Cold Micro Metal Forming : : Research Report of the Collaborative Research Center Micro Cold Forming (SFB 747), Bremen, Germany.

Saved in:
Bibliographic Details
Superior document:Lecture Notes in Production Engineering Series
:
TeilnehmendeR:
Place / Publishing House:Cham : : Springer International Publishing AG,, 2019.
©2020.
Year of Publication:2019
Edition:1st ed.
Language:English
Series:Lecture Notes in Production Engineering Series
Online Access:
Physical Description:1 online resource (370 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Intro
  • Preface
  • Contents
  • Contributors
  • 1 Introduction to Collaborative Research Center Micro Cold Forming (SFB 747)
  • 1.1 Motivation
  • 1.2 Aim of the SFB 747
  • 1.3 Structure and Partners
  • 1.4 Main Results
  • 1.4.1 Innovation Speed
  • 1.4.1.1 Process Design
  • 1.4.1.2 Design of Production Systems
  • 1.4.2 Micro Mass Forming
  • 1.4.2.1 Tribology
  • 1.4.2.2 Scatter
  • 1.4.3 Mastered Production
  • 1.4.3.1 Measurement and Quality Control
  • 1.4.3.2 Handling
  • 1.4.3.3 Thermal Aspects
  • References
  • 2 Micro Forming Processes
  • 2.1 Introduction to Micro Forming Processes
  • 2.2 Generation of Functional Parts of a Component by Laser-Based Free Form Heading
  • 2.2.1 Laser Rod End Melting
  • 2.2.1.1 Thermal Upset Process
  • 2.2.1.2 Process Stages and Radiation Strategy
  • 2.2.1.3 Modeling and Simulation of the Master Process
  • 2.2.1.4 Energy Impact and Heat Dissipation Mechanisms
  • 2.2.1.5 Solidification and Microstructure
  • 2.2.1.6 Reproducibility
  • 2.2.1.7 Formability
  • 2.2.1.8 Linked Part Production
  • 2.2.2 Laser Rim Melting
  • 2.3 Rotary Swaging of Micro Parts
  • 2.3.1 Introduction
  • 2.3.2 Process Limitations and Measures for Their Extension
  • 2.3.3 Material Flow Control
  • 2.3.3.1 High Productivity in Infeed Swaging
  • 2.3.3.2 High Productivity in Plunge Rotary Swaging
  • 2.3.3.3 Application of External Axial Forces in Plunge Rotary Swaging
  • 2.3.4 Characterization of the Material Flow with FEM
  • 2.3.5 Material Modifications
  • 2.3.6 Applications and Remarks
  • 2.4 Conditioning of Part Properties
  • 2.4.1 Introduction
  • 2.4.2 Process Chain "Rotary Swaging-Extrusion"
  • 2.4.2.1 Modifications of the Die Geometry
  • 2.4.2.2 Modifications of Process Kinematics
  • 2.4.2.3 Extrusion
  • 2.4.2.4 Experimental Design
  • 2.4.3 Results and Discussion
  • 2.5 Influence of Tool Geometry on Process Stability in Micro Metal Forming.
  • 2.5.1 Introduction
  • 2.5.2 Experimental Setup
  • 2.5.3 Numerical Models
  • 2.5.4 Circular Deep Drawing
  • 2.5.5 Deep Drawing of Rectangular Parts
  • 2.5.6 Forming Limit
  • 2.5.7 Change of Scatter
  • References
  • 3 Process Design
  • 3.1 Introduction to Process Design Claus Thomy
  • 3.2 Linked Parts for Micro Cold Forming Process Chains
  • 3.2.1 Introduction
  • 3.2.2 Design and Production Planning of Linked Parts
  • 3.2.2.1 Design and Product Model of Linked Parts
  • 3.2.2.2 Production Planning
  • 3.2.2.3 Tolerance Field Widening
  • 3.2.3 Automated Production of Linked Micro Parts
  • 3.2.3.1 Handling Concept and Equipment
  • 3.2.3.2 Effects Resulting from the Production as Linked Parts
  • 3.2.3.3 Synchronization of Linked Parts
  • 3.3 A Simultaneous Engineering Method for the Development of Process Chains in Micro Manufacturing
  • 3.3.1 Introduction
  • 3.3.2 Process Planning in Micro Manufacturing
  • 3.3.3 Micro-Process Planning and Analysis (µ-ProPlAn)
  • 3.3.3.1 Modeling View: Process Chains
  • 3.3.3.2 Modeling View: Material Flow
  • 3.3.3.3 Modeling View: Configuration (Cause-Effect Networks)
  • 3.3.3.4 Basic Quantification of Cause-Effect Networks
  • 3.3.3.5 Characterization of Local Variances
  • 3.3.3.6 Simultaneous Engineering Procedure Model
  • 3.3.3.7 Geometry-Oriented Modelling of Process Chains
  • 3.3.3.8 Analysis and Model Optimization
  • References
  • 4 Tooling
  • 4.1 Introduction to Tooling
  • 4.2 Increase of Tool Life in Micro Deep Drawing
  • 4.2.1 Introduction
  • 4.2.2 Definitions
  • 4.2.2.1 Tool Life
  • 4.2.2.2 Dry Forming
  • 4.2.3 Experimental Setups
  • 4.2.3.1 Reciprocating Ball-on-Plate Test
  • 4.2.3.2 Micro Deep Drawing
  • 4.2.3.3 Combined Blanking and Deep Drawing
  • 4.2.3.4 Lateral Micro Upsetting
  • 4.2.4 Measurement Methods
  • 4.2.4.1 Confocal Microscope
  • 4.2.4.2 Negative Reproduction of Tool Geometry with Silicone.
  • 4.2.5 Materials
  • 4.2.5.1 Workpieces
  • 4.2.5.2 Tools
  • 4.2.5.3 Coatings
  • 4.2.6 Results
  • 4.2.6.1 Characteristics of Tool Wear in Micro Deep Drawing
  • 4.2.6.2 Wear Behavior of Combined Blanking and Deep Drawing Dies
  • 4.2.6.3 SLM Tool in Combined Blanking and Deep Drawing
  • 4.2.6.4 Dry Forming Processes
  • 4.2.6.5 Wear Behavior in Lateral Micro Upsetting
  • 4.3 Controlled and Scalable Laser Chemical Removal for the Manufacturing of Micro Forming Tools
  • 4.3.1 Process Fundamentals
  • 4.3.2 LCM Machines Concepts
  • 4.3.3 Influence of the Process Parameters on the Material Removal
  • 4.3.3.1 Influence of the Electrolyte
  • 4.3.3.2 Influence of the Material
  • 4.3.3.3 Influence of the Laser Parameters
  • 4.3.4 Strategies Towards a Controllable Laser Chemical Machining
  • 4.3.4.1 Modeling of Laser-Induced Temperature Fields
  • 4.3.4.2 Quality Control System for Laser Chemical Machining
  • 4.3.5 Tool Fabrication
  • 4.3.5.1 Manufacturing of Stellite 21 Micro Forming Dies
  • 4.3.5.2 Other Examples of Laser Chemically Machined Micro Tools
  • 4.3.6 Comparison with Other Micro Machining Processes
  • 4.4 Process Behavior in Laser Chemical Machining and Strategies for Industrial Use
  • 4.4.1 Introduction
  • 4.4.2 Materials and Methods
  • 4.4.3 Sustainable Electrolytes for LCM
  • 4.4.4 Strategies for Industrial Use of LCM
  • 4.4.4.1 Automatic Workpiece Alignment for JLCM
  • 4.4.4.2 In-Process Monitoring and Fast Workpiece Exchange for SLCM
  • 4.4.4.3 Demand-Oriented Multi-channel Flow in SLCM
  • 4.5 Flexible Manufacture of Tribologically Optimized Forming Tools
  • 4.5.1 Introduction
  • 4.5.2 Variation, Dispersion, and Tolerance in Inverse Problems
  • 4.5.3 Computational Engineering
  • 4.5.3.1 Process Model with Wear on Cutting Tool
  • 4.5.3.2 Numerical Implementation
  • 4.5.4 Tribologically Active Textured Surfaces.
  • 4.5.4.1 Micro-Milling to Generate Textured Surfaces
  • 4.5.4.2 Micro-Tribological Investigation
  • 4.5.4.3 Function Orientated Surface Characterization
  • 4.5.4.4 Surface Micro-Contact Modeling
  • 4.5.4.5 Inverse Modeling for Optimized Forming Die Manufacture
  • 4.6 Predictive Compensation Measures for the Prevention of Shape Deviations of Micromilled Dental Products
  • 4.6.1 Introduction
  • 4.6.2 State of the Art and Aim
  • 4.6.3 Applied Materials and Methods
  • 4.6.4 Results
  • 4.7 Thermo-Chemical-Mechanical Shaping of Diamond for Micro Forming Dies
  • 4.7.1 Principles of Diamond Machining by Using Thermo-Chemical Effect
  • 4.7.2 Ultrasonic Assisted Friction Polishing
  • 4.7.2.1 Diamond Removal by Ultrasonic Assisted Friction Polishing Using Pure Metals
  • 4.7.2.2 Experimental Results
  • 4.7.3 Micro-Structuring of Single Crystal Diamond Using Ultrasonic Assisted Friction Polishing
  • 4.7.3.1 Experimental Results
  • 4.7.3.2 Setup for Micro-Structuring Single Crystal Diamond
  • References
  • 5 Quality Control and Characterization
  • 5.1 Introduction to Quality Control and Characterization
  • 5.2 Quality Inspection and Logistic Quality Assurance of Micro Technical Manufacturing Processes
  • 5.2.1 Introduction
  • 5.2.2 Optical 3D Surface Recording of Micro Parts Using DHM
  • 5.2.2.1 Holographic Contouring
  • 5.2.2.2 Digital Holographic Microscopy
  • 5.2.3 Dimensional Inspection
  • 5.2.3.1 State of the Art
  • 5.2.3.2 Method
  • 5.2.3.3 Verification and Measurement Results
  • 5.2.4 Detection of Surface Defects
  • 5.2.4.1 State of the Art
  • 5.2.4.2 Methods
  • 5.2.4.3 Validation
  • 5.3 Inspection of Functional Surfaces on Micro Components in the Interior of Cavities
  • 5.3.1 Introduction
  • 5.3.1.1 Digital Holography
  • 5.3.1.2 Two-Wavelength Contouring
  • 5.3.1.3 Two-Frame Phase-Shifting
  • 5.3.2 Experimental Alignment
  • 5.3.2.1 Experimental Results.
  • 5.3.2.2 Comparison with X-Ray Tomography
  • 5.3.2.3 Different Batches of Material
  • 5.3.3 Automatic Defect Detection
  • 5.3.3.1 Preprocessing
  • 5.3.3.2 Part Detection
  • 5.3.3.3 Prototype Creation and Phase Unwrapping
  • 5.3.3.4 Defect Detection
  • 5.3.3.5 Detecting Loss of Focus
  • 5.3.3.6 Results
  • 5.4 In Situ Geometry Measurement Using Confocal Fluorescence Microscopy
  • 5.4.1 Challenges of Optical Metrology for In-Process and in situ Measurements
  • 5.4.2 Principle of Confocal Microscopy Based Measurement
  • 5.4.2.1 Model Assumptions
  • 5.4.2.2 Model Description
  • 5.4.3 Experimental Validation
  • 5.4.4 Uncertainty Characterization
  • 5.5 Characterization of Semi-finished Micro Products and Micro Components
  • 5.5.1 Introduction
  • 5.5.2 Equipment for Testing Micro Samples
  • 5.5.2.1 Mechanical Testing
  • 5.5.2.2 Metallographic Investigations
  • 5.5.3 Tensile Tests on Micro Samples
  • 5.5.4 Endurance Tests on Micro Samples
  • 5.5.5 Microstructure Analysis with EBSD on Rotary Swaged Samples
  • References
  • 6 Materials for Micro Forming
  • 6.1 Introduction to Materials for Micro Forming
  • 6.2 Tailored Graded Tool Materials for Micro Cold Forming via Spray Forming
  • 6.2.1 Introduction
  • 6.2.2 Production of Graded Tool Materials
  • 6.2.2.1 Materials Selection
  • 6.2.2.2 Spray Forming of Graded Tool Materials
  • 6.2.2.3 Densification of Graded Tool Materials
  • 6.2.2.4 Heat Treatment
  • 6.2.3 Evaluation of the Graded Tool Materials
  • 6.2.3.1 Co-spray-Formed Material
  • 6.2.3.2 Successive Spray-Formed Material
  • 6.2.4 Fabrication of Micro Cold Forming Tools
  • 6.2.5 Performance of Micro Forming Tools
  • 6.3 Production of Thin Sheets by Physical Vapor Deposition
  • 6.3.1 Introduction
  • 6.3.2 Methods
  • 6.3.2.1 The Magnetron Sputtering Process
  • 6.3.2.2 Separation of the Foils from the Substrate.
  • 6.3.2.3 Continuous PVD Coating Process for Thin Substrate Foils.