Cold Micro Metal Forming : : Research Report of the Collaborative Research Center Micro Cold Forming (SFB 747), Bremen, Germany.

Saved in:
Bibliographic Details
Superior document:Lecture Notes in Production Engineering Series
:
TeilnehmendeR:
Place / Publishing House:Cham : : Springer International Publishing AG,, 2019.
©2020.
Year of Publication:2019
Edition:1st ed.
Language:English
Series:Lecture Notes in Production Engineering Series
Online Access:
Physical Description:1 online resource (370 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 5005896881
ctrlnum (MiAaPQ)5005896881
(Au-PeEL)EBL5896881
(OCoLC)1132422871
collection bib_alma
record_format marc
spelling Vollertsen, Frank.
Cold Micro Metal Forming : Research Report of the Collaborative Research Center Micro Cold Forming (SFB 747), Bremen, Germany.
1st ed.
Cham : Springer International Publishing AG, 2019.
©2020.
1 online resource (370 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Lecture Notes in Production Engineering Series
Intro -- Preface -- Contents -- Contributors -- 1 Introduction to Collaborative Research Center Micro Cold Forming (SFB 747) -- 1.1 Motivation -- 1.2 Aim of the SFB 747 -- 1.3 Structure and Partners -- 1.4 Main Results -- 1.4.1 Innovation Speed -- 1.4.1.1 Process Design -- 1.4.1.2 Design of Production Systems -- 1.4.2 Micro Mass Forming -- 1.4.2.1 Tribology -- 1.4.2.2 Scatter -- 1.4.3 Mastered Production -- 1.4.3.1 Measurement and Quality Control -- 1.4.3.2 Handling -- 1.4.3.3 Thermal Aspects -- References -- 2 Micro Forming Processes -- 2.1 Introduction to Micro Forming Processes -- 2.2 Generation of Functional Parts of a Component by Laser-Based Free Form Heading -- 2.2.1 Laser Rod End Melting -- 2.2.1.1 Thermal Upset Process -- 2.2.1.2 Process Stages and Radiation Strategy -- 2.2.1.3 Modeling and Simulation of the Master Process -- 2.2.1.4 Energy Impact and Heat Dissipation Mechanisms -- 2.2.1.5 Solidification and Microstructure -- 2.2.1.6 Reproducibility -- 2.2.1.7 Formability -- 2.2.1.8 Linked Part Production -- 2.2.2 Laser Rim Melting -- 2.3 Rotary Swaging of Micro Parts -- 2.3.1 Introduction -- 2.3.2 Process Limitations and Measures for Their Extension -- 2.3.3 Material Flow Control -- 2.3.3.1 High Productivity in Infeed Swaging -- 2.3.3.2 High Productivity in Plunge Rotary Swaging -- 2.3.3.3 Application of External Axial Forces in Plunge Rotary Swaging -- 2.3.4 Characterization of the Material Flow with FEM -- 2.3.5 Material Modifications -- 2.3.6 Applications and Remarks -- 2.4 Conditioning of Part Properties -- 2.4.1 Introduction -- 2.4.2 Process Chain "Rotary Swaging-Extrusion" -- 2.4.2.1 Modifications of the Die Geometry -- 2.4.2.2 Modifications of Process Kinematics -- 2.4.2.3 Extrusion -- 2.4.2.4 Experimental Design -- 2.4.3 Results and Discussion -- 2.5 Influence of Tool Geometry on Process Stability in Micro Metal Forming.
2.5.1 Introduction -- 2.5.2 Experimental Setup -- 2.5.3 Numerical Models -- 2.5.4 Circular Deep Drawing -- 2.5.5 Deep Drawing of Rectangular Parts -- 2.5.6 Forming Limit -- 2.5.7 Change of Scatter -- References -- 3 Process Design -- 3.1 Introduction to Process Design Claus Thomy -- 3.2 Linked Parts for Micro Cold Forming Process Chains -- 3.2.1 Introduction -- 3.2.2 Design and Production Planning of Linked Parts -- 3.2.2.1 Design and Product Model of Linked Parts -- 3.2.2.2 Production Planning -- 3.2.2.3 Tolerance Field Widening -- 3.2.3 Automated Production of Linked Micro Parts -- 3.2.3.1 Handling Concept and Equipment -- 3.2.3.2 Effects Resulting from the Production as Linked Parts -- 3.2.3.3 Synchronization of Linked Parts -- 3.3 A Simultaneous Engineering Method for the Development of Process Chains in Micro Manufacturing -- 3.3.1 Introduction -- 3.3.2 Process Planning in Micro Manufacturing -- 3.3.3 Micro-Process Planning and Analysis (µ-ProPlAn) -- 3.3.3.1 Modeling View: Process Chains -- 3.3.3.2 Modeling View: Material Flow -- 3.3.3.3 Modeling View: Configuration (Cause-Effect Networks) -- 3.3.3.4 Basic Quantification of Cause-Effect Networks -- 3.3.3.5 Characterization of Local Variances -- 3.3.3.6 Simultaneous Engineering Procedure Model -- 3.3.3.7 Geometry-Oriented Modelling of Process Chains -- 3.3.3.8 Analysis and Model Optimization -- References -- 4 Tooling -- 4.1 Introduction to Tooling -- 4.2 Increase of Tool Life in Micro Deep Drawing -- 4.2.1 Introduction -- 4.2.2 Definitions -- 4.2.2.1 Tool Life -- 4.2.2.2 Dry Forming -- 4.2.3 Experimental Setups -- 4.2.3.1 Reciprocating Ball-on-Plate Test -- 4.2.3.2 Micro Deep Drawing -- 4.2.3.3 Combined Blanking and Deep Drawing -- 4.2.3.4 Lateral Micro Upsetting -- 4.2.4 Measurement Methods -- 4.2.4.1 Confocal Microscope -- 4.2.4.2 Negative Reproduction of Tool Geometry with Silicone.
4.2.5 Materials -- 4.2.5.1 Workpieces -- 4.2.5.2 Tools -- 4.2.5.3 Coatings -- 4.2.6 Results -- 4.2.6.1 Characteristics of Tool Wear in Micro Deep Drawing -- 4.2.6.2 Wear Behavior of Combined Blanking and Deep Drawing Dies -- 4.2.6.3 SLM Tool in Combined Blanking and Deep Drawing -- 4.2.6.4 Dry Forming Processes -- 4.2.6.5 Wear Behavior in Lateral Micro Upsetting -- 4.3 Controlled and Scalable Laser Chemical Removal for the Manufacturing of Micro Forming Tools -- 4.3.1 Process Fundamentals -- 4.3.2 LCM Machines Concepts -- 4.3.3 Influence of the Process Parameters on the Material Removal -- 4.3.3.1 Influence of the Electrolyte -- 4.3.3.2 Influence of the Material -- 4.3.3.3 Influence of the Laser Parameters -- 4.3.4 Strategies Towards a Controllable Laser Chemical Machining -- 4.3.4.1 Modeling of Laser-Induced Temperature Fields -- 4.3.4.2 Quality Control System for Laser Chemical Machining -- 4.3.5 Tool Fabrication -- 4.3.5.1 Manufacturing of Stellite 21 Micro Forming Dies -- 4.3.5.2 Other Examples of Laser Chemically Machined Micro Tools -- 4.3.6 Comparison with Other Micro Machining Processes -- 4.4 Process Behavior in Laser Chemical Machining and Strategies for Industrial Use -- 4.4.1 Introduction -- 4.4.2 Materials and Methods -- 4.4.3 Sustainable Electrolytes for LCM -- 4.4.4 Strategies for Industrial Use of LCM -- 4.4.4.1 Automatic Workpiece Alignment for JLCM -- 4.4.4.2 In-Process Monitoring and Fast Workpiece Exchange for SLCM -- 4.4.4.3 Demand-Oriented Multi-channel Flow in SLCM -- 4.5 Flexible Manufacture of Tribologically Optimized Forming Tools -- 4.5.1 Introduction -- 4.5.2 Variation, Dispersion, and Tolerance in Inverse Problems -- 4.5.3 Computational Engineering -- 4.5.3.1 Process Model with Wear on Cutting Tool -- 4.5.3.2 Numerical Implementation -- 4.5.4 Tribologically Active Textured Surfaces.
4.5.4.1 Micro-Milling to Generate Textured Surfaces -- 4.5.4.2 Micro-Tribological Investigation -- 4.5.4.3 Function Orientated Surface Characterization -- 4.5.4.4 Surface Micro-Contact Modeling -- 4.5.4.5 Inverse Modeling for Optimized Forming Die Manufacture -- 4.6 Predictive Compensation Measures for the Prevention of Shape Deviations of Micromilled Dental Products -- 4.6.1 Introduction -- 4.6.2 State of the Art and Aim -- 4.6.3 Applied Materials and Methods -- 4.6.4 Results -- 4.7 Thermo-Chemical-Mechanical Shaping of Diamond for Micro Forming Dies -- 4.7.1 Principles of Diamond Machining by Using Thermo-Chemical Effect -- 4.7.2 Ultrasonic Assisted Friction Polishing -- 4.7.2.1 Diamond Removal by Ultrasonic Assisted Friction Polishing Using Pure Metals -- 4.7.2.2 Experimental Results -- 4.7.3 Micro-Structuring of Single Crystal Diamond Using Ultrasonic Assisted Friction Polishing -- 4.7.3.1 Experimental Results -- 4.7.3.2 Setup for Micro-Structuring Single Crystal Diamond -- References -- 5 Quality Control and Characterization -- 5.1 Introduction to Quality Control and Characterization -- 5.2 Quality Inspection and Logistic Quality Assurance of Micro Technical Manufacturing Processes -- 5.2.1 Introduction -- 5.2.2 Optical 3D Surface Recording of Micro Parts Using DHM -- 5.2.2.1 Holographic Contouring -- 5.2.2.2 Digital Holographic Microscopy -- 5.2.3 Dimensional Inspection -- 5.2.3.1 State of the Art -- 5.2.3.2 Method -- 5.2.3.3 Verification and Measurement Results -- 5.2.4 Detection of Surface Defects -- 5.2.4.1 State of the Art -- 5.2.4.2 Methods -- 5.2.4.3 Validation -- 5.3 Inspection of Functional Surfaces on Micro Components in the Interior of Cavities -- 5.3.1 Introduction -- 5.3.1.1 Digital Holography -- 5.3.1.2 Two-Wavelength Contouring -- 5.3.1.3 Two-Frame Phase-Shifting -- 5.3.2 Experimental Alignment -- 5.3.2.1 Experimental Results.
5.3.2.2 Comparison with X-Ray Tomography -- 5.3.2.3 Different Batches of Material -- 5.3.3 Automatic Defect Detection -- 5.3.3.1 Preprocessing -- 5.3.3.2 Part Detection -- 5.3.3.3 Prototype Creation and Phase Unwrapping -- 5.3.3.4 Defect Detection -- 5.3.3.5 Detecting Loss of Focus -- 5.3.3.6 Results -- 5.4 In Situ Geometry Measurement Using Confocal Fluorescence Microscopy -- 5.4.1 Challenges of Optical Metrology for In-Process and in situ Measurements -- 5.4.2 Principle of Confocal Microscopy Based Measurement -- 5.4.2.1 Model Assumptions -- 5.4.2.2 Model Description -- 5.4.3 Experimental Validation -- 5.4.4 Uncertainty Characterization -- 5.5 Characterization of Semi-finished Micro Products and Micro Components -- 5.5.1 Introduction -- 5.5.2 Equipment for Testing Micro Samples -- 5.5.2.1 Mechanical Testing -- 5.5.2.2 Metallographic Investigations -- 5.5.3 Tensile Tests on Micro Samples -- 5.5.4 Endurance Tests on Micro Samples -- 5.5.5 Microstructure Analysis with EBSD on Rotary Swaged Samples -- References -- 6 Materials for Micro Forming -- 6.1 Introduction to Materials for Micro Forming -- 6.2 Tailored Graded Tool Materials for Micro Cold Forming via Spray Forming -- 6.2.1 Introduction -- 6.2.2 Production of Graded Tool Materials -- 6.2.2.1 Materials Selection -- 6.2.2.2 Spray Forming of Graded Tool Materials -- 6.2.2.3 Densification of Graded Tool Materials -- 6.2.2.4 Heat Treatment -- 6.2.3 Evaluation of the Graded Tool Materials -- 6.2.3.1 Co-spray-Formed Material -- 6.2.3.2 Successive Spray-Formed Material -- 6.2.4 Fabrication of Micro Cold Forming Tools -- 6.2.5 Performance of Micro Forming Tools -- 6.3 Production of Thin Sheets by Physical Vapor Deposition -- 6.3.1 Introduction -- 6.3.2 Methods -- 6.3.2.1 The Magnetron Sputtering Process -- 6.3.2.2 Separation of the Foils from the Substrate.
6.3.2.3 Continuous PVD Coating Process for Thin Substrate Foils.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic books.
Friedrich, Sybille.
Kuhfuß, Bernd.
Maaß, Peter.
Thomy, Claus.
Zoch, Hans-Werner.
Print version: Vollertsen, Frank Cold Micro Metal Forming Cham : Springer International Publishing AG,c2019 9783030112790
ProQuest (Firm)
https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=5896881 Click to View
language English
format eBook
author Vollertsen, Frank.
spellingShingle Vollertsen, Frank.
Cold Micro Metal Forming : Research Report of the Collaborative Research Center Micro Cold Forming (SFB 747), Bremen, Germany.
Lecture Notes in Production Engineering Series
Intro -- Preface -- Contents -- Contributors -- 1 Introduction to Collaborative Research Center Micro Cold Forming (SFB 747) -- 1.1 Motivation -- 1.2 Aim of the SFB 747 -- 1.3 Structure and Partners -- 1.4 Main Results -- 1.4.1 Innovation Speed -- 1.4.1.1 Process Design -- 1.4.1.2 Design of Production Systems -- 1.4.2 Micro Mass Forming -- 1.4.2.1 Tribology -- 1.4.2.2 Scatter -- 1.4.3 Mastered Production -- 1.4.3.1 Measurement and Quality Control -- 1.4.3.2 Handling -- 1.4.3.3 Thermal Aspects -- References -- 2 Micro Forming Processes -- 2.1 Introduction to Micro Forming Processes -- 2.2 Generation of Functional Parts of a Component by Laser-Based Free Form Heading -- 2.2.1 Laser Rod End Melting -- 2.2.1.1 Thermal Upset Process -- 2.2.1.2 Process Stages and Radiation Strategy -- 2.2.1.3 Modeling and Simulation of the Master Process -- 2.2.1.4 Energy Impact and Heat Dissipation Mechanisms -- 2.2.1.5 Solidification and Microstructure -- 2.2.1.6 Reproducibility -- 2.2.1.7 Formability -- 2.2.1.8 Linked Part Production -- 2.2.2 Laser Rim Melting -- 2.3 Rotary Swaging of Micro Parts -- 2.3.1 Introduction -- 2.3.2 Process Limitations and Measures for Their Extension -- 2.3.3 Material Flow Control -- 2.3.3.1 High Productivity in Infeed Swaging -- 2.3.3.2 High Productivity in Plunge Rotary Swaging -- 2.3.3.3 Application of External Axial Forces in Plunge Rotary Swaging -- 2.3.4 Characterization of the Material Flow with FEM -- 2.3.5 Material Modifications -- 2.3.6 Applications and Remarks -- 2.4 Conditioning of Part Properties -- 2.4.1 Introduction -- 2.4.2 Process Chain "Rotary Swaging-Extrusion" -- 2.4.2.1 Modifications of the Die Geometry -- 2.4.2.2 Modifications of Process Kinematics -- 2.4.2.3 Extrusion -- 2.4.2.4 Experimental Design -- 2.4.3 Results and Discussion -- 2.5 Influence of Tool Geometry on Process Stability in Micro Metal Forming.
2.5.1 Introduction -- 2.5.2 Experimental Setup -- 2.5.3 Numerical Models -- 2.5.4 Circular Deep Drawing -- 2.5.5 Deep Drawing of Rectangular Parts -- 2.5.6 Forming Limit -- 2.5.7 Change of Scatter -- References -- 3 Process Design -- 3.1 Introduction to Process Design Claus Thomy -- 3.2 Linked Parts for Micro Cold Forming Process Chains -- 3.2.1 Introduction -- 3.2.2 Design and Production Planning of Linked Parts -- 3.2.2.1 Design and Product Model of Linked Parts -- 3.2.2.2 Production Planning -- 3.2.2.3 Tolerance Field Widening -- 3.2.3 Automated Production of Linked Micro Parts -- 3.2.3.1 Handling Concept and Equipment -- 3.2.3.2 Effects Resulting from the Production as Linked Parts -- 3.2.3.3 Synchronization of Linked Parts -- 3.3 A Simultaneous Engineering Method for the Development of Process Chains in Micro Manufacturing -- 3.3.1 Introduction -- 3.3.2 Process Planning in Micro Manufacturing -- 3.3.3 Micro-Process Planning and Analysis (µ-ProPlAn) -- 3.3.3.1 Modeling View: Process Chains -- 3.3.3.2 Modeling View: Material Flow -- 3.3.3.3 Modeling View: Configuration (Cause-Effect Networks) -- 3.3.3.4 Basic Quantification of Cause-Effect Networks -- 3.3.3.5 Characterization of Local Variances -- 3.3.3.6 Simultaneous Engineering Procedure Model -- 3.3.3.7 Geometry-Oriented Modelling of Process Chains -- 3.3.3.8 Analysis and Model Optimization -- References -- 4 Tooling -- 4.1 Introduction to Tooling -- 4.2 Increase of Tool Life in Micro Deep Drawing -- 4.2.1 Introduction -- 4.2.2 Definitions -- 4.2.2.1 Tool Life -- 4.2.2.2 Dry Forming -- 4.2.3 Experimental Setups -- 4.2.3.1 Reciprocating Ball-on-Plate Test -- 4.2.3.2 Micro Deep Drawing -- 4.2.3.3 Combined Blanking and Deep Drawing -- 4.2.3.4 Lateral Micro Upsetting -- 4.2.4 Measurement Methods -- 4.2.4.1 Confocal Microscope -- 4.2.4.2 Negative Reproduction of Tool Geometry with Silicone.
4.2.5 Materials -- 4.2.5.1 Workpieces -- 4.2.5.2 Tools -- 4.2.5.3 Coatings -- 4.2.6 Results -- 4.2.6.1 Characteristics of Tool Wear in Micro Deep Drawing -- 4.2.6.2 Wear Behavior of Combined Blanking and Deep Drawing Dies -- 4.2.6.3 SLM Tool in Combined Blanking and Deep Drawing -- 4.2.6.4 Dry Forming Processes -- 4.2.6.5 Wear Behavior in Lateral Micro Upsetting -- 4.3 Controlled and Scalable Laser Chemical Removal for the Manufacturing of Micro Forming Tools -- 4.3.1 Process Fundamentals -- 4.3.2 LCM Machines Concepts -- 4.3.3 Influence of the Process Parameters on the Material Removal -- 4.3.3.1 Influence of the Electrolyte -- 4.3.3.2 Influence of the Material -- 4.3.3.3 Influence of the Laser Parameters -- 4.3.4 Strategies Towards a Controllable Laser Chemical Machining -- 4.3.4.1 Modeling of Laser-Induced Temperature Fields -- 4.3.4.2 Quality Control System for Laser Chemical Machining -- 4.3.5 Tool Fabrication -- 4.3.5.1 Manufacturing of Stellite 21 Micro Forming Dies -- 4.3.5.2 Other Examples of Laser Chemically Machined Micro Tools -- 4.3.6 Comparison with Other Micro Machining Processes -- 4.4 Process Behavior in Laser Chemical Machining and Strategies for Industrial Use -- 4.4.1 Introduction -- 4.4.2 Materials and Methods -- 4.4.3 Sustainable Electrolytes for LCM -- 4.4.4 Strategies for Industrial Use of LCM -- 4.4.4.1 Automatic Workpiece Alignment for JLCM -- 4.4.4.2 In-Process Monitoring and Fast Workpiece Exchange for SLCM -- 4.4.4.3 Demand-Oriented Multi-channel Flow in SLCM -- 4.5 Flexible Manufacture of Tribologically Optimized Forming Tools -- 4.5.1 Introduction -- 4.5.2 Variation, Dispersion, and Tolerance in Inverse Problems -- 4.5.3 Computational Engineering -- 4.5.3.1 Process Model with Wear on Cutting Tool -- 4.5.3.2 Numerical Implementation -- 4.5.4 Tribologically Active Textured Surfaces.
4.5.4.1 Micro-Milling to Generate Textured Surfaces -- 4.5.4.2 Micro-Tribological Investigation -- 4.5.4.3 Function Orientated Surface Characterization -- 4.5.4.4 Surface Micro-Contact Modeling -- 4.5.4.5 Inverse Modeling for Optimized Forming Die Manufacture -- 4.6 Predictive Compensation Measures for the Prevention of Shape Deviations of Micromilled Dental Products -- 4.6.1 Introduction -- 4.6.2 State of the Art and Aim -- 4.6.3 Applied Materials and Methods -- 4.6.4 Results -- 4.7 Thermo-Chemical-Mechanical Shaping of Diamond for Micro Forming Dies -- 4.7.1 Principles of Diamond Machining by Using Thermo-Chemical Effect -- 4.7.2 Ultrasonic Assisted Friction Polishing -- 4.7.2.1 Diamond Removal by Ultrasonic Assisted Friction Polishing Using Pure Metals -- 4.7.2.2 Experimental Results -- 4.7.3 Micro-Structuring of Single Crystal Diamond Using Ultrasonic Assisted Friction Polishing -- 4.7.3.1 Experimental Results -- 4.7.3.2 Setup for Micro-Structuring Single Crystal Diamond -- References -- 5 Quality Control and Characterization -- 5.1 Introduction to Quality Control and Characterization -- 5.2 Quality Inspection and Logistic Quality Assurance of Micro Technical Manufacturing Processes -- 5.2.1 Introduction -- 5.2.2 Optical 3D Surface Recording of Micro Parts Using DHM -- 5.2.2.1 Holographic Contouring -- 5.2.2.2 Digital Holographic Microscopy -- 5.2.3 Dimensional Inspection -- 5.2.3.1 State of the Art -- 5.2.3.2 Method -- 5.2.3.3 Verification and Measurement Results -- 5.2.4 Detection of Surface Defects -- 5.2.4.1 State of the Art -- 5.2.4.2 Methods -- 5.2.4.3 Validation -- 5.3 Inspection of Functional Surfaces on Micro Components in the Interior of Cavities -- 5.3.1 Introduction -- 5.3.1.1 Digital Holography -- 5.3.1.2 Two-Wavelength Contouring -- 5.3.1.3 Two-Frame Phase-Shifting -- 5.3.2 Experimental Alignment -- 5.3.2.1 Experimental Results.
5.3.2.2 Comparison with X-Ray Tomography -- 5.3.2.3 Different Batches of Material -- 5.3.3 Automatic Defect Detection -- 5.3.3.1 Preprocessing -- 5.3.3.2 Part Detection -- 5.3.3.3 Prototype Creation and Phase Unwrapping -- 5.3.3.4 Defect Detection -- 5.3.3.5 Detecting Loss of Focus -- 5.3.3.6 Results -- 5.4 In Situ Geometry Measurement Using Confocal Fluorescence Microscopy -- 5.4.1 Challenges of Optical Metrology for In-Process and in situ Measurements -- 5.4.2 Principle of Confocal Microscopy Based Measurement -- 5.4.2.1 Model Assumptions -- 5.4.2.2 Model Description -- 5.4.3 Experimental Validation -- 5.4.4 Uncertainty Characterization -- 5.5 Characterization of Semi-finished Micro Products and Micro Components -- 5.5.1 Introduction -- 5.5.2 Equipment for Testing Micro Samples -- 5.5.2.1 Mechanical Testing -- 5.5.2.2 Metallographic Investigations -- 5.5.3 Tensile Tests on Micro Samples -- 5.5.4 Endurance Tests on Micro Samples -- 5.5.5 Microstructure Analysis with EBSD on Rotary Swaged Samples -- References -- 6 Materials for Micro Forming -- 6.1 Introduction to Materials for Micro Forming -- 6.2 Tailored Graded Tool Materials for Micro Cold Forming via Spray Forming -- 6.2.1 Introduction -- 6.2.2 Production of Graded Tool Materials -- 6.2.2.1 Materials Selection -- 6.2.2.2 Spray Forming of Graded Tool Materials -- 6.2.2.3 Densification of Graded Tool Materials -- 6.2.2.4 Heat Treatment -- 6.2.3 Evaluation of the Graded Tool Materials -- 6.2.3.1 Co-spray-Formed Material -- 6.2.3.2 Successive Spray-Formed Material -- 6.2.4 Fabrication of Micro Cold Forming Tools -- 6.2.5 Performance of Micro Forming Tools -- 6.3 Production of Thin Sheets by Physical Vapor Deposition -- 6.3.1 Introduction -- 6.3.2 Methods -- 6.3.2.1 The Magnetron Sputtering Process -- 6.3.2.2 Separation of the Foils from the Substrate.
6.3.2.3 Continuous PVD Coating Process for Thin Substrate Foils.
author_facet Vollertsen, Frank.
Friedrich, Sybille.
Kuhfuß, Bernd.
Maaß, Peter.
Thomy, Claus.
Zoch, Hans-Werner.
author_variant f v fv
author2 Friedrich, Sybille.
Kuhfuß, Bernd.
Maaß, Peter.
Thomy, Claus.
Zoch, Hans-Werner.
author2_variant s f sf
b k bk
p m pm
c t ct
h w z hwz
author2_role TeilnehmendeR
TeilnehmendeR
TeilnehmendeR
TeilnehmendeR
TeilnehmendeR
author_sort Vollertsen, Frank.
title Cold Micro Metal Forming : Research Report of the Collaborative Research Center Micro Cold Forming (SFB 747), Bremen, Germany.
title_sub Research Report of the Collaborative Research Center Micro Cold Forming (SFB 747), Bremen, Germany.
title_full Cold Micro Metal Forming : Research Report of the Collaborative Research Center Micro Cold Forming (SFB 747), Bremen, Germany.
title_fullStr Cold Micro Metal Forming : Research Report of the Collaborative Research Center Micro Cold Forming (SFB 747), Bremen, Germany.
title_full_unstemmed Cold Micro Metal Forming : Research Report of the Collaborative Research Center Micro Cold Forming (SFB 747), Bremen, Germany.
title_auth Cold Micro Metal Forming : Research Report of the Collaborative Research Center Micro Cold Forming (SFB 747), Bremen, Germany.
title_new Cold Micro Metal Forming :
title_sort cold micro metal forming : research report of the collaborative research center micro cold forming (sfb 747), bremen, germany.
series Lecture Notes in Production Engineering Series
series2 Lecture Notes in Production Engineering Series
publisher Springer International Publishing AG,
publishDate 2019
physical 1 online resource (370 pages)
edition 1st ed.
contents Intro -- Preface -- Contents -- Contributors -- 1 Introduction to Collaborative Research Center Micro Cold Forming (SFB 747) -- 1.1 Motivation -- 1.2 Aim of the SFB 747 -- 1.3 Structure and Partners -- 1.4 Main Results -- 1.4.1 Innovation Speed -- 1.4.1.1 Process Design -- 1.4.1.2 Design of Production Systems -- 1.4.2 Micro Mass Forming -- 1.4.2.1 Tribology -- 1.4.2.2 Scatter -- 1.4.3 Mastered Production -- 1.4.3.1 Measurement and Quality Control -- 1.4.3.2 Handling -- 1.4.3.3 Thermal Aspects -- References -- 2 Micro Forming Processes -- 2.1 Introduction to Micro Forming Processes -- 2.2 Generation of Functional Parts of a Component by Laser-Based Free Form Heading -- 2.2.1 Laser Rod End Melting -- 2.2.1.1 Thermal Upset Process -- 2.2.1.2 Process Stages and Radiation Strategy -- 2.2.1.3 Modeling and Simulation of the Master Process -- 2.2.1.4 Energy Impact and Heat Dissipation Mechanisms -- 2.2.1.5 Solidification and Microstructure -- 2.2.1.6 Reproducibility -- 2.2.1.7 Formability -- 2.2.1.8 Linked Part Production -- 2.2.2 Laser Rim Melting -- 2.3 Rotary Swaging of Micro Parts -- 2.3.1 Introduction -- 2.3.2 Process Limitations and Measures for Their Extension -- 2.3.3 Material Flow Control -- 2.3.3.1 High Productivity in Infeed Swaging -- 2.3.3.2 High Productivity in Plunge Rotary Swaging -- 2.3.3.3 Application of External Axial Forces in Plunge Rotary Swaging -- 2.3.4 Characterization of the Material Flow with FEM -- 2.3.5 Material Modifications -- 2.3.6 Applications and Remarks -- 2.4 Conditioning of Part Properties -- 2.4.1 Introduction -- 2.4.2 Process Chain "Rotary Swaging-Extrusion" -- 2.4.2.1 Modifications of the Die Geometry -- 2.4.2.2 Modifications of Process Kinematics -- 2.4.2.3 Extrusion -- 2.4.2.4 Experimental Design -- 2.4.3 Results and Discussion -- 2.5 Influence of Tool Geometry on Process Stability in Micro Metal Forming.
2.5.1 Introduction -- 2.5.2 Experimental Setup -- 2.5.3 Numerical Models -- 2.5.4 Circular Deep Drawing -- 2.5.5 Deep Drawing of Rectangular Parts -- 2.5.6 Forming Limit -- 2.5.7 Change of Scatter -- References -- 3 Process Design -- 3.1 Introduction to Process Design Claus Thomy -- 3.2 Linked Parts for Micro Cold Forming Process Chains -- 3.2.1 Introduction -- 3.2.2 Design and Production Planning of Linked Parts -- 3.2.2.1 Design and Product Model of Linked Parts -- 3.2.2.2 Production Planning -- 3.2.2.3 Tolerance Field Widening -- 3.2.3 Automated Production of Linked Micro Parts -- 3.2.3.1 Handling Concept and Equipment -- 3.2.3.2 Effects Resulting from the Production as Linked Parts -- 3.2.3.3 Synchronization of Linked Parts -- 3.3 A Simultaneous Engineering Method for the Development of Process Chains in Micro Manufacturing -- 3.3.1 Introduction -- 3.3.2 Process Planning in Micro Manufacturing -- 3.3.3 Micro-Process Planning and Analysis (µ-ProPlAn) -- 3.3.3.1 Modeling View: Process Chains -- 3.3.3.2 Modeling View: Material Flow -- 3.3.3.3 Modeling View: Configuration (Cause-Effect Networks) -- 3.3.3.4 Basic Quantification of Cause-Effect Networks -- 3.3.3.5 Characterization of Local Variances -- 3.3.3.6 Simultaneous Engineering Procedure Model -- 3.3.3.7 Geometry-Oriented Modelling of Process Chains -- 3.3.3.8 Analysis and Model Optimization -- References -- 4 Tooling -- 4.1 Introduction to Tooling -- 4.2 Increase of Tool Life in Micro Deep Drawing -- 4.2.1 Introduction -- 4.2.2 Definitions -- 4.2.2.1 Tool Life -- 4.2.2.2 Dry Forming -- 4.2.3 Experimental Setups -- 4.2.3.1 Reciprocating Ball-on-Plate Test -- 4.2.3.2 Micro Deep Drawing -- 4.2.3.3 Combined Blanking and Deep Drawing -- 4.2.3.4 Lateral Micro Upsetting -- 4.2.4 Measurement Methods -- 4.2.4.1 Confocal Microscope -- 4.2.4.2 Negative Reproduction of Tool Geometry with Silicone.
4.2.5 Materials -- 4.2.5.1 Workpieces -- 4.2.5.2 Tools -- 4.2.5.3 Coatings -- 4.2.6 Results -- 4.2.6.1 Characteristics of Tool Wear in Micro Deep Drawing -- 4.2.6.2 Wear Behavior of Combined Blanking and Deep Drawing Dies -- 4.2.6.3 SLM Tool in Combined Blanking and Deep Drawing -- 4.2.6.4 Dry Forming Processes -- 4.2.6.5 Wear Behavior in Lateral Micro Upsetting -- 4.3 Controlled and Scalable Laser Chemical Removal for the Manufacturing of Micro Forming Tools -- 4.3.1 Process Fundamentals -- 4.3.2 LCM Machines Concepts -- 4.3.3 Influence of the Process Parameters on the Material Removal -- 4.3.3.1 Influence of the Electrolyte -- 4.3.3.2 Influence of the Material -- 4.3.3.3 Influence of the Laser Parameters -- 4.3.4 Strategies Towards a Controllable Laser Chemical Machining -- 4.3.4.1 Modeling of Laser-Induced Temperature Fields -- 4.3.4.2 Quality Control System for Laser Chemical Machining -- 4.3.5 Tool Fabrication -- 4.3.5.1 Manufacturing of Stellite 21 Micro Forming Dies -- 4.3.5.2 Other Examples of Laser Chemically Machined Micro Tools -- 4.3.6 Comparison with Other Micro Machining Processes -- 4.4 Process Behavior in Laser Chemical Machining and Strategies for Industrial Use -- 4.4.1 Introduction -- 4.4.2 Materials and Methods -- 4.4.3 Sustainable Electrolytes for LCM -- 4.4.4 Strategies for Industrial Use of LCM -- 4.4.4.1 Automatic Workpiece Alignment for JLCM -- 4.4.4.2 In-Process Monitoring and Fast Workpiece Exchange for SLCM -- 4.4.4.3 Demand-Oriented Multi-channel Flow in SLCM -- 4.5 Flexible Manufacture of Tribologically Optimized Forming Tools -- 4.5.1 Introduction -- 4.5.2 Variation, Dispersion, and Tolerance in Inverse Problems -- 4.5.3 Computational Engineering -- 4.5.3.1 Process Model with Wear on Cutting Tool -- 4.5.3.2 Numerical Implementation -- 4.5.4 Tribologically Active Textured Surfaces.
4.5.4.1 Micro-Milling to Generate Textured Surfaces -- 4.5.4.2 Micro-Tribological Investigation -- 4.5.4.3 Function Orientated Surface Characterization -- 4.5.4.4 Surface Micro-Contact Modeling -- 4.5.4.5 Inverse Modeling for Optimized Forming Die Manufacture -- 4.6 Predictive Compensation Measures for the Prevention of Shape Deviations of Micromilled Dental Products -- 4.6.1 Introduction -- 4.6.2 State of the Art and Aim -- 4.6.3 Applied Materials and Methods -- 4.6.4 Results -- 4.7 Thermo-Chemical-Mechanical Shaping of Diamond for Micro Forming Dies -- 4.7.1 Principles of Diamond Machining by Using Thermo-Chemical Effect -- 4.7.2 Ultrasonic Assisted Friction Polishing -- 4.7.2.1 Diamond Removal by Ultrasonic Assisted Friction Polishing Using Pure Metals -- 4.7.2.2 Experimental Results -- 4.7.3 Micro-Structuring of Single Crystal Diamond Using Ultrasonic Assisted Friction Polishing -- 4.7.3.1 Experimental Results -- 4.7.3.2 Setup for Micro-Structuring Single Crystal Diamond -- References -- 5 Quality Control and Characterization -- 5.1 Introduction to Quality Control and Characterization -- 5.2 Quality Inspection and Logistic Quality Assurance of Micro Technical Manufacturing Processes -- 5.2.1 Introduction -- 5.2.2 Optical 3D Surface Recording of Micro Parts Using DHM -- 5.2.2.1 Holographic Contouring -- 5.2.2.2 Digital Holographic Microscopy -- 5.2.3 Dimensional Inspection -- 5.2.3.1 State of the Art -- 5.2.3.2 Method -- 5.2.3.3 Verification and Measurement Results -- 5.2.4 Detection of Surface Defects -- 5.2.4.1 State of the Art -- 5.2.4.2 Methods -- 5.2.4.3 Validation -- 5.3 Inspection of Functional Surfaces on Micro Components in the Interior of Cavities -- 5.3.1 Introduction -- 5.3.1.1 Digital Holography -- 5.3.1.2 Two-Wavelength Contouring -- 5.3.1.3 Two-Frame Phase-Shifting -- 5.3.2 Experimental Alignment -- 5.3.2.1 Experimental Results.
5.3.2.2 Comparison with X-Ray Tomography -- 5.3.2.3 Different Batches of Material -- 5.3.3 Automatic Defect Detection -- 5.3.3.1 Preprocessing -- 5.3.3.2 Part Detection -- 5.3.3.3 Prototype Creation and Phase Unwrapping -- 5.3.3.4 Defect Detection -- 5.3.3.5 Detecting Loss of Focus -- 5.3.3.6 Results -- 5.4 In Situ Geometry Measurement Using Confocal Fluorescence Microscopy -- 5.4.1 Challenges of Optical Metrology for In-Process and in situ Measurements -- 5.4.2 Principle of Confocal Microscopy Based Measurement -- 5.4.2.1 Model Assumptions -- 5.4.2.2 Model Description -- 5.4.3 Experimental Validation -- 5.4.4 Uncertainty Characterization -- 5.5 Characterization of Semi-finished Micro Products and Micro Components -- 5.5.1 Introduction -- 5.5.2 Equipment for Testing Micro Samples -- 5.5.2.1 Mechanical Testing -- 5.5.2.2 Metallographic Investigations -- 5.5.3 Tensile Tests on Micro Samples -- 5.5.4 Endurance Tests on Micro Samples -- 5.5.5 Microstructure Analysis with EBSD on Rotary Swaged Samples -- References -- 6 Materials for Micro Forming -- 6.1 Introduction to Materials for Micro Forming -- 6.2 Tailored Graded Tool Materials for Micro Cold Forming via Spray Forming -- 6.2.1 Introduction -- 6.2.2 Production of Graded Tool Materials -- 6.2.2.1 Materials Selection -- 6.2.2.2 Spray Forming of Graded Tool Materials -- 6.2.2.3 Densification of Graded Tool Materials -- 6.2.2.4 Heat Treatment -- 6.2.3 Evaluation of the Graded Tool Materials -- 6.2.3.1 Co-spray-Formed Material -- 6.2.3.2 Successive Spray-Formed Material -- 6.2.4 Fabrication of Micro Cold Forming Tools -- 6.2.5 Performance of Micro Forming Tools -- 6.3 Production of Thin Sheets by Physical Vapor Deposition -- 6.3.1 Introduction -- 6.3.2 Methods -- 6.3.2.1 The Magnetron Sputtering Process -- 6.3.2.2 Separation of the Foils from the Substrate.
6.3.2.3 Continuous PVD Coating Process for Thin Substrate Foils.
isbn 9783030112806
9783030112790
callnumber-first T - Technology
callnumber-subject TS - Manufactures
callnumber-label TS1-2301
callnumber-sort TS 11 42301
genre Electronic books.
genre_facet Electronic books.
url https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=5896881
illustrated Not Illustrated
oclc_num 1132422871
work_keys_str_mv AT vollertsenfrank coldmicrometalformingresearchreportofthecollaborativeresearchcentermicrocoldformingsfb747bremengermany
AT friedrichsybille coldmicrometalformingresearchreportofthecollaborativeresearchcentermicrocoldformingsfb747bremengermany
AT kuhfußbernd coldmicrometalformingresearchreportofthecollaborativeresearchcentermicrocoldformingsfb747bremengermany
AT maaßpeter coldmicrometalformingresearchreportofthecollaborativeresearchcentermicrocoldformingsfb747bremengermany
AT thomyclaus coldmicrometalformingresearchreportofthecollaborativeresearchcentermicrocoldformingsfb747bremengermany
AT zochhanswerner coldmicrometalformingresearchreportofthecollaborativeresearchcentermicrocoldformingsfb747bremengermany
status_str n
ids_txt_mv (MiAaPQ)5005896881
(Au-PeEL)EBL5896881
(OCoLC)1132422871
carrierType_str_mv cr
hierarchy_parent_title Lecture Notes in Production Engineering Series
is_hierarchy_title Cold Micro Metal Forming : Research Report of the Collaborative Research Center Micro Cold Forming (SFB 747), Bremen, Germany.
container_title Lecture Notes in Production Engineering Series
author2_original_writing_str_mv noLinkedField
noLinkedField
noLinkedField
noLinkedField
noLinkedField
marc_error Info : MARC8 translation shorter than ISO-8859-1, choosing MARC8. --- [ 856 : z ]
_version_ 1792331056413671424
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>11284nam a22005173i 4500</leader><controlfield tag="001">5005896881</controlfield><controlfield tag="003">MiAaPQ</controlfield><controlfield tag="005">20240229073832.0</controlfield><controlfield tag="006">m o d | </controlfield><controlfield tag="007">cr cnu||||||||</controlfield><controlfield tag="008">240229s2019 xx o ||||0 eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783030112806</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783030112790</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(MiAaPQ)5005896881</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(Au-PeEL)EBL5896881</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1132422871</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">MiAaPQ</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">MiAaPQ</subfield><subfield code="d">MiAaPQ</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">TS1-2301</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Vollertsen, Frank.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Cold Micro Metal Forming :</subfield><subfield code="b">Research Report of the Collaborative Research Center Micro Cold Forming (SFB 747), Bremen, Germany.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham :</subfield><subfield code="b">Springer International Publishing AG,</subfield><subfield code="c">2019.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2020.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (370 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture Notes in Production Engineering Series</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Intro -- Preface -- Contents -- Contributors -- 1 Introduction to Collaborative Research Center Micro Cold Forming (SFB 747) -- 1.1 Motivation -- 1.2 Aim of the SFB 747 -- 1.3 Structure and Partners -- 1.4 Main Results -- 1.4.1 Innovation Speed -- 1.4.1.1 Process Design -- 1.4.1.2 Design of Production Systems -- 1.4.2 Micro Mass Forming -- 1.4.2.1 Tribology -- 1.4.2.2 Scatter -- 1.4.3 Mastered Production -- 1.4.3.1 Measurement and Quality Control -- 1.4.3.2 Handling -- 1.4.3.3 Thermal Aspects -- References -- 2 Micro Forming Processes -- 2.1 Introduction to Micro Forming Processes -- 2.2 Generation of Functional Parts of a Component by Laser-Based Free Form Heading -- 2.2.1 Laser Rod End Melting -- 2.2.1.1 Thermal Upset Process -- 2.2.1.2 Process Stages and Radiation Strategy -- 2.2.1.3 Modeling and Simulation of the Master Process -- 2.2.1.4 Energy Impact and Heat Dissipation Mechanisms -- 2.2.1.5 Solidification and Microstructure -- 2.2.1.6 Reproducibility -- 2.2.1.7 Formability -- 2.2.1.8 Linked Part Production -- 2.2.2 Laser Rim Melting -- 2.3 Rotary Swaging of Micro Parts -- 2.3.1 Introduction -- 2.3.2 Process Limitations and Measures for Their Extension -- 2.3.3 Material Flow Control -- 2.3.3.1 High Productivity in Infeed Swaging -- 2.3.3.2 High Productivity in Plunge Rotary Swaging -- 2.3.3.3 Application of External Axial Forces in Plunge Rotary Swaging -- 2.3.4 Characterization of the Material Flow with FEM -- 2.3.5 Material Modifications -- 2.3.6 Applications and Remarks -- 2.4 Conditioning of Part Properties -- 2.4.1 Introduction -- 2.4.2 Process Chain "Rotary Swaging-Extrusion" -- 2.4.2.1 Modifications of the Die Geometry -- 2.4.2.2 Modifications of Process Kinematics -- 2.4.2.3 Extrusion -- 2.4.2.4 Experimental Design -- 2.4.3 Results and Discussion -- 2.5 Influence of Tool Geometry on Process Stability in Micro Metal Forming.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.5.1 Introduction -- 2.5.2 Experimental Setup -- 2.5.3 Numerical Models -- 2.5.4 Circular Deep Drawing -- 2.5.5 Deep Drawing of Rectangular Parts -- 2.5.6 Forming Limit -- 2.5.7 Change of Scatter -- References -- 3 Process Design -- 3.1 Introduction to Process Design Claus Thomy -- 3.2 Linked Parts for Micro Cold Forming Process Chains -- 3.2.1 Introduction -- 3.2.2 Design and Production Planning of Linked Parts -- 3.2.2.1 Design and Product Model of Linked Parts -- 3.2.2.2 Production Planning -- 3.2.2.3 Tolerance Field Widening -- 3.2.3 Automated Production of Linked Micro Parts -- 3.2.3.1 Handling Concept and Equipment -- 3.2.3.2 Effects Resulting from the Production as Linked Parts -- 3.2.3.3 Synchronization of Linked Parts -- 3.3 A Simultaneous Engineering Method for the Development of Process Chains in Micro Manufacturing -- 3.3.1 Introduction -- 3.3.2 Process Planning in Micro Manufacturing -- 3.3.3 Micro-Process Planning and Analysis (µ-ProPlAn) -- 3.3.3.1 Modeling View: Process Chains -- 3.3.3.2 Modeling View: Material Flow -- 3.3.3.3 Modeling View: Configuration (Cause-Effect Networks) -- 3.3.3.4 Basic Quantification of Cause-Effect Networks -- 3.3.3.5 Characterization of Local Variances -- 3.3.3.6 Simultaneous Engineering Procedure Model -- 3.3.3.7 Geometry-Oriented Modelling of Process Chains -- 3.3.3.8 Analysis and Model Optimization -- References -- 4 Tooling -- 4.1 Introduction to Tooling -- 4.2 Increase of Tool Life in Micro Deep Drawing -- 4.2.1 Introduction -- 4.2.2 Definitions -- 4.2.2.1 Tool Life -- 4.2.2.2 Dry Forming -- 4.2.3 Experimental Setups -- 4.2.3.1 Reciprocating Ball-on-Plate Test -- 4.2.3.2 Micro Deep Drawing -- 4.2.3.3 Combined Blanking and Deep Drawing -- 4.2.3.4 Lateral Micro Upsetting -- 4.2.4 Measurement Methods -- 4.2.4.1 Confocal Microscope -- 4.2.4.2 Negative Reproduction of Tool Geometry with Silicone.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.2.5 Materials -- 4.2.5.1 Workpieces -- 4.2.5.2 Tools -- 4.2.5.3 Coatings -- 4.2.6 Results -- 4.2.6.1 Characteristics of Tool Wear in Micro Deep Drawing -- 4.2.6.2 Wear Behavior of Combined Blanking and Deep Drawing Dies -- 4.2.6.3 SLM Tool in Combined Blanking and Deep Drawing -- 4.2.6.4 Dry Forming Processes -- 4.2.6.5 Wear Behavior in Lateral Micro Upsetting -- 4.3 Controlled and Scalable Laser Chemical Removal for the Manufacturing of Micro Forming Tools -- 4.3.1 Process Fundamentals -- 4.3.2 LCM Machines Concepts -- 4.3.3 Influence of the Process Parameters on the Material Removal -- 4.3.3.1 Influence of the Electrolyte -- 4.3.3.2 Influence of the Material -- 4.3.3.3 Influence of the Laser Parameters -- 4.3.4 Strategies Towards a Controllable Laser Chemical Machining -- 4.3.4.1 Modeling of Laser-Induced Temperature Fields -- 4.3.4.2 Quality Control System for Laser Chemical Machining -- 4.3.5 Tool Fabrication -- 4.3.5.1 Manufacturing of Stellite 21 Micro Forming Dies -- 4.3.5.2 Other Examples of Laser Chemically Machined Micro Tools -- 4.3.6 Comparison with Other Micro Machining Processes -- 4.4 Process Behavior in Laser Chemical Machining and Strategies for Industrial Use -- 4.4.1 Introduction -- 4.4.2 Materials and Methods -- 4.4.3 Sustainable Electrolytes for LCM -- 4.4.4 Strategies for Industrial Use of LCM -- 4.4.4.1 Automatic Workpiece Alignment for JLCM -- 4.4.4.2 In-Process Monitoring and Fast Workpiece Exchange for SLCM -- 4.4.4.3 Demand-Oriented Multi-channel Flow in SLCM -- 4.5 Flexible Manufacture of Tribologically Optimized Forming Tools -- 4.5.1 Introduction -- 4.5.2 Variation, Dispersion, and Tolerance in Inverse Problems -- 4.5.3 Computational Engineering -- 4.5.3.1 Process Model with Wear on Cutting Tool -- 4.5.3.2 Numerical Implementation -- 4.5.4 Tribologically Active Textured Surfaces.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.5.4.1 Micro-Milling to Generate Textured Surfaces -- 4.5.4.2 Micro-Tribological Investigation -- 4.5.4.3 Function Orientated Surface Characterization -- 4.5.4.4 Surface Micro-Contact Modeling -- 4.5.4.5 Inverse Modeling for Optimized Forming Die Manufacture -- 4.6 Predictive Compensation Measures for the Prevention of Shape Deviations of Micromilled Dental Products -- 4.6.1 Introduction -- 4.6.2 State of the Art and Aim -- 4.6.3 Applied Materials and Methods -- 4.6.4 Results -- 4.7 Thermo-Chemical-Mechanical Shaping of Diamond for Micro Forming Dies -- 4.7.1 Principles of Diamond Machining by Using Thermo-Chemical Effect -- 4.7.2 Ultrasonic Assisted Friction Polishing -- 4.7.2.1 Diamond Removal by Ultrasonic Assisted Friction Polishing Using Pure Metals -- 4.7.2.2 Experimental Results -- 4.7.3 Micro-Structuring of Single Crystal Diamond Using Ultrasonic Assisted Friction Polishing -- 4.7.3.1 Experimental Results -- 4.7.3.2 Setup for Micro-Structuring Single Crystal Diamond -- References -- 5 Quality Control and Characterization -- 5.1 Introduction to Quality Control and Characterization -- 5.2 Quality Inspection and Logistic Quality Assurance of Micro Technical Manufacturing Processes -- 5.2.1 Introduction -- 5.2.2 Optical 3D Surface Recording of Micro Parts Using DHM -- 5.2.2.1 Holographic Contouring -- 5.2.2.2 Digital Holographic Microscopy -- 5.2.3 Dimensional Inspection -- 5.2.3.1 State of the Art -- 5.2.3.2 Method -- 5.2.3.3 Verification and Measurement Results -- 5.2.4 Detection of Surface Defects -- 5.2.4.1 State of the Art -- 5.2.4.2 Methods -- 5.2.4.3 Validation -- 5.3 Inspection of Functional Surfaces on Micro Components in the Interior of Cavities -- 5.3.1 Introduction -- 5.3.1.1 Digital Holography -- 5.3.1.2 Two-Wavelength Contouring -- 5.3.1.3 Two-Frame Phase-Shifting -- 5.3.2 Experimental Alignment -- 5.3.2.1 Experimental Results.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.3.2.2 Comparison with X-Ray Tomography -- 5.3.2.3 Different Batches of Material -- 5.3.3 Automatic Defect Detection -- 5.3.3.1 Preprocessing -- 5.3.3.2 Part Detection -- 5.3.3.3 Prototype Creation and Phase Unwrapping -- 5.3.3.4 Defect Detection -- 5.3.3.5 Detecting Loss of Focus -- 5.3.3.6 Results -- 5.4 In Situ Geometry Measurement Using Confocal Fluorescence Microscopy -- 5.4.1 Challenges of Optical Metrology for In-Process and in situ Measurements -- 5.4.2 Principle of Confocal Microscopy Based Measurement -- 5.4.2.1 Model Assumptions -- 5.4.2.2 Model Description -- 5.4.3 Experimental Validation -- 5.4.4 Uncertainty Characterization -- 5.5 Characterization of Semi-finished Micro Products and Micro Components -- 5.5.1 Introduction -- 5.5.2 Equipment for Testing Micro Samples -- 5.5.2.1 Mechanical Testing -- 5.5.2.2 Metallographic Investigations -- 5.5.3 Tensile Tests on Micro Samples -- 5.5.4 Endurance Tests on Micro Samples -- 5.5.5 Microstructure Analysis with EBSD on Rotary Swaged Samples -- References -- 6 Materials for Micro Forming -- 6.1 Introduction to Materials for Micro Forming -- 6.2 Tailored Graded Tool Materials for Micro Cold Forming via Spray Forming -- 6.2.1 Introduction -- 6.2.2 Production of Graded Tool Materials -- 6.2.2.1 Materials Selection -- 6.2.2.2 Spray Forming of Graded Tool Materials -- 6.2.2.3 Densification of Graded Tool Materials -- 6.2.2.4 Heat Treatment -- 6.2.3 Evaluation of the Graded Tool Materials -- 6.2.3.1 Co-spray-Formed Material -- 6.2.3.2 Successive Spray-Formed Material -- 6.2.4 Fabrication of Micro Cold Forming Tools -- 6.2.5 Performance of Micro Forming Tools -- 6.3 Production of Thin Sheets by Physical Vapor Deposition -- 6.3.1 Introduction -- 6.3.2 Methods -- 6.3.2.1 The Magnetron Sputtering Process -- 6.3.2.2 Separation of the Foils from the Substrate.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.3.2.3 Continuous PVD Coating Process for Thin Substrate Foils.</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources.</subfield></datafield><datafield tag="590" ind1=" " ind2=" "><subfield code="a">Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. </subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Friedrich, Sybille.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kuhfuß, Bernd.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Maaß, Peter.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Thomy, Claus.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zoch, Hans-Werner.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Vollertsen, Frank</subfield><subfield code="t">Cold Micro Metal Forming</subfield><subfield code="d">Cham : Springer International Publishing AG,c2019</subfield><subfield code="z">9783030112790</subfield></datafield><datafield tag="797" ind1="2" ind2=" "><subfield code="a">ProQuest (Firm)</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture Notes in Production Engineering Series</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=5896881</subfield><subfield code="z">Click to View</subfield></datafield></record></collection>