2.2 Unsupervised Learning -- 10.2.3 Dimension Reduction -- 10.3 Deep Learning -- 10.3.1 Convolutional Networks -- 10.3.2 Recurrent Neural Networks -- 10.3.3 Variational Autoencoder -- 10.3.4 Generative Adversarial Networks (GANs) -- 10.3.5 Dictionary-Based Approaches -- 10.3.6 Reinforcement Learning -- 10.4 Discussion -- 10.4.1 Reproducibility -- 10.4.2 Ownership and Fairness -- 10.4.3 Accountability -- 10.5 Conclusion -- References -- 11 Internet of Things -- 11.1 Introduction -- 11.2 Definitions and status quo of the IoT -- 11.2.1 One Concept, Many Definitions -- 11.2.2 Our Definition -- 11.2.3 Early Works on the Interplay Between DE and the IoT -- 11.2.4 IoT Standards Initiatives from DE -- 11.3 Interplay Between the IoT and DE -- 11.3.1 Discoverability, Acquisition and Communication of Spatial Information -- 11.3.2 Spatial Understanding of Objects and Their Relationships -- 11.3.3 Taking Informed Actions and Acting Over the Environment (ACT) -- 11.4 Case Studies on Smart Scenarios -- 11.5 Frictions and Synergies Between the IoT and DE -- 11.5.1 Discoverability, Acquisition and Communication of Spatial Information -- 11.5.2 Spatial Understanding of Objects and Their Relationships -- 11.5.3 Taking Informed Actions and Acting Over the Environment -- 11.6 Conclusion and Outlook for the Future of the IoT in Support of DE -- References -- 12 Social Media and Social Awareness -- 12.1 Introduction: Electronic Footprints on Digital Earth -- 12.2 Multifaceted Implications of Social Media -- 12.3 Opportunities: Human Dynamics Prediction -- 12.3.1 Public Health -- 12.3.2 Emergency Response -- 12.3.3 Decision Making -- 12.3.4 Social Equity Promotion -- 12.4 Challenges: Fake Electronic Footprints -- 12.4.1 Rumors.
12.4.2 Location Spoofing.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic books.
Goodchild, Michael F.
Annoni, Alessandro.
Print version: Guo, Huadong Manual of Digital Earth Singapore : Springer Singapore Pte. Limited,c2019 9789813299146
ProQuest (Firm)
https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=5979933 Click to View
language English
format eBook
author Guo, Huadong.
spellingShingle Guo, Huadong.
Manual of Digital Earth.
Intro -- Preface -- Acknowledgements -- List of Editors -- Editors-in-Chief -- Managing Editors -- Contents -- About the Editors-in-Chief -- Digital Earth Technologies -- 2 Digital Earth Platforms -- 2.1 Introduction -- 2.2 Discrete Global Grid Systems -- 2.2.1 Initial Domain -- 2.2.2 Cell Type -- 2.2.3 Refinement -- 2.2.4 Projection -- 2.2.5 Indexing -- 2.3 Scientific Digital Earths -- 2.4 Public and Commercial Digital Earth Platforms -- 2.4.1 Latitude/Longitude Grids -- 2.4.2 Geodesic DGGSs -- 2.4.3 Installations: DESP -- 2.5 Discrete Global Grid System Standards -- 2.5.1 Standardization of Discrete Global Grid Systems -- 2.5.2 Core Requirements of the OGC DGGS Abstract Specification -- 2.5.3 The Future of the DGGS Standard -- 2.5.4 Linkages Between DGGS and Other Standards Activities -- References -- 3 Remote Sensing Satellites for Digital Earth -- 3.1 Development of Remote Sensing -- 3.1.1 Overview of Remote Sensing -- 3.1.2 Development of Remote Sensing Satellites -- 3.2 Land Observation Satellites -- 3.2.1 US Land Observation Satellites -- 3.2.2 European Land Observation Satellites -- 3.2.3 China's Land Observation Satellites -- 3.2.4 Other Land Observation Satellites -- 3.3 Ocean Observation Satellites -- 3.3.1 US Ocean Observation Satellites -- 3.3.2 European Ocean Observation Satellites -- 3.3.3 China's Ocean Observation Satellites -- 3.3.4 Other Ocean Observation Satellites -- 3.4 Meteorological Observation Satellites -- 3.4.1 US Meteorological Observation Satellites -- 3.4.2 European Meteorological Observation Satellites -- 3.4.3 China's Meteorological Observation Satellites -- 3.4.4 Other Meteorological Observation Satellites -- 3.5 Trends in Remote Sensing for Digital Earth -- References -- 4 Satellite Navigation for Digital Earth -- 4.1 Introduction -- 4.2 Global Navigation Satellite System -- 4.2.1 BDS -- 4.2.2 GPS -- 4.2.3 GLONASS.
4.2.4 Galileo -- 4.3 GNSS Augmentation Systems -- 4.3.1 Wide-Area Differential Augmentation System -- 4.3.2 Global Differential Precise Positioning System -- 4.3.3 Local Area Differential Augmentation System -- 4.3.4 Local Area Precise Positioning System -- 4.4 Applications in Digital Earth Case Studies -- 4.4.1 Terrestrial Reference System -- 4.4.2 Time System -- 4.4.3 High-Precision Positioning -- 4.4.4 Location-Based Service -- References -- 5 Geospatial Information Infrastructures -- 5.1 Introduction -- 5.2 A Brief History of Geospatial Information Infrastructures -- 5.2.1 Geospatial Information Infrastructure Milestones -- 5.2.2 Architectural Evolutions in Geospatial Information Infrastructure Development -- 5.3 Geospatial Information Infrastructures Today -- 5.3.1 The Evolution of Geospatial Information on the Web -- 5.3.2 Geospatial Information Infrastructures Champion Openness -- 5.3.3 Capacity Building and Learning for Geospatial Information Infrastructures -- 5.4 Recent Challenges and Potential for Improvement -- 5.4.1 Strengthened Role of Semantics -- 5.4.2 Is Spatial Still Special? -- 5.5 Conclusion and Outlook -- References -- 6 Geospatial Information Processing Technologies -- 6.1 Introduction -- 6.2 High-Performance Computing -- 6.2.1 The Concept of High-Performance Computing: What and Why -- 6.2.2 High-Performance Computing Platforms -- 6.2.3 Spatial Database Management Systems and Spatial Data Mining -- 6.2.4 Applications Supporting Digital Earth -- 6.2.5 Research Challenges and Future Directions -- 6.3 Online Geospatial Information Processing -- 6.3.1 Web Service-Based Online Geoprocessing -- 6.3.2 Web (Coverage) Processing Services -- 6.3.3 Online Geoprocessing Applications in the Context of Digital Earth -- 6.3.4 Research Challenges and Future Directions -- 6.4 Distributed Geospatial Information Processing.
6.4.1 The Concept of Distributed Geospatial Information Processing: What and Why -- 6.4.2 Fundamental Concepts and Techniques -- 6.4.3 Application Supporting Digital Earth -- 6.4.4 Research Challenges and Future Directions -- 6.5 Discussion and Conclusion -- References -- 7 Geospatial Information Visualization and Extended Reality Displays -- 7.1 Introduction -- 7.2 Visualizing Geospatial Information: An Overview -- 7.2.1 Representation -- 7.2.2 User Interaction and Interfaces -- 7.3 Understanding Users: Cognition, Perception, and User-Centered Design Approaches for Visualization -- 7.3.1 Making Visualizations Work for Digital Earth Users -- 7.4 Geovisual Analytics -- 7.4.1 Progress in Geovisual Analytics -- 7.4.2 Big Data, Digital Earth, and Geovisual Analytics -- 7.5 Visualizing Movement -- 7.5.1 Trajectory Maps: The Individual Journey -- 7.5.2 Flow Maps: Aggregated Flows Between Places -- 7.5.3 Origin-Destination (OD) Maps -- 7.5.4 In-Flow, Out-Flow and Density of Moving Objects -- 7.6 Immersive Technologies-From Augmented to Virtual Reality -- 7.6.1 Essential Concepts for Immersive Technologies -- 7.6.2 Augmented Reality -- 7.6.3 Mixed Reality -- 7.7 Virtual Reality -- 7.7.1 Virtual Geographic Environments -- 7.7.2 Foundational Structures of VGEs -- 7.8 Dashboards -- 7.9 Conclusions -- References -- 8 Transformation in Scale for Continuous Zooming -- 8.1 Continuous Zooming and Transformation in Scale: An Introduction -- 8.1.1 Continuous Zooming: Foundation of the Digital Earth -- 8.1.2 Transformation in Scale: Foundation of Continuous Zooming -- 8.1.3 Transformation in Scale: A Fundamental Issue in Disciplines Related to Digital Earth -- 8.2 Theories of Transformation in Scale -- 8.2.1 Transformation in Scale: Multiscale Versus Variable Scale -- 8.2.2 Transformations in Scale: Euclidean Versus Geographical Space.
8.2.3 Theoretical Foundation for Transformation in Scale: The Natural Principle -- 8.3 Models for Transformations in Scale -- 8.3.1 Data Models for Feature Representation: Space-Primary Versus Feature-Primary -- 8.3.2 Space-Primary Hierarchical Models for Transformation in Scale -- 8.3.3 Feature-Primary Hierarchical Models for Transformation in Scale -- 8.3.4 Models of Transformation in Scale for Irregular Triangulation Networks -- 8.3.5 Models for Geometric Transformation of Map Data in Scale -- 8.3.6 Models for Transformation in Scale of 3D City Representations -- 8.4 Mathematical Solutions for Transformations in Scale -- 8.4.1 Mathematical Solutions for Upscaling Raster Data: Numerical and Categorical -- 8.4.2 Mathematical Solutions for Downscaling Raster Data -- 8.4.3 Mathematical Solutions for Transformation (in Scale) of Point Set Data -- 8.4.4 Mathematical Solution for Transformation (in Scale) of Individual Lines -- 8.4.5 Mathematical Solutions for Transformation (in Scale) of Line Networks -- 8.4.6 Mathematical Solutions for Transformation of a Class of Area Features -- 8.4.7 Mathematical Solutions for Transformation (in Scale) of Spherical and 3D Features -- 8.5 Transformation in Scale: Final Remarks -- References -- 9 Big Data and Cloud Computing -- 9.1 Introduction -- 9.2 Big Data Sources -- 9.3 Big Data Analysis Methods -- 9.3.1 Data Preprocessing -- 9.3.2 Statistical Analysis -- 9.3.3 Nonstatistical Analysis -- 9.4 Architecture for Big Data Analysis -- 9.4.1 Data Storage Layer -- 9.4.2 Data Query Layer -- 9.4.3 Data Processing Layer -- 9.5 Cloud Computing for Big Data -- 9.5.1 Cloud Computing and Other Related Computing Paradigms -- 9.5.2 Introduction to Cloud Computing -- 9.5.3 Cloud Computing to Support Big Data -- 9.6 Case Study: EarthCube/DataCube -- 9.6.1 EarthCube -- 9.6.2 Data Cube -- 9.7 Conclusion -- References.
10 Artificial Intelligence -- 10.1 Introduction -- 10.2 Traditional and Statistical Machine Learning -- 10.2.1 Supervised Learning -- 10.2.2 Unsupervised Learning -- 10.2.3 Dimension Reduction -- 10.3 Deep Learning -- 10.3.1 Convolutional Networks -- 10.3.2 Recurrent Neural Networks -- 10.3.3 Variational Autoencoder -- 10.3.4 Generative Adversarial Networks (GANs) -- 10.3.5 Dictionary-Based Approaches -- 10.3.6 Reinforcement Learning -- 10.4 Discussion -- 10.4.1 Reproducibility -- 10.4.2 Ownership and Fairness -- 10.4.3 Accountability -- 10.5 Conclusion -- References -- 11 Internet of Things -- 11.1 Introduction -- 11.2 Definitions and status quo of the IoT -- 11.2.1 One Concept, Many Definitions -- 11.2.2 Our Definition -- 11.2.3 Early Works on the Interplay Between DE and the IoT -- 11.2.4 IoT Standards Initiatives from DE -- 11.3 Interplay Between the IoT and DE -- 11.3.1 Discoverability, Acquisition and Communication of Spatial Information -- 11.3.2 Spatial Understanding of Objects and Their Relationships -- 11.3.3 Taking Informed Actions and Acting Over the Environment (ACT) -- 11.4 Case Studies on Smart Scenarios -- 11.5 Frictions and Synergies Between the IoT and DE -- 11.5.1 Discoverability, Acquisition and Communication of Spatial Information -- 11.5.2 Spatial Understanding of Objects and Their Relationships -- 11.5.3 Taking Informed Actions and Acting Over the Environment -- 11.6 Conclusion and Outlook for the Future of the IoT in Support of DE -- References -- 12 Social Media and Social Awareness -- 12.1 Introduction: Electronic Footprints on Digital Earth -- 12.2 Multifaceted Implications of Social Media -- 12.3 Opportunities: Human Dynamics Prediction -- 12.3.1 Public Health -- 12.3.2 Emergency Response -- 12.3.3 Decision Making -- 12.3.4 Social Equity Promotion -- 12.4 Challenges: Fake Electronic Footprints -- 12.4.1 Rumors.
12.4.2 Location Spoofing.
author_facet Guo, Huadong.
Goodchild, Michael F.
Annoni, Alessandro.
author_variant h g hg
author2 Goodchild, Michael F.
Annoni, Alessandro.
author2_variant m f g mf mfg
a a aa
author2_role TeilnehmendeR
TeilnehmendeR
author_sort Guo, Huadong.
title Manual of Digital Earth.
title_full Manual of Digital Earth.
title_fullStr Manual of Digital Earth.
title_full_unstemmed Manual of Digital Earth.
title_auth Manual of Digital Earth.
title_new Manual of Digital Earth.
title_sort manual of digital earth.
publisher Springer Singapore Pte. Limited,
publishDate 2019
physical 1 online resource (846 pages)
edition 1st ed.
contents Intro -- Preface -- Acknowledgements -- List of Editors -- Editors-in-Chief -- Managing Editors -- Contents -- About the Editors-in-Chief -- Digital Earth Technologies -- 2 Digital Earth Platforms -- 2.1 Introduction -- 2.2 Discrete Global Grid Systems -- 2.2.1 Initial Domain -- 2.2.2 Cell Type -- 2.2.3 Refinement -- 2.2.4 Projection -- 2.2.5 Indexing -- 2.3 Scientific Digital Earths -- 2.4 Public and Commercial Digital Earth Platforms -- 2.4.1 Latitude/Longitude Grids -- 2.4.2 Geodesic DGGSs -- 2.4.3 Installations: DESP -- 2.5 Discrete Global Grid System Standards -- 2.5.1 Standardization of Discrete Global Grid Systems -- 2.5.2 Core Requirements of the OGC DGGS Abstract Specification -- 2.5.3 The Future of the DGGS Standard -- 2.5.4 Linkages Between DGGS and Other Standards Activities -- References -- 3 Remote Sensing Satellites for Digital Earth -- 3.1 Development of Remote Sensing -- 3.1.1 Overview of Remote Sensing -- 3.1.2 Development of Remote Sensing Satellites -- 3.2 Land Observation Satellites -- 3.2.1 US Land Observation Satellites -- 3.2.2 European Land Observation Satellites -- 3.2.3 China's Land Observation Satellites -- 3.2.4 Other Land Observation Satellites -- 3.3 Ocean Observation Satellites -- 3.3.1 US Ocean Observation Satellites -- 3.3.2 European Ocean Observation Satellites -- 3.3.3 China's Ocean Observation Satellites -- 3.3.4 Other Ocean Observation Satellites -- 3.4 Meteorological Observation Satellites -- 3.4.1 US Meteorological Observation Satellites -- 3.4.2 European Meteorological Observation Satellites -- 3.4.3 China's Meteorological Observation Satellites -- 3.4.4 Other Meteorological Observation Satellites -- 3.5 Trends in Remote Sensing for Digital Earth -- References -- 4 Satellite Navigation for Digital Earth -- 4.1 Introduction -- 4.2 Global Navigation Satellite System -- 4.2.1 BDS -- 4.2.2 GPS -- 4.2.3 GLONASS.
4.2.4 Galileo -- 4.3 GNSS Augmentation Systems -- 4.3.1 Wide-Area Differential Augmentation System -- 4.3.2 Global Differential Precise Positioning System -- 4.3.3 Local Area Differential Augmentation System -- 4.3.4 Local Area Precise Positioning System -- 4.4 Applications in Digital Earth Case Studies -- 4.4.1 Terrestrial Reference System -- 4.4.2 Time System -- 4.4.3 High-Precision Positioning -- 4.4.4 Location-Based Service -- References -- 5 Geospatial Information Infrastructures -- 5.1 Introduction -- 5.2 A Brief History of Geospatial Information Infrastructures -- 5.2.1 Geospatial Information Infrastructure Milestones -- 5.2.2 Architectural Evolutions in Geospatial Information Infrastructure Development -- 5.3 Geospatial Information Infrastructures Today -- 5.3.1 The Evolution of Geospatial Information on the Web -- 5.3.2 Geospatial Information Infrastructures Champion Openness -- 5.3.3 Capacity Building and Learning for Geospatial Information Infrastructures -- 5.4 Recent Challenges and Potential for Improvement -- 5.4.1 Strengthened Role of Semantics -- 5.4.2 Is Spatial Still Special? -- 5.5 Conclusion and Outlook -- References -- 6 Geospatial Information Processing Technologies -- 6.1 Introduction -- 6.2 High-Performance Computing -- 6.2.1 The Concept of High-Performance Computing: What and Why -- 6.2.2 High-Performance Computing Platforms -- 6.2.3 Spatial Database Management Systems and Spatial Data Mining -- 6.2.4 Applications Supporting Digital Earth -- 6.2.5 Research Challenges and Future Directions -- 6.3 Online Geospatial Information Processing -- 6.3.1 Web Service-Based Online Geoprocessing -- 6.3.2 Web (Coverage) Processing Services -- 6.3.3 Online Geoprocessing Applications in the Context of Digital Earth -- 6.3.4 Research Challenges and Future Directions -- 6.4 Distributed Geospatial Information Processing.
6.4.1 The Concept of Distributed Geospatial Information Processing: What and Why -- 6.4.2 Fundamental Concepts and Techniques -- 6.4.3 Application Supporting Digital Earth -- 6.4.4 Research Challenges and Future Directions -- 6.5 Discussion and Conclusion -- References -- 7 Geospatial Information Visualization and Extended Reality Displays -- 7.1 Introduction -- 7.2 Visualizing Geospatial Information: An Overview -- 7.2.1 Representation -- 7.2.2 User Interaction and Interfaces -- 7.3 Understanding Users: Cognition, Perception, and User-Centered Design Approaches for Visualization -- 7.3.1 Making Visualizations Work for Digital Earth Users -- 7.4 Geovisual Analytics -- 7.4.1 Progress in Geovisual Analytics -- 7.4.2 Big Data, Digital Earth, and Geovisual Analytics -- 7.5 Visualizing Movement -- 7.5.1 Trajectory Maps: The Individual Journey -- 7.5.2 Flow Maps: Aggregated Flows Between Places -- 7.5.3 Origin-Destination (OD) Maps -- 7.5.4 In-Flow, Out-Flow and Density of Moving Objects -- 7.6 Immersive Technologies-From Augmented to Virtual Reality -- 7.6.1 Essential Concepts for Immersive Technologies -- 7.6.2 Augmented Reality -- 7.6.3 Mixed Reality -- 7.7 Virtual Reality -- 7.7.1 Virtual Geographic Environments -- 7.7.2 Foundational Structures of VGEs -- 7.8 Dashboards -- 7.9 Conclusions -- References -- 8 Transformation in Scale for Continuous Zooming -- 8.1 Continuous Zooming and Transformation in Scale: An Introduction -- 8.1.1 Continuous Zooming: Foundation of the Digital Earth -- 8.1.2 Transformation in Scale: Foundation of Continuous Zooming -- 8.1.3 Transformation in Scale: A Fundamental Issue in Disciplines Related to Digital Earth -- 8.2 Theories of Transformation in Scale -- 8.2.1 Transformation in Scale: Multiscale Versus Variable Scale -- 8.2.2 Transformations in Scale: Euclidean Versus Geographical Space.
8.2.3 Theoretical Foundation for Transformation in Scale: The Natural Principle -- 8.3 Models for Transformations in Scale -- 8.3.1 Data Models for Feature Representation: Space-Primary Versus Feature-Primary -- 8.3.2 Space-Primary Hierarchical Models for Transformation in Scale -- 8.3.3 Feature-Primary Hierarchical Models for Transformation in Scale -- 8.3.4 Models of Transformation in Scale for Irregular Triangulation Networks -- 8.3.5 Models for Geometric Transformation of Map Data in Scale -- 8.3.6 Models for Transformation in Scale of 3D City Representations -- 8.4 Mathematical Solutions for Transformations in Scale -- 8.4.1 Mathematical Solutions for Upscaling Raster Data: Numerical and Categorical -- 8.4.2 Mathematical Solutions for Downscaling Raster Data -- 8.4.3 Mathematical Solutions for Transformation (in Scale) of Point Set Data -- 8.4.4 Mathematical Solution for Transformation (in Scale) of Individual Lines -- 8.4.5 Mathematical Solutions for Transformation (in Scale) of Line Networks -- 8.4.6 Mathematical Solutions for Transformation of a Class of Area Features -- 8.4.7 Mathematical Solutions for Transformation (in Scale) of Spherical and 3D Features -- 8.5 Transformation in Scale: Final Remarks -- References -- 9 Big Data and Cloud Computing -- 9.1 Introduction -- 9.2 Big Data Sources -- 9.3 Big Data Analysis Methods -- 9.3.1 Data Preprocessing -- 9.3.2 Statistical Analysis -- 9.3.3 Nonstatistical Analysis -- 9.4 Architecture for Big Data Analysis -- 9.4.1 Data Storage Layer -- 9.4.2 Data Query Layer -- 9.4.3 Data Processing Layer -- 9.5 Cloud Computing for Big Data -- 9.5.1 Cloud Computing and Other Related Computing Paradigms -- 9.5.2 Introduction to Cloud Computing -- 9.5.3 Cloud Computing to Support Big Data -- 9.6 Case Study: EarthCube/DataCube -- 9.6.1 EarthCube -- 9.6.2 Data Cube -- 9.7 Conclusion -- References.
10 Artificial Intelligence -- 10.1 Introduction -- 10.2 Traditional and Statistical Machine Learning -- 10.2.1 Supervised Learning -- 10.2.2 Unsupervised Learning -- 10.2.3 Dimension Reduction -- 10.3 Deep Learning -- 10.3.1 Convolutional Networks -- 10.3.2 Recurrent Neural Networks -- 10.3.3 Variational Autoencoder -- 10.3.4 Generative Adversarial Networks (GANs) -- 10.3.5 Dictionary-Based Approaches -- 10.3.6 Reinforcement Learning -- 10.4 Discussion -- 10.4.1 Reproducibility -- 10.4.2 Ownership and Fairness -- 10.4.3 Accountability -- 10.5 Conclusion -- References -- 11 Internet of Things -- 11.1 Introduction -- 11.2 Definitions and status quo of the IoT -- 11.2.1 One Concept, Many Definitions -- 11.2.2 Our Definition -- 11.2.3 Early Works on the Interplay Between DE and the IoT -- 11.2.4 IoT Standards Initiatives from DE -- 11.3 Interplay Between the IoT and DE -- 11.3.1 Discoverability, Acquisition and Communication of Spatial Information -- 11.3.2 Spatial Understanding of Objects and Their Relationships -- 11.3.3 Taking Informed Actions and Acting Over the Environment (ACT) -- 11.4 Case Studies on Smart Scenarios -- 11.5 Frictions and Synergies Between the IoT and DE -- 11.5.1 Discoverability, Acquisition and Communication of Spatial Information -- 11.5.2 Spatial Understanding of Objects and Their Relationships -- 11.5.3 Taking Informed Actions and Acting Over the Environment -- 11.6 Conclusion and Outlook for the Future of the IoT in Support of DE -- References -- 12 Social Media and Social Awareness -- 12.1 Introduction: Electronic Footprints on Digital Earth -- 12.2 Multifaceted Implications of Social Media -- 12.3 Opportunities: Human Dynamics Prediction -- 12.3.1 Public Health -- 12.3.2 Emergency Response -- 12.3.3 Decision Making -- 12.3.4 Social Equity Promotion -- 12.4 Challenges: Fake Electronic Footprints -- 12.4.1 Rumors.
12.4.2 Location Spoofing.
isbn 9789813299153
9789813299146
callnumber-first G - Geography, Anthropology, Recreation
callnumber-subject G - General Geography
callnumber-label G70
callnumber-sort G 270.212 3217
genre Electronic books.
genre_facet Electronic books.
url https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=5979933
illustrated Not Illustrated
oclc_num 1129168894
work_keys_str_mv AT guohuadong manualofdigitalearth
AT goodchildmichaelf manualofdigitalearth
AT annonialessandro manualofdigitalearth
status_str n
ids_txt_mv (MiAaPQ)5005979933
(Au-PeEL)EBL5979933
(OCoLC)1129168894
carrierType_str_mv cr
is_hierarchy_title Manual of Digital Earth.
author2_original_writing_str_mv noLinkedField
noLinkedField
marc_error Info : MARC8 translation shorter than ISO-8859-1, choosing MARC8. --- [ 856 : z ]
_version_ 1792331057097342976
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>11721nam a22004573i 4500</leader><controlfield tag="001">5005979933</controlfield><controlfield tag="003">MiAaPQ</controlfield><controlfield tag="005">20240229073833.0</controlfield><controlfield tag="006">m o d | </controlfield><controlfield tag="007">cr cnu||||||||</controlfield><controlfield tag="008">240229s2019 xx o ||||0 eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789813299153</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789813299146</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(MiAaPQ)5005979933</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(Au-PeEL)EBL5979933</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1129168894</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">MiAaPQ</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">MiAaPQ</subfield><subfield code="d">MiAaPQ</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">G70.212-.217</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Guo, Huadong.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Manual of Digital Earth.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore :</subfield><subfield code="b">Springer Singapore Pte. Limited,</subfield><subfield code="c">2019.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2020.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (846 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Intro -- Preface -- Acknowledgements -- List of Editors -- Editors-in-Chief -- Managing Editors -- Contents -- About the Editors-in-Chief -- Digital Earth Technologies -- 2 Digital Earth Platforms -- 2.1 Introduction -- 2.2 Discrete Global Grid Systems -- 2.2.1 Initial Domain -- 2.2.2 Cell Type -- 2.2.3 Refinement -- 2.2.4 Projection -- 2.2.5 Indexing -- 2.3 Scientific Digital Earths -- 2.4 Public and Commercial Digital Earth Platforms -- 2.4.1 Latitude/Longitude Grids -- 2.4.2 Geodesic DGGSs -- 2.4.3 Installations: DESP -- 2.5 Discrete Global Grid System Standards -- 2.5.1 Standardization of Discrete Global Grid Systems -- 2.5.2 Core Requirements of the OGC DGGS Abstract Specification -- 2.5.3 The Future of the DGGS Standard -- 2.5.4 Linkages Between DGGS and Other Standards Activities -- References -- 3 Remote Sensing Satellites for Digital Earth -- 3.1 Development of Remote Sensing -- 3.1.1 Overview of Remote Sensing -- 3.1.2 Development of Remote Sensing Satellites -- 3.2 Land Observation Satellites -- 3.2.1 US Land Observation Satellites -- 3.2.2 European Land Observation Satellites -- 3.2.3 China's Land Observation Satellites -- 3.2.4 Other Land Observation Satellites -- 3.3 Ocean Observation Satellites -- 3.3.1 US Ocean Observation Satellites -- 3.3.2 European Ocean Observation Satellites -- 3.3.3 China's Ocean Observation Satellites -- 3.3.4 Other Ocean Observation Satellites -- 3.4 Meteorological Observation Satellites -- 3.4.1 US Meteorological Observation Satellites -- 3.4.2 European Meteorological Observation Satellites -- 3.4.3 China's Meteorological Observation Satellites -- 3.4.4 Other Meteorological Observation Satellites -- 3.5 Trends in Remote Sensing for Digital Earth -- References -- 4 Satellite Navigation for Digital Earth -- 4.1 Introduction -- 4.2 Global Navigation Satellite System -- 4.2.1 BDS -- 4.2.2 GPS -- 4.2.3 GLONASS.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.2.4 Galileo -- 4.3 GNSS Augmentation Systems -- 4.3.1 Wide-Area Differential Augmentation System -- 4.3.2 Global Differential Precise Positioning System -- 4.3.3 Local Area Differential Augmentation System -- 4.3.4 Local Area Precise Positioning System -- 4.4 Applications in Digital Earth Case Studies -- 4.4.1 Terrestrial Reference System -- 4.4.2 Time System -- 4.4.3 High-Precision Positioning -- 4.4.4 Location-Based Service -- References -- 5 Geospatial Information Infrastructures -- 5.1 Introduction -- 5.2 A Brief History of Geospatial Information Infrastructures -- 5.2.1 Geospatial Information Infrastructure Milestones -- 5.2.2 Architectural Evolutions in Geospatial Information Infrastructure Development -- 5.3 Geospatial Information Infrastructures Today -- 5.3.1 The Evolution of Geospatial Information on the Web -- 5.3.2 Geospatial Information Infrastructures Champion Openness -- 5.3.3 Capacity Building and Learning for Geospatial Information Infrastructures -- 5.4 Recent Challenges and Potential for Improvement -- 5.4.1 Strengthened Role of Semantics -- 5.4.2 Is Spatial Still Special? -- 5.5 Conclusion and Outlook -- References -- 6 Geospatial Information Processing Technologies -- 6.1 Introduction -- 6.2 High-Performance Computing -- 6.2.1 The Concept of High-Performance Computing: What and Why -- 6.2.2 High-Performance Computing Platforms -- 6.2.3 Spatial Database Management Systems and Spatial Data Mining -- 6.2.4 Applications Supporting Digital Earth -- 6.2.5 Research Challenges and Future Directions -- 6.3 Online Geospatial Information Processing -- 6.3.1 Web Service-Based Online Geoprocessing -- 6.3.2 Web (Coverage) Processing Services -- 6.3.3 Online Geoprocessing Applications in the Context of Digital Earth -- 6.3.4 Research Challenges and Future Directions -- 6.4 Distributed Geospatial Information Processing.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.4.1 The Concept of Distributed Geospatial Information Processing: What and Why -- 6.4.2 Fundamental Concepts and Techniques -- 6.4.3 Application Supporting Digital Earth -- 6.4.4 Research Challenges and Future Directions -- 6.5 Discussion and Conclusion -- References -- 7 Geospatial Information Visualization and Extended Reality Displays -- 7.1 Introduction -- 7.2 Visualizing Geospatial Information: An Overview -- 7.2.1 Representation -- 7.2.2 User Interaction and Interfaces -- 7.3 Understanding Users: Cognition, Perception, and User-Centered Design Approaches for Visualization -- 7.3.1 Making Visualizations Work for Digital Earth Users -- 7.4 Geovisual Analytics -- 7.4.1 Progress in Geovisual Analytics -- 7.4.2 Big Data, Digital Earth, and Geovisual Analytics -- 7.5 Visualizing Movement -- 7.5.1 Trajectory Maps: The Individual Journey -- 7.5.2 Flow Maps: Aggregated Flows Between Places -- 7.5.3 Origin-Destination (OD) Maps -- 7.5.4 In-Flow, Out-Flow and Density of Moving Objects -- 7.6 Immersive Technologies-From Augmented to Virtual Reality -- 7.6.1 Essential Concepts for Immersive Technologies -- 7.6.2 Augmented Reality -- 7.6.3 Mixed Reality -- 7.7 Virtual Reality -- 7.7.1 Virtual Geographic Environments -- 7.7.2 Foundational Structures of VGEs -- 7.8 Dashboards -- 7.9 Conclusions -- References -- 8 Transformation in Scale for Continuous Zooming -- 8.1 Continuous Zooming and Transformation in Scale: An Introduction -- 8.1.1 Continuous Zooming: Foundation of the Digital Earth -- 8.1.2 Transformation in Scale: Foundation of Continuous Zooming -- 8.1.3 Transformation in Scale: A Fundamental Issue in Disciplines Related to Digital Earth -- 8.2 Theories of Transformation in Scale -- 8.2.1 Transformation in Scale: Multiscale Versus Variable Scale -- 8.2.2 Transformations in Scale: Euclidean Versus Geographical Space.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">8.2.3 Theoretical Foundation for Transformation in Scale: The Natural Principle -- 8.3 Models for Transformations in Scale -- 8.3.1 Data Models for Feature Representation: Space-Primary Versus Feature-Primary -- 8.3.2 Space-Primary Hierarchical Models for Transformation in Scale -- 8.3.3 Feature-Primary Hierarchical Models for Transformation in Scale -- 8.3.4 Models of Transformation in Scale for Irregular Triangulation Networks -- 8.3.5 Models for Geometric Transformation of Map Data in Scale -- 8.3.6 Models for Transformation in Scale of 3D City Representations -- 8.4 Mathematical Solutions for Transformations in Scale -- 8.4.1 Mathematical Solutions for Upscaling Raster Data: Numerical and Categorical -- 8.4.2 Mathematical Solutions for Downscaling Raster Data -- 8.4.3 Mathematical Solutions for Transformation (in Scale) of Point Set Data -- 8.4.4 Mathematical Solution for Transformation (in Scale) of Individual Lines -- 8.4.5 Mathematical Solutions for Transformation (in Scale) of Line Networks -- 8.4.6 Mathematical Solutions for Transformation of a Class of Area Features -- 8.4.7 Mathematical Solutions for Transformation (in Scale) of Spherical and 3D Features -- 8.5 Transformation in Scale: Final Remarks -- References -- 9 Big Data and Cloud Computing -- 9.1 Introduction -- 9.2 Big Data Sources -- 9.3 Big Data Analysis Methods -- 9.3.1 Data Preprocessing -- 9.3.2 Statistical Analysis -- 9.3.3 Nonstatistical Analysis -- 9.4 Architecture for Big Data Analysis -- 9.4.1 Data Storage Layer -- 9.4.2 Data Query Layer -- 9.4.3 Data Processing Layer -- 9.5 Cloud Computing for Big Data -- 9.5.1 Cloud Computing and Other Related Computing Paradigms -- 9.5.2 Introduction to Cloud Computing -- 9.5.3 Cloud Computing to Support Big Data -- 9.6 Case Study: EarthCube/DataCube -- 9.6.1 EarthCube -- 9.6.2 Data Cube -- 9.7 Conclusion -- References.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">10 Artificial Intelligence -- 10.1 Introduction -- 10.2 Traditional and Statistical Machine Learning -- 10.2.1 Supervised Learning -- 10.2.2 Unsupervised Learning -- 10.2.3 Dimension Reduction -- 10.3 Deep Learning -- 10.3.1 Convolutional Networks -- 10.3.2 Recurrent Neural Networks -- 10.3.3 Variational Autoencoder -- 10.3.4 Generative Adversarial Networks (GANs) -- 10.3.5 Dictionary-Based Approaches -- 10.3.6 Reinforcement Learning -- 10.4 Discussion -- 10.4.1 Reproducibility -- 10.4.2 Ownership and Fairness -- 10.4.3 Accountability -- 10.5 Conclusion -- References -- 11 Internet of Things -- 11.1 Introduction -- 11.2 Definitions and status quo of the IoT -- 11.2.1 One Concept, Many Definitions -- 11.2.2 Our Definition -- 11.2.3 Early Works on the Interplay Between DE and the IoT -- 11.2.4 IoT Standards Initiatives from DE -- 11.3 Interplay Between the IoT and DE -- 11.3.1 Discoverability, Acquisition and Communication of Spatial Information -- 11.3.2 Spatial Understanding of Objects and Their Relationships -- 11.3.3 Taking Informed Actions and Acting Over the Environment (ACT) -- 11.4 Case Studies on Smart Scenarios -- 11.5 Frictions and Synergies Between the IoT and DE -- 11.5.1 Discoverability, Acquisition and Communication of Spatial Information -- 11.5.2 Spatial Understanding of Objects and Their Relationships -- 11.5.3 Taking Informed Actions and Acting Over the Environment -- 11.6 Conclusion and Outlook for the Future of the IoT in Support of DE -- References -- 12 Social Media and Social Awareness -- 12.1 Introduction: Electronic Footprints on Digital Earth -- 12.2 Multifaceted Implications of Social Media -- 12.3 Opportunities: Human Dynamics Prediction -- 12.3.1 Public Health -- 12.3.2 Emergency Response -- 12.3.3 Decision Making -- 12.3.4 Social Equity Promotion -- 12.4 Challenges: Fake Electronic Footprints -- 12.4.1 Rumors.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">12.4.2 Location Spoofing.</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources.</subfield></datafield><datafield tag="590" ind1=" " ind2=" "><subfield code="a">Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. </subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Goodchild, Michael F.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Annoni, Alessandro.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Guo, Huadong</subfield><subfield code="t">Manual of Digital Earth</subfield><subfield code="d">Singapore : Springer Singapore Pte. Limited,c2019</subfield><subfield code="z">9789813299146</subfield></datafield><datafield tag="797" ind1="2" ind2=" "><subfield code="a">ProQuest (Firm)</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=5979933</subfield><subfield code="z">Click to View</subfield></datafield></record></collection>